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Exercise: Zero detection

Examples of recursively defined circuits

First version
assume we have a circuit that works for n bits,
build a circuit that works for n+1 bits.
Result: a linear chain of 2-input gates

Second version
assume we have a circuit that works for n bits,
build a circuit that works for 2n bits.
Result: a balanced trees of 2-input gates



linear chain

zero_detect as = inv nz
where
nz = nz_detect as

nz_detect [] = low
nz_detect (a:as) = out
where
out   = or2(a,out2)
out2 = nz_detect as  



balanced tree
nz_detect1 []  = low
nz_detect1 [a] = a
nz_detect1 as  = out
where
(as1,as2) = halveList as
out1 = nz_detect1 as1
out2 = nz_detect1 as2
out   = or2(out1,out2)



nz_detect2 []   = low
nz_detect2 [a] = a
nz_detect2 as  = circ as

where
circ = halveList ->- (nz_detect2 -|- nz_detect2) ->- or2

different style



nz_detect2 []   = low
nz_detect2 [a] = a
nz_detect2 as  = circ as

where
circ = halveList ->- (nz_detect2 -|- nz_detect2) ->- or2

different style

reminder

> simulate halveList ( [1..9] :: [Signal Int])
([1,2,3,4],[5,6,7,8,9])



capturing the pattern for reuse

binTree c []   = error "binTree of empty list"
binTree c [a] = a
binTree c as  = circ as 

where 
circ = halveList ->- (binTree c -|- binTree c) ->- c



capturing the pattern for reuse

binTree c []   = error "binTree of empty list"
binTree c [a] = a
binTree c as  = circ as 

where 
circ = halveList ->- (binTree c -|- binTree c) ->- c

Q: Why do we need the second base case?



capturing the pattern for reuse

binTree c []   = error "binTree of empty list"
binTree c [a] = a
binTree c as  = circ as 

where 
circ = halveList ->- (binTree c -|- binTree c) ->- c> simulate halveList [low]

([],[low])

Must make sure that inputs to recursive calls 
are smaller than original input



Comparing circuits

Comparing behaviour with FV is easy (for 
fixed size boolean circuits, inc. sequential)

For comparing performance, we need to do
some modelling of delay behaviour



Simple delay analysis:
Depth computations

ldepth :: (Signal Int, Signal Int) -> Signal Int
ldepth (a,b) = max a b + 1

dtstTree n = simulate (binTree ldepth) (replicate n 0)

dtstT n = map dtstTree [1..n]

> dtstT 10
[0,1,2,2,3,3,3,3,4,4]



Simple delay analysis:
Depth computations

-- from Lecture 2
red :: ((a,b) -> a) -> (a, [b]) -> a
red f (a,[])      = a
red f (a, (b:bs)) = red f (f(a,b), bs)

lin f (a:as) = red f (a,as)
lin _ []     = error "lin: empty list"

dtstLin n = simulate (lin ldepth) (replicate n 0)

*Main> dtstL 10
[0,1,2,3,4,5,6,7,8,9] >



Simple delay analysis:
Depth computations

-- from Lecture 2
red :: ((a,b) -> a) -> (a, [b]) -> a
red f (a,[])      = a
red f (a, (b:bs)) = red f (f(a,b), bs)

lin f (a:as) = red f (a,as)
lin _ []     = error "lin: empty list"

dtstLin n = simulate (lin ldepth) (replicate n 0)

*Main> dtstL 10
[0,1,2,3,4,5,6,7,8,9] >

This kind of analysis is an argument for 
defining parameterised circuits (rather than
hard-wiring in the components)



Simple delay analsysis:
Modelling delay in a full adder

fAddI (a1s, a2s, a3s, a1c, a2c, a3c) (a1,(a2,a3)) = (s,cout)
where
s      =  maximum [a1s+a1, a2s+a2, a3s+a3]
cout =  maximum [a1c+a1, a2c+a2, a3c+a3]

fI = fAddI (20,20,10,10,10,10) 



Simple delay analsysis:
Modelling delay in a full adder

-- from first lecture but generalising the type!
rcAdder2 :: ((a,(a,a)) -> (a,a)) -> (a,([a],[a])) -> ([a], a)
rcAdder2 fadd (c0, (as, bs)) = (sum, cOut)
where

(sum, cOut) = row fadd (c0, zipp (as,bs))

rcdeltst1 = simulate (rcAdder2 fI) 
(0 :: Signal Int, (replicate 10 0, replicate 10 0))

> rcdeltst1
([20,30,40,50,60,70,80,90,100,110],100)



Simple delay analsysis:
Modelling delay in a full adder

-- from first lecture but generalising the type!
rcAdder2 :: ((a,(a,a)) -> (a,a)) -> (a,([a],[a])) -> ([a], a)
rcAdder2 fadd (c0, (as, bs)) = (sum, cOut)
where

(sum, cOut) = row fadd (c0, zipp (as,bs))

rcdeltst1 = simulate (rcAdder2 fI) 
(0 :: Signal Int, (replicate 10 0, replicate 10 0))

> rcdeltst1
([20,30,40,50,60,70,80,90,100,110],100)

For feedback-free circuits, can also use Haskell directly:

rcdeltst = rcAdder2 fI (0, (replicate 10 0, replicate 10 0))

Don’t try to mix the two approaches
Stay within Lava if you are not a Haskell expert!
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Multiplication

