
Lava 4

brief info for TH exam

Q: How can we speed this up?

adder0 :: [(Bit, Bit)] -> ([Bit], Bit)
adder0 abs = row fullAdd (low,abs)

Q: How can we speed this up?

adder0 :: [(Bit, Bit)] -> ([Bit], Bit)
adder0 abs = row fullAdd (low,abs)

row is a connection pattern

A: Compute carries separately

will show a sequence of functions that each
have same behaviour

Some useful stuff

fsT f = (f -|- id)
snD f = (id -|- f)

fb :: (a -> b) -> a -> (a,b)
fb circ a = (a, circ a)

another view of full adder

fullAdd1 :: (Bit,(Bit,Bit)) -> (Bit,Bit)
fullAdd1 = snD gpC ->- fb carryC ->- fsT sumC

gpC

fb carryC

sumC

gpC:: (Bit,Bit) -> (Bit,Bit)
gpC (a,b) = (a <&> b,a <#> b)

sumC :: (Bit,(Bit,Bit)) -> Bit
sumC (cin, (_,p)) = cin <#> p

carryC :: (Bit,(Bit,Bit)) -> Bit
carryC (cin, (g,p)) = g <|> (cin <&> p)

Can we rewrite this?

adder1 :: [(Bit, Bit)] -> ([Bit], Bit)
adder1 abs = row fullAdd1 (low,abs)

two maps

adder2 :: [(Bit, Bit)] -> ([Bit], Bit)
adder2 abs = (ss,cout)
where
gps = map gpC abs
(rs,cout) = row (fb carryC) (low,gps)
ss = map sumC rs

Picture

gpC

fb carryC

sumC

gpC

fb carryC

sumC

gpC

fb carryC

sumC

gpC

fb carryC

sumC

low

abs

fb

carryC

fb :: (a -> b) -> a -> (a,b)
fb circ a = (a, circ a)

f1

carryC

f1 :: ((a,b) -> c) -> (a,b) -> (a,c)
f1 circ (a,b) = (a, circ (a,b))

slight reorg

adder3 :: [(Bit, Bit)] -> ([Bit], Bit)
adder3 abs = (ss,cout)
where
gps = map gpC abs
(cs,cout) = row (f1 carryC) (low,gps)
rs = zip cs gps
ss = map sumC rs

isolated the carry calculation

carryCcarryC carryC carryC
low

Remember

could replace linear array by binary tree for
associative operator

isolated the carry calculation

carryCcarryC carryC carryC

Here we also have outputs along the bottom

low

isolated the carry calculation

carryCcarryC carryC carryC

Here we also have outputs along the bottom

and worse still, the operator CAN’T BE ASSOCIATIVE!

low

Brent and Kung’s insight

If we can find an associatve operator that still
computes the same thing when placed in a
row, then we will be able to do much better
than a linear array!

enhance carryC

carryC

g p

enhance carryC

carryC

g p

AND

dotOp

enhance carryC

dotOp :: ((Bit,Bit), (Bit,Bit)) -> (Bit,Bit)
dotOp ((g1,p1), (g2,p2))= (carryC (g1, (g2,p2)), p1 <&> p2)

enhance carryC

dotOp :: ((Bit,Bit), (Bit,Bit)) -> (Bit,Bit)
dotOp ((g1,p1), (g2,p2))= (carryC (g1, (g2,p2)), p1 <&> p2)

Need also to compensate for this change so that the entire circuit
retains its function

enhance carryC

adder4 :: [(Bit, Bit)] -> ([Bit], Bit)
adder4 abs = (ss,cout)
where
gps = map gpC abs
(cs,cout) = (row (f1 dotOp) ->- (map fst -|- fst)) ((low,high), gps)
rs = zip cs gps
ss = map sumC rs

enhance carryC

adder4 :: [(Bit, Bit)] -> ([Bit], Bit)
adder4 abs = (ss,cout)
where
gps = map gpC abs
(cs,cout) = (row (f1 dotOp) ->- (map fst -|- fst)) ((low,high), gps)
rs = zip cs gps
ss = map sumC rs

New situation (assoc. op.)

dotOpdotOp dotOp dotOp
(low,high)

New situation (assoc. op.)

dotOpdotOp dotOp dotOp
(low,high)

Matches the famous Prefix Problem!

29

Serial prefix

least most significant

3 more

fan

ser3 :: PP a
ser3 f [a,b,c] = [a1,b2,c2]

where
[a1,b1] = f [a,b]
[b2,c2] = f [b1,c]

f31 :: PP a
f31 f [a,b,c] = [a1,b2,c2]

where
[b1,c1] = f [b,c]
[a1,b2,c2] = f [a,b1,c1]

f32 :: PP a
f32 f [a,b,c] = [a2,b2,c2]

where
[b1,c1] = f [b,c]
[a1,c2] = f [a,c1]
[a2,b2] = f [a1,b1]

type Fan a = [a] -> [a]

type PP a = Fan a -> [a] -> [a]

mkFan :: ((a,a) -> a) -> Fan a
mkFan op (i:is) = i:[op(i,k) | k <- is]

pplus :: Fan (Signal Int)
pplus = mkFan plus

delFan :: Fan (Signal Int)
delFan [i] = [i]
delFan is = replicate n (1 + maximum is)
where
n = length is

