Lava 4

brief info for TH exam

Q: How can we speed this up?

adderO :: [(Bit, Bit)] -> ([Bit], Bit)
adderO abs = row fullAdd (low,abs)

Q: How can we speed this up?

adderO :: [(Bit, Bit)] -> ([Bit], Bit)
adderO abs = row fullAdd (low,abs)

N

row is a connection pattern
iqpl iqu
¥ ¥

iqpn
¥

row Cciro

21
[¥]
i
~a

Y Y Y

outl out 2 outn

A: Compute carries separately

will show a sequence of functions that each
have same behaviour

Some useful stuff

fsTf = (f -|- id)
snD f = (id -|-)

fo::(@a->b)->a->(ab)
fb circ a = (a, circ a)

another view of full adder

fullAdd1 :: (Bit,(Bit,Bit)) -> (Bit,Bit)
fullAdd1 = snD gpC ->- fb carryC ->- fsT sumC

gpC

fb carryC

sumC

gpC:: (Bit,Bit) -> (Bit,Bit)
gpC (a,b) = (a <&> b,a <#>b)

sumcC :: (Bit,(Bit,Bit)) -> Bit
sumC (cin, (_,p)) =cin<#>p

carryC :: (Bit,(Bit,Bit)) -> Bit
carryC (cin, (g,p)) = g <|> (cin <&> p)

Can we rewrite this?

adderl :: [(Bit, Bit)] -> ([Bit], Bit)
adderl abs = row fullAdd1 (low,abs)

two maps

adder2 :: [(Bit, Bit)] -> ([Bit], Bit)
adder2 abs = (ss,cout)
where
gps = map gpC abs
(rs,cout) = row (fb carryC) (low,gps)
SS = map sumC rs

low

gpC

Picture

fb carryC

gpC

sumC

fb carryC

abs
gpC gpC
fb carryC fb carryC
sumC sumC

sumC

fb

fo::(a->b)->a->(ab)
fbo circ a = (a, circ a)

T cafryC

f1

f1:: ((a,b) ->c) -> (a,b) -> (a,c)

f1 circ (a,b) = (a, circ (a,b))

carryC

-,

slight reorg

adder3 :: [(Bit, Bit)] -> ([Bit], Bit)
adder3 abs = (ss,cout)

where
gps = map gpC abs
(cs,cout) = row (f1 carryC) (low,gps)
s = ZIp CS gps

SS = map sumC rs

iIsolated the carry calculation

low

T carryC | carryC | carryC | carryC

Remember

could replace linear array by binary tree for
associative operator

iIsolated the carry calculation

low

carryC)/Q/C | carryC | carryC

Here we also have outputs along the bottom

iIsolated the carry calculation

low

carryC carryC | carryC | carryC

Here we also have outputs along the bottom

and worse still, the operator CAN’T BE ASSOCIATIVE!

Brent and Kung’s insight

If we can find an associatve operator that still
computes the same thing when placed in a
row, then we will be able to do much better
than a linear array!

enhance carryC

carryC

enhance carryC

AND

carryC

dotOp

enhance carryC

dotOp :: ((Bit,Bit), (Bit,Bit)) -> (Bit,Bit)
dotOp ((91,p1), (92,p2))= (carryC (91, (92,p2)), p1 <&> p2)

enhance carryC

dotOp :: ((Bit,Bit), (Bit,Bit)) -> (Bit,Bit)
dotOp ((91,p1), (92,p2))= (carryC (91, (92,p2)), p1 <&> p2)

Need also to compensate for this change so that the entire circuit
retains its function

enhance carryC

adder4 :: [(Bit, Bit)] -> ([Bit], Bit)
adder4 abs = (ss,cout)

where
gps = map gpC abs
(cs,cout) = (row (f1 dotOp) ->- (map fst -|- fst)) ((low,high), gps)
IS = ZIp CS gps

SS = map sumcC rs

enhance carryC

adder4 :: [(Bit, Bit)] -> ([Bit], Bit)
adder4 abs = (ss,cout)

where
gps = map gpC abs
(cs,cout) = (row (f1 dotOp) ->-
rs = ZIp CS gps

SS = map sumcC rs

(map fst -|- fst)) ((low,high), gps)

New situation (assoc. op.)

