
Preliminaries

Q1
Is p & G(p -> XX p) a solution to the
”p on even states but saying nothing about

odd states” puzzle?

A: no
if p holds in an odd state, then it holds in all
future odd states. We didn’t want this.

Preliminaries

Q2
Is E k really a formula in CTL ?

A: No! (Not in the syntax)
E needs to be combined with F, G or X

And anyway, what would it actually mean?
(fixed this on earlier slide)

Model Checking II

How CTL model checking works

CTL

A E X F G U

Model checking problem
Determine M, s0 f

Or find all s s.t. M, s f

Explicit state model checking

Option 1 CES (original paper)

Represent state transition graph explicitly
Walk around marking states

Graph algorithms involving strongly connected
components etc.

Not covered in this course (cf. SPIN)
Used particularly in software model checking

Symbolic MC

Option 2 McMillan et al

because of
STATE EXPLOSION problem

State graph exponential in program/circuit size
Graph algorithms linear in state graph size

INSTEAD
Use symbolic representation both of sets of states
and of state transtion graph

First, think just about sets of states

in which CTL formulas hold

Need only the boolean connectives (¬ , &) and
A X F G U
(different choice from yesterday to follow Seger paper more

closely)

Define others
e.g.
EG p ⇔ ¬ AF ¬p
E(p U q) ⇔ ¬ (A(¬ q U (¬ p & ¬ q)) ∨ AG(¬ q))

CTL formula f H(f) set of states
satisfying f

a (atomic) {s | a in L(s)} (cf.Lars)

CTL formula f H(f) set of states
satisfying f

a (atomic) {s | a in L(s)} (cf.Lars)

¬p S – H(p)

CTL formula f H(f) set of states
satisfying f

a (atomic) {s | a in L(s)} (cf.Lars)

¬p S – H(p)

p & q H(p) ∩ H(q)

CTL formula f H(f) set of states
satisfying f

AX f {s | forall t sRt => t ∈ H(f)}

Now gets harder

AG p p & AX AG p

Recursive
Want to write something like

H(AG p) = H(p) ∩ {s | forall t sRt => t ∈ H(AG p)}
Doesn’t quite make sense, but nearly…

want to find a set U such that
U = H(p) ∩ {s | forall t sRt => t ∈ U }

form is
U = f(U)
We need to compute a fixed point (or fixpoint)
of function f

Fixed points (Tarski)

If working in a complete lattice, and f monotonic,
then the set of fixed points will also form a
complete lattice.

There will be a greatest fixed point Gfp U. f(U)
and a least fixed point Lfp U. f(U)

All is fine with the sets of states and functions on
these sets that we are dealing with.

Next question

Do we need a least or a greatest fixed point for
U = H(p) ∩ {s | forall t sRt => t ∈ U}

?
Answer is Gfp
Idea: start with S (entire set of states) as first approx.
Then compute f(S), f (f (S) until no change in set

Conclusion

H(AG p)
= Gfp U . H(p) ∩ {s | forall t sRt => t ∈ U}

Fixed point iteration

P

Fixed point iteration

p

p ∧ AX p

Fixed point interation

in the other direction

p

p ∧ AX (p ∧ AX p)

Fixed point iteration

p

p ∧ AX (p ∧ AX (p ∧ AX p)

….

AF

AF p p ∨ AX AF P

Same kind of pattern but this time need
least fixed point (starting with empty set)

H(AF p)
= Lfp U. H(p) ∪ {s | forall t sRt => t ∈ U}

Fixed point iteration

p

Fixed point iteration

p ∨ AX p

p

Fixed point iteration

p ∨ AX (p ∨ AX p)

p

Fixed point iteration

Evetually stops!

P
. . . .

Similar story for Until

A (p U q) ⇔ q ∨ (p ∧ AX (A (p U q)))

H(A (p U q))
= Lfp U. H(q) ∪ (H(q) ∩ {s | forall t sRt
. => t ∈ U})

Rest are defined in terms of these

e.g.
EG p ⇔ ¬ AF ¬p
E(p U q) ⇔ ¬ (A(¬ q U ¬ p & ¬ q) ∨ AG(¬ q))

Put H around each side

So far so good

Only talked about sets of states so far

Will come back to concrete calculations with
these

What about BDDs to represent them??