t3 = simulate (ser3 pplus) [1,2,3]
> t3
[1,3,6]

t3d = simulate (ser3 delFan) [0,0,0]
> t3d
[1,2,2]

serial prefix

ser :: PP a
ser _ [a] = [a]
ser f (a:b:bs) = a1:cs
where
[a1,a2] = f [a,b]
cs = ser f (a2:bs)

serial prefix

ser :: PP a
ser _ [a] = [a]
ser f (a:b:bs) = a1:cs
where
[a1,a2] = f [a,b]
cs = ser f (a2:bs)

serial prefix

ser :: PP a
ser _ [a] = [a]
ser f (a:b:bs) = a1:cs
where
[a1,a2] = f [a,b]
cs = ser f (a2:bs)

> mdraw "ser" ser 8

Sklansky

Sklansky

32 lines 5 stages (= minimum) 80 operators

skl :: PP a
skl _ [a] = [a]
skl f as = init los ++ ros'
where
(los,ros) = (skl f las, skl f ras)
ros' = f (last los : ros)
(las,ras) = splitAt (cnd2 (length as)) as

cnd2 n = n - n `div` 2 -- Ceiling of n/2

back to the adder!

adder4 :: [(Bit, Bit)] -> ([Bit], Bit)
adder4 abs = (ss,cout)
where
gps = map gpC abs
(cs,cout) = (row (f1 dotOp) ->- (map fst -|- fst)) ((low,high), gps)
rs = zip cs gps
ss = map sumC rs

if (cs,c) = row (f1 circ) (e, as)
and e is an identity of circ

then

cs ++ [c] = e : ser (mkFan circ)

back to the adder!

adder5 :: [(Bit, Bit)] -> ([Bit], Bit)
adder5 abs = (ss,cout)
where
gps = map gpC abs
(cs,cout) = (ser (mkFan dotOp) ->- unsnoc ->- (map fst -|- fst)) gps
rs = zip (low:cs) gps
ss = map sumC rs

slight optimisation (remove low)

adder6 :: [(Bit, Bit)] -> ([Bit], Bit)
adder6 abs = (ss,cout)
where
gps = map gpC abs
(cs,cout) = (ser (mkFan dotOp) ->- unsnoc ->- (map fst -|- fst)) gps
((_,p) : gps') = gps
rs = zip cs gps'
ss = p : map sumC rs

BUT now we can use any prefix
network we fancy

and there are lots to choose from!

back to the adder!

adder7 :: [(Bit, Bit)] -> ([Bit], Bit)
adder7 abs = (ss,cout)
where
gps = map gpC abs
(cs,cout) = (skl (mkFan dotOp) ->- unsnoc ->- (map fst -|- fst)) gps
((_,p) : gps') = gps
rs = zip cs gps'
ss = p : map sumC rs

back to the adder!

adder7 :: [(Bit, Bit)] -> ([Bit], Bit)
adder7 abs = (ss,cout)
where
gps = map gpC abs
(cs,cout) = (skl (mkFan dotOp) ->- unsnoc ->- (map fst -|- fst)) gps
((_,p) : gps') = gps
rs = zip cs gps'
ss = p : map sumC rs

Size (= power consumption) and performance completely
dominated by the prefix network

Could (and should) parameterise on the pattern

Some more
> mdraw "bK" bKung 32

Some more
> mdraw "bK" bKung 32

xfig file is produced (by symbolic evaluation) + hack

From xfig, pdf and many formats available

Ladner Fischer min. depth

*Main> mdraw "LF0" (ladF 0) 32

Ladner Fischer min. depth

*Main> mdraw "LF0" (ladF 0) 32

Beware. Many papers and books are wrong about LF (and think
it is the same as Sklansky). It is not!

LF 1 + min depth

(Code for Ladner Fischer will be provided)

and more

and more

and more

and more

and more

Problem

Find a sweet spot LAGOM

Not too big
Not too deep
Not too much fanout

Questions?

	Lava 4
	Q: How can we speed this up?
	Q: How can we speed this up?
	A: Compute carries separately
	Some useful stuff
	another view of full adder
	Slide Number 7
	Can we rewrite this?
	two maps
	Picture
	fb
	f1
	slight reorg
	isolated the carry calculation
	Remember
	isolated the carry calculation
	isolated the carry calculation
	Brent and Kung’s insight
	enhance carryC
	enhance carryC
	enhance carryC
	enhance carryC
	enhance carryC
	enhance carryC
	New situation (assoc. op.)
	New situation (assoc. op.)
	Slide Number 27
	Slide Number 28
	Slide Number 29
	3 more
	fan
	Slide Number 32
	Slide Number 33
	Slide Number 34
	serial prefix
	serial prefix
	serial prefix
	Slide Number 38
	Sklansky
	Sklansky
	Slide Number 41
	back to the adder!
	Slide Number 43
	back to the adder!
	slight optimisation (remove low)
	BUT now we can use any prefix network we fancy
	back to the adder!
	back to the adder!
	Some more
	Some more
	Slide Number 51
	Ladner Fischer min. depth
	Ladner Fischer min. depth
	LF 1 + min depth
	and more
	and more
	and more
	and more
	and more
	Problem
	Questions?