(low,high)

dotOp

=

dotOp

dotOp

dotOp

New situation (assoc. op.)

(low,high)

T dotOp | dotOp | dotOp | dotOp

Matches the famous Prefix Problem!

Prefix

Given inputs x1, x2, X3 ... Xn

Compute x1, x1*x2, x1*x2*x3, .. ,x1*x2*..*xn

Where * is an arbitrary associative (but not necessarily
commutative) operator

Why interesting?

Microprocessors contain LOTS of parallel prefix circuits
not only binary and FP adders
address calculation
priority encoding etc.

Overall performance depends on making them fast
But they should also have low power consumption...

Parallel prefix is a good example of a connection pattern
for which it is interesting to do better synthesis

Serial prefix .

least most significant

N

29

3 more

77

/
///

ser3::PPa
ser3 f [a,b,c] =[al,b2,c2]
where
[al,bl] =f [a,b]
[b2,c2] =f[bl,c]

f31::PPa
f31 f [a,b,c] =[al,b2,c2]
where
[bl,c1l] =f[b,c]
[al,b2,c2] =f[a,bl,cl]

f32 :: PP a
f32 f [a,b,c] = [a2,b2,c2]
where
[bl,c1] =f [b,c]
[al,c2] =f[a,cl]
[a2,b2] =f[al,b1]

type Fan a = [a] -> [a]

type PP a = Fan a -> [a] -> [3]

mkFan :: ((a,a) ->a) -> Fan a
mkFan op (i:is) = i:Jop(i,K) | k <- Is]

pplus :: Fan (Signal Int)
pplus = mkFan plus

delFan :: Fan (Signal Int)
delFan [i] = [i]
delFan is = replicate n (1 + maximum is)
where
n =length is

t3 = simulate (ser3 pplus) [1,2,3]
> 13
[1,3,6]

t3d = simulate (ser3 delFan) [0,0,0]
> t3d
[1,2,2]

serial prefix

ser:: PP a

ser [a] =][a]

serf (a:b:bs) =al:.cs
where

[al,a2] =f [a,b]
CS = ser f (a2:bs)

serial prefix

ser:: PP a

ser [a] =][a]

serf (a:b:bs) =al:.cs
where

[al,a2] = f [a,b]
CS = ser f (a2:bs)

serial prefix

ser:: PP a
ser [a] =][a]
serf (a:b:bs) =al:.cs
where
[al,a2] = f [a,b]
CS = ser f (a2:bs)

> mdraw "ser" ser 8

8 lines, 7 stages, 7 operators, 2 maximum fanout.

Sklansky

Sklansky

/

Z

A
A

7

Zi
f/!

32 lines 5 stages (= minimum)

80 operators

skl :: PP a

skl [a] =[a]
skl f as = init los ++ ros'
where
(los,ros) = (ski f las, skl f ras)
ros' = f (last los : ros)

(las,ras) = splitAt (cnd2 (length as)) as

cnd2n=n-n div 2 -- Ceiling of n/2

back to the adder!

adder4 :: [(Bit, Bit)] -> ([Bit], Bit)
adder4 abs = (ss,cout)

where
gps = map gpC abs
(cs,cout) = (row (f1 dotOp) ->- (map fst -|- fst)) ((low,high), gps)
IS = ZIp CS gps

SS = map sumcC rs

if (cs,c) =row (fl circ) (e, as)
and e is an identity of circ

then

cs++[c] = e: ser(mkFan circ)

back to the adder!

adder5 :: [(Bit, Bit)] -> ([Bit], Bit)
adder5 abs = (ss,cout)
where
gps = map gpC abs
(cs,cout) = (ser (mkFan dotOp) ->- unsnoc ->- (map fst -|- fst)) gps
rs = zip (low:cs) gps
SS = map sumC rs

slight optimisation (remove low)

adder6 :: [(Bit, Bit)] -> ([Bit], Bit)
adder6 abs = (ss,cout)

where
gps = map gpC abs
(cs,cout) = (ser (mkFan dotOp) ->- unsnoc ->- (map fst -|- fst)) gps
(Lp) - gps’) = gps
rs = ZIp cs gps'