BDD based Symbolic MC

Sets of states
relations between states BDDs

Fixed point characerisations of CTL ops

NO explicit state graph

A state

Vector of boolean variables

(v1,v2,v3, …., vn) ∈ {0,1}n

Boolean formulas

(x ⊕ y) ⊕ z (⊕ is exclusive or)

(1 ⊕ 0) ⊕ 0 = 1
assignment [x=1,y=0,z=0] gives answer 1
is a model or satisfying assignment

Write as 100

Exercise: Find another model

Boolean formulas

(x ⊕ y) ⊕ z
(1 ⊕ 1) ⊕ 0 = 0

assignment [x=1,y=1,z=0] is not a model

Formula is a tautology if ALL assignments
are models and is contradictory if NONE is.

Boolean formulas

For us, interesting formulas are somewhere in
between: some assignments are models, some not

IDEA: A formula can represent a set of states (its
models)

{} false
{111} x ∧ y ∧ z
{101} x ∧ ¬y ∧ z
{111,101} x ∧ z

.

.
{000,001, … , 111} true

Example

(x ⊕ y) ⊕ z represents {100,010,001,111}
for states of the form xyz

Exercise: Find formulas (with var. names x,y,z) for
the sets

{}
{100}
{110,100,010,000}

What is needed now?

A good data structure for boolean formulas

Have already seen
Binary Decision Diagrams (BDDs)

Bryant (IEEE Trans. Comp. 86, most cited CS paper!)
see also Bryant’s document about a Hitachi patent from

93
McMillan saw application to symbolic MC

Represent a set of states

Just make the BDD for a corresponding
formula!

Represent a transition relation R

Remember that R is just
a set of pairs of states

Use two sets of variables, v and v’ (with the
primed variables representing next states)

Make a formula involving both v and v’ and
from that a BDD bdd(R,(v,v’))

What set of states can we reach
from set P in one step?

P Image(P,R)
{t ∃s s ∈ P ∧ s R t}

R

R
R

R

What set of states can we reach
from set P in one step?

P Image(P,R)
{t ∃s s ∈ P ∧ s R t}

R

R
R

R

bdd(Image(P,R),v’) = ∃ v bdd(P,v) ∧ bdd(R,(v,v’))

So far

BDDs for
1) sets of states
2) transition relation
3) calculating forward image of a set

Before we go on with MC, note that we
can now compute Reachable States

(see Hu paper)
Let T be the transition relation
R0(v) = BDD for reset (or initial) state
R1(v) = R0(v) ∨ bdd(Image(R0,T),v)

…
Ri+1(v) = Ri(v) ∨ bdd(Image(Ri,T),v)

Will eventually converge with Ri+1(v) = Ri(v).
Why???

Before we go on with MC, note that we
can now compute Reachable States

(see Hu paper)
Let T be the transition relation
R0(v) = BDD for reset (or initial) state
R1(v) = R0(v) ∨ bdd(Image(R0,T),v)

…
Ri+1(v) = Ri(v) ∨ bdd(Image(Ri,T),v)

Will eventually converge with Ri+1(v) = Ri(v).
Why???

BDD or

Before we go on with MC, note that we
can now compute Reachable States

(see Hu paper)
Let T be the transition relation
R0(v) = BDD for reset (or initial) state
R1(v) = R0(v) ∨ bdd(Image(R0,T),v)

…
Ri+1(v) = Ri(v) ∨ bdd(Image(Ri,T),v)

Will eventually converge with Ri+1(v) = Ri(v).

Easy to check. Why?

Back to MC

CTL formula f H(f) set of states
satisfying f

a (atomic) {s | a in L(s)} (cf.Lars)

¬p S – H(p)

p & q H(p) ∩ H(q)

CTL formula f H(f) set of states
satisfying f

AX f {s | forall t sRt => t ∈ H(f)}

All of the above operations easy to do with BDDs

BDDs also fine in fixed point
iterations

H(AF p)
= Lfp U. H(p) ∪ {s | forall t sRt => t ∈ U}

becomes
U0 = empty set
U1 = H(p) ∪ {s | forall t sRt => t ∈ U0}
U2 = H(p) ∪ {s | forall t sRt => t ∈ U1}
…

All done with BDDS (and recursion and
fixed point iteration)

