
First some loose ends



Back to BDDs
(from lec. 3, week 1)



First form of FV
Equivalence Checking

(EC,CEC)
Boolean network comparison, also 

known as combinational equivalence 
checking

Straight BDD comparison works for 
moderately sized circuits. For larger 
circuits, more sophisticated methods 
are used.

Invisible to user, automatic, effective



Second form of FV



Second form of FV























Pro and Cons of BDDs
+ Powerful operations (create, manipulate,test)

polynomial complexity, composable
+ Usually stay small enough

given good variable order
+ Provide quantification operations (unlike plain SAT)      (see MC!)

- sometimes explode in size
- important circuits (multipliers and shifters) are problematic =>  

yet more special hacks in the tools
- variable ordering problem is NP-complete

In practice used together with SAT and other engines



Model Checking I

What are LTL and CTL?
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View circuit as a transition system

(dreq, q0, dack)     (dreq’, q0’, dack’)

q0’     =  dreq

dack’  =  dreq and (q0 or (not q0 and dack))
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can also view transititon relation as a set of pairs of states, one pair per arrow
{(000,000), (000,100), (001,000), (001,100), 
(010,000), (010,100), (011,000), (011,100),
(100,010), (100,110), (101,011), (101,111), 
(110,011), (110,111), (111,011), (111,111)}



Idea

Transition system

+ special temporal logic

+ automatic checking algorithm



Another view

computation tree from a state

111



Unwinding further
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Possible behaviours from state s
s
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Transition relation R

Relation vs. Function?



path = possible run of the system
s
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Transition relation R



Points to note
Transition system models circuit behaviour

We chose the tick of the transition system to be the same as 
one clock cycle. Gates have zero delay – a very standard 
choice for synchronous circuits

Could have had a finer degree of modelling of time (with 
delays in gates). Choices here determine what properties 
can be analysed

Model checker starts with transition system. It doesn’t matter 
where it came from



Transition system   M

S      set of states (finite)

R binary relation on states
assumed total,  each state has at least one arrow out

A set of atomic formulas

L function S ->  set of atomic formulas that hold
in that state

Lars backwards finite Kripke structure



Path in M

Infinite sequence of states
π =  s0 s1 s2 ...              such that



Path in M

s0  s1    s2    ... 

R (s0,s1) є R

(s1,s2) є R

etc



Properties

Express desired behaviour over time using 
special logic

LTL    (linear temporal logic)
CTL    (computation tree logic)
CTL*   (more expressive logic with both                   

.        LTL and CTL as subsets)



CTL*

path quantifers
A “for all computation paths”
E “for some computation path”
can prefix assertions made from
Linear operators
G “globally=always”
F “sometime”
X “nexttime”
U “until”

about a path



CTL*  formulas (syntax)

path formulas
f ::=  s |  ¬f |   f1 ∨ f2  |  X f  |  f1 U f2

state formulas     (about an individual state)
s ::=   a | ¬s | s1 ∨ s2 | E f

atomic formulas



Build up from core

A f =   ¬ E ¬ f

F  f =   true U f
G  f     =   ¬ F ¬ f



Example

G (req -> F ack)



Example

G (req -> F ack)

A request will eventually lead to an 
acknowledgement

liveness
linear



Example

G (req -> F ack)

A request will eventually lead to an 
acknowledgement

liveness
linear

Liveness property

can only be proved false by exhibiting an infinite 
path (run). Any finite path can be extended to 

satisfy the eventuality condition



Example

G (req -> F ack)

A request will eventually lead to an 
acknowledgement

liveness
linear

Safety and liveness in this sense introduced by 
Lamport in a 1976 paper (about manual proof of his 

Bakery algorithm)



Example (Gordon)

It is possible to get to a state where Started
holds but Ready does not



Example (Gordon)

It is possible to get to a state where Started
holds but Ready does not

E (F  (Started & ¬Ready))



Semantics

M = (L,A,R,S)

M, s f f holds at state s in M

(and omit M if it is clear which M
we are talking about)

M, π g     g holds for path π in M



Semantics

Back to syntax and write down each case
s         a                  a in L(s) (atomic)

s  ¬f not (s       f)

s         f1 ∨ f2     s       f1 or s        f2

s      E (g)  Exists π. head (π) = s    and π g



Semantics

Back to syntax and write down each case
s         a                  a in L(s) (atomic)

s  ¬f not (s       f)

s         f1 ∨ f2     s       f1 or s        f2

s      E (g)  Exists π. head (π) = s    and π g

English

a holds in state s  if and only if a is in the set of 
atomic propositions associated with s



Semantics

Back to syntax and write down each case
s         a                  a in L(s) (atomic)

s  ¬f not (s       f)

s         f1 ∨ f2     s       f1 or s        f2

s      E (g)  Exists π. head (π) = s    and π g

English
¬f holds in s   if and only if it is not the case that f 
holds in s

Semantics of a formula expressed in terms of 
semantics of its parts. Recursive, with base case
being the rule about atomic formulas



Semantics

π f               s        f   and head(π) = s

π ¬ g     not  (π g)

π g1 ∨ g2    π g1   or π g2



Semantics

π X g tail(π)      g

π g1 U g2

Exists k ≥ 0. drop k π g2           and

Forall 0 ≤ j < k. drop j π g1

(note: I mean tail in the Haskell sense)



CTL

Restrict path formulas (compare with CTL*)

f ::=  ¬f |   s1 ∨ s2 |  X s |  s1 U s2

state formulas

Linear time ops (X,U,F,G) must be wrapped up in a 
path quantifier (A,E).