SS =p:mapsumCrs

BUT now we can use any prefix
network we fancy

and there are lots to choose from!

back to the adder!

adder7 :: [(Bit, Bit)] -> ([Bit], Bit)
adder7 abs = (ss,cout)
where

gps = map gpC abs
(cs,cout) = (skl (mkFan dotOp) ->- unsnoc ->- (map fst -|- fst)) gps
(Lp) - gps’) = gps
rs = ZIp cs gps'
SS =p:mapsumCrs

back to the adder!

adder7 :: [(Bit, Bit)] -> ([Bit], Bit)
adder7 abs = (ss,cout)
where

gps = map gpC abs
(cs,cout) = (skl (mkFan dotOp) ->- unsnoc ->- (map fst -|- fst)) gps
(Lp) - gps’) = gps
rs = ZIp cs gps'
SS =p :map sumC rs

PN

Size (= power consumption) and performance completely
dominated by the prefix network

Could (and should) parameterise on the pattern

Some more

> mdraw "bK" bKung 32

NENEN

7

....'..,\.

5

N

.

N\

<

N

™

N

32 lines, 9 stages, 57 operators, 2 maximum fanout.

177

77

Some more

> mdraw "bK" bKung 32

NCN N

i
/]

xfig file is produced

7

/

177

\

——

/ /]

—

/

/

177

(by symbolic evaluation) + hack

32 lines, 9 { From xfig, pdf and many formats available

77

Ladner Fischer min. depth

*Main> mdraw "LFQ" (ladF 0) 32

i

32 lines, 5 stages, 74 operators, 17 maximum fanout.

Ladner Fischer min. depth

*Main> mdraw "LFQ" (ladF 0) 32

i

32 lines, 5 stages, 74 /\Qmaximum fanout.

LF 1+ min depth

N NN

i

~]
Y NN NN N |

32 lines, 6 stages, 62 operators, 9 maximum fanout.

(Code for Ladner Fischer will be provided)

and more

S NN

32 lines, 6 stages, 63 operators, 5 maximum fanout.

and more

[/

S

/

/

[[/

3

32 lines, 6 stages, 63 operators, 5 maximum fanout.

: ——g— — .——:‘

and more

32 lines, 6 stages, 63 operators, 5 maximum fanout.

[[/

/il

/

and more

32 lines, 6 stages, 63 operators, 5 maximum fanout.

[[/

/il

/

and more

32 lines, 6 stages, 63 operators, 5 maximum fanout.

Problem

Find a sweet spot LAGOM

Not too big
Not too deep
Not too much fanout

Questions?

	Lava 4
	Q: How can we speed this up?
	Q: How can we speed this up?
	A: Compute carries separately
	Some useful stuff
	another view of full adder
	Slide Number 7
	Can we rewrite this?
	two maps
	Picture
	fb
	f1
	slight reorg
	isolated the carry calculation
	Remember
	isolated the carry calculation
	isolated the carry calculation
	Brent and Kung’s insight
	enhance carryC
	enhance carryC
	enhance carryC
	enhance carryC
	enhance carryC
	enhance carryC
	New situation (assoc. op.)
	New situation (assoc. op.)
	Slide Number 27
	Slide Number 28
	Slide Number 29
	3 more
	fan
	Slide Number 32
	Slide Number 33
	Slide Number 34
	serial prefix
	serial prefix
	serial prefix
	Slide Number 38
	Sklansky
	Sklansky
	Slide Number 41
	back to the adder!
	Slide Number 43
	back to the adder!
	slight optimisation (remove low)
	BUT now we can use any prefix network we fancy
	back to the adder!
	back to the adder!
	Some more
	Some more
	Slide Number 51
	Ladner Fischer min. depth
	Ladner Fischer min. depth
	LF 1 + min depth
	and more
	and more
	and more
	and more
	and more
	Problem
	Questions?