Example of manual calculation
(from exam 2009)

Example of manual calculation
(from exam 2009)

y

Example of manual calculation
(from exam 2009)

yy’

Example of manual calculation
(from exam 2009)

z

Example of manual calculation
(from exam 2009)

zz’

transitions

(x, y, z) -> (x’, y’, z’)

y’ = (x ∧ y) ∨ ¬(y ∨ z)
z’ = y

Show state transition diagram
Calculate states in which EG y holds

state transition graph

000 -> 010 110

state transition graph

100 -> 010 110

state transition graph

H (EG y) = H (¬ AF ¬y)
= S – H(AF ¬y)

H(AF ¬y) =
Lfp U. H(¬y) ∪ {s | forall t sRt => t in U}

H(¬y)= {000,001,100,101}

Fixed point iteration

U0 = empty set
U1 = H(¬y) ∪ {s | forall t sRt => t in U0}

= H(¬y) = {000,001,100,101}
U2 = H(¬y) ∪ {s | forall t sRt => t in U1}

= H(¬y) ∪ {011,010}
U3 = H(¬y) ∪ {s | forall t sRt => t in U2}

= H(¬y) ∪ {011,010}

H(AF ¬y) = {000,001,100,101,011,010}

Therefore,
H (EG y) = S - H(AF ¬y)

= {110,111}

Example revisited

A sequence beginning with the assertion of signal
strt, and containing two not necessarily
consecutive assertions of signal get, during which
signal kill is not asserted, must be followed by a
sequence containing two assertions of signal put
before signal end can be asserted

AG~(strt & EX E[~get & ~kill U get & ~kill & EX
E[~get & ~kill U get & ~kill & E[~put U end] or
E[~put & ~end U (put & ~end & EX E[~put U
end])]]])

AG ~ ...

strt & EX E[~get & ~kill U get & ~kill & ...]

EX E [~get & ~kill U get & ~kill & ...]

E[~put U end] or
E[~put & ~end U (put & ~end & EX E[~put U end])]]

AG ~ ...

strt & EX E[~get & ~kill U get & ~kill & ...]

EX E [~get & ~kill U get & ~kill & ...]

E[~put U end] or
E[~put & ~end U (put & ~end & EX E[~put U end])]]

zero puts

AG ~ ...

strt & EX E[~get & ~kill U get & ~kill & ...]

EX E [~get & ~kill U get & ~kill & ...]

E[~put U end] or
E[~put & ~end U (put & ~end & EX E[~put U end])]]

one put

	Preliminaries
	Preliminaries
	Model Checking II
	CTL
	Explicit state model checking
	Symbolic MC
	First, think just about sets of states�in which CTL formulas hold
	
	
	
	
	Now gets harder
	Slide Number 13
	Fixed points (Tarski)
	Next question
	Conclusion
	Fixed point iteration�
	Fixed point iteration�
	Fixed point interation�in the other direction
	Fixed point iteration�
	AF
	Fixed point iteration
	Fixed point iteration
	Fixed point iteration
	Fixed point iteration
	Similar story for Until
	Rest are defined in terms of these
	So far so good
	BDD based Symbolic MC
	A state
	Boolean formulas
	Boolean formulas
	Slide Number 33
	Boolean formulas
	Slide Number 35
	Example
	What is needed now?
	Represent a set of states
	Represent a transition relation R
	What set of states can we reach from set P in one step?
	What set of states can we reach from set P in one step?
	So far
	Before we go on with MC, note that we can now compute Reachable States �(see Hu paper)
	Before we go on with MC, note that we can now compute Reachable States �(see Hu paper)
	Before we go on with MC, note that we can now compute Reachable States �(see Hu paper)
	Back to MC
	
	
	BDDs also fine in fixed point iterations
	Slide Number 50
	Example of manual calculation�(from exam 2009)
	Example of manual calculation�(from exam 2009)
	Example of manual calculation�(from exam 2009)
	Example of manual calculation�(from exam 2009)
	Example of manual calculation�(from exam 2009)
	transitions
	state transition graph
	state transition graph
	state transition graph
	Slide Number 60
	Fixed point iteration
	Slide Number 62
	Example revisited
	Slide Number 64
	Slide Number 65
	Slide Number 66