Back to CTL*  formulas (syntax)

path formulas
f ::=  s |  ¬f |   f1 ∨ f2  |  X f  |  f1 U f2

state formulas     (about an individual state)
s ::=   a | ¬s | s1 ∨ s2 | E f

atomic formulas



CTL*  yes CTL   ?

E X X f
E ( f U (g U j))

A ( f U Xg)

A ( f U g) ∨ E k



CTL*  yes CTL   ?

E X X f
E ( f U (g U j))

A ( f U Xg)

A ( f U g) ∨ E k Yes



CTL

Another view is that we just have the 
combined operators 
AU, AX, AF, AG and EU, EX, EF, EG

and only need to think about state formulas

A operators      for   necessity
E operators      for   possibility



f             :: =                              atomic
|   ¬f

All immediate successors |   AX  f
Some immediate succesor |   EX  f
All paths always |   AG f
Some path always |   EG f
All paths eventually |   AF f
Some path eventually |   EF  f

|   f1 ∨ f2
|  A (f1  U  f2)
|  E  (f1  U  f2)





Examples (Gordon)

It is possible to get to a state where Started
holds but Ready does not



Examples (Gordon)

It is possible to get to a state where Started
holds but Ready does not

EF  (Started & ¬Ready)



Examples (Gordon)

If a request Req occurs, then it will
eventually be acknowledged by Ack



Examples (Gordon)

If a request Req occurs, then it will
eventually be acknowledged by Ack

AG (Req -> AF Ack)



Examples (Gordon)

If a request Req occurs, then it continues to 
hold, until it is eventually acknowledged



Examples (Gordon)

If a request Req occurs, then it continues to 
hold, until it is eventually acknowledged

AG (Req ->  A [Req U  Ack])



EX  E (f U g)



LTL

LTL formula is of form A f where f is a path formula
with subformulas that are atomic
(The f is what we write down. The A is implicit.)

Restrict path formulas (compare with CTL*)

f ::=  a | ¬f |   f1 ∨ f2  |  X f  |   f1 U f2

atomic formulas (Talk about a single state)





LTL

It is the restricted path formulas that we think of as LTL 
specifications (See P&R again)

G ¬(critical1 & critical2)     mutex

FG initialised eventually stays initialised

GF myMove myMove will always eventually hold

G (req -> F ack) request acknowledge pattern



LTL

Responsiveness (more examples)

G (req -> XF ack)

G (req -> X(req U ack))

G (req -> X((req & ¬ ack) U (¬ req & ack) ))



LTL

p holds at the even states and does not hold at the odd states

p & G (p <-> ¬ (X p)) 

It is not possible to express that p holds in the even states (while not 
saying anything about the odd states) in LTL



In CTL but not LTL

AG EF start
Regardless of what state the program enters, there

exists a computation leading back to the start state



In CTL but not LTL

AG (R → EX S)

”non-blocking”

Even EX P is an example



In both

AG (p → AF q) in CTL 
G(p → F q) in LTL



In LTL but not CTL

G F p → F q
if there are infinitely many p along the path, 

then there is an occurrence of q

F G p



In CTL* but not in LTL or CTL

E [G F p]
there is a path with infinitely many p



Further reading

Ed Clarke’s course on Bug Catching: Automated Program 
Verification and Testing

complete with moving bug on the home page!

Covers model checking relevant to hardware too.

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15414-f06/www/index.html
The sub-page called Reading has slides and paper links

For some history (by the inventors themselves) see this workshop celebrating 25 years of 

MC http://www.easychair.org/FLoC-06/25MC-day227.html

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15414-f06/www/index.html�


Example revisited

A sequence beginning with the assertion of signal 
strt, and containing two not necessarily
consecutive assertions of signal get, during which
signal kill is not asserted, must be followed by a 
sequence containing two assertions of signal put
before signal end can be asserted

AG~(strt & EX E[~get & ~kill U get & ~kill & EX 
E[~get & ~kill U get & ~kill & E[~put U end] or 
E[~put & ~end U (put & ~end & EX E[~put U 
end])]]])



AG ~ ...

strt & EX E[ ~get & ~kill U get & ~kill & ...]

EX E [~get & ~kill U get & ~kill & ...]

E[~put U end] or 
E[~put & ~end U (put & ~end & EX E[~put U end])]]



AG ~ ...

strt & EX E[ ~get & ~kill U get & ~kill & ...]

EX E [~get & ~kill U get & ~kill & ...]

E[~put U end] or 
E[~put & ~end U (put & ~end & EX E[~put U end])]]

zero puts



AG ~ ...

strt & EX E[ ~get & ~kill U get & ~kill & ...]

EX E [~get & ~kill U get & ~kill & ...]

E[~put U end] or 
E[~put & ~end U (put & ~end & EX E[~put U end])]]

one put



Next lecture

How to model check CTL formulas
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