11010
01001
11010

00000
00000

11010
00000

0011101010

Making a multiplier is about adding
up all these numbers (and that is 
what the Lava lab explores)

Here, we will look at a particular
(slightly fancier) approach called
column compression



Multiplication

msb                 1 1 0 1 0
0 0 0 0 0

0 0 0 0 0
1 1 0 1 0

0 0 0 0 0



Multiplication

lsb       0 1 0 1 1 
0 0 0 0 0

0 0 0 0 0
0 1 0 1 1

0 0 0 0 0



Structure of multiplier



Structure of multiplier

for simplicity, assume that  as  and  bs have equal
length



multBin comps (as,bs) = p1:ss 
where 

([p1]:[p2,p3]:ps) = prods_by_weight (as,bs)
is                        = redArray comps  ps
ss                       = binaryAdder  ([p2,p3]:is)

redArray comps ps = is
where 

(is,[]) = row (compress comps) ([],ps)



3
4

5
4

3
2

Fast Adder

carries

Reduction tree for multiplier



Will concentrate on the reduction tree (a row 
of compress cells)

Partial products generated using and gates. 
May also include recoding to reduce size of 
tree (cf. Booth)



(for reference)

prods_by_weight (as,bs)                                                       
= [[and2(a,b) | (a,m)<- number as, 

(b,n) <- number bs, 
m+n == i] | i <- [0..(2*(length as)-2)]]

where
number cs = zip cs [0..((length cs)-1)]



Compress  (diff=2)
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compress bbs (as,bs) =  comp (as,bs)

where

comp (as,bs)
| (diff >  2)  = (comp |- hcell)   (as,bs)
| (diff == 2)  = column fcell        (as,bs)
| (diff <  2)  = (comp -|  wcell)   (as,bs)
where
diff = length bs - length as



(hAdd,fAdd,iS,iC,w,s2,s3)  =  bbs

fcell  = iC ->- s3 ->- ((fAdd ->- list2Pair)`beside14` 
(iS `below5` (swap ->- fsT w)))

hcell  = s2 ->- ((hAdd ->- list2Pair) `beside14` 
(iS `below5` (swap ->- fsT w)))

wcell = iC





possible fcell

halfAdd cells similar.  Gives standard array multiplier. Not great!

fullAdd
s

c



Only need to vary wiring!
Make it explicit

fullAdd

s

c

iC

s3

cc

iS



(hAdd,fAdd,iS,iC,w,s2,s3)  =  bbs

fcell  = iC ->- s3 ->- ((fAdd ->- list2Pair)`beside14` 
(iS `below5` (swap ->- fsT w)))

hcell  = s2 ->- ((hAdd ->- list2Pair) `beside14` 
(iS `below5` (swap ->- fsT w)))

wcell = iC



Dadda-like

fullAdd

s

c

Excellent log depth reduction tree , but known for  irregularity, 
difficult layout

toEnd (a,as) = as++[a]



picture by Henrik Eriksson, Chalmers



Regular reduction tree (Eriksson et al. CE)

fullAdd

s

c

Nowhere near as good as Dadda, but inspired this work

toEnd (a,as) = as++[a]



picture by Henrik Eriksson, CE



Back to Dadda

fullAdd

s

c

toEnd (a,as) = as++[a]



Simple delay analysis (again)
fullAddL [a,b,cc] = [s,c]
where (s,c) = fullAdd (a,(b,cc))

fAddI (a1s, a2s, a3s, a1c, a2c, a3c) [a1,a2,a3]= [s,cout]
where
s      =  maximum [a1s+a1, a2s+a2, a3s+a3]
cout =  maximum [a1c+a1, a2c+a2, a3c+a3]

fI :: [Signal Int]  ->  [Signal Int]
fI as = fAddI (20,20,10,10,10,10) as

(Have changed the full-adder interface to be “list to list”.
Was handier in this example.)



Checking gate delay

dDadG n 
= simulate(redArray (hI,fI,

toEnd,toEnd,id,splitAt 2,splitAt 3)) (ppzs n)
Gate delay models       

wiring cells (allow  later inclusion of                           
.                                                              wiring  delay)

comps, tuple of building blocks

(will return to splitAt shortly)



Checking gate delay (as before)

Main> dDadG 16
[[0,10],[5,20],[20,30],[30,40],[40,50],[50,50],[50,60],[60,70],[70,70],
[70,70],[70,80],[70,80],[80,90],[90,90],[90,90],[90,90],[90,90],[90,90],
[80,90],[80,80],[70,80],[70,80],[70,70],[60,70],[60,60],[50,60],[50,50],
[40,20],[0,20]]



Checking gate delay (as before)

Main> dDadG 54
[[0,10],[5,20],[20,30],[30,40],[40,50],[50,50],[50,60],[60,70],[70,70],[70,70],[70,80],[70,80],[80,90],
[90,90],[90,90],[90,90],[90,100],[90,100],[90,100],[100,110],[110,110],[110,110],[110,110],[110,110],
[110,110],[110,120],[110,120],[110,120],[110,120],[120,120],[120,130],[130,130],[130,130],[130,130],
[130,130],[130,130],[130,130],[130,130],[130,130],[130,140],[130,140],[130,140],[130,140],[130,140],
[140,140],[140,140],[140,150],[150,150],[150,150],[150,150],[150,150],[150,150],[150,150],[150,150],
[150,150],[150,150],[150,150],[150,150],[150,150],[150,150],[140,140],[140,140],[140,140],[140,140],
[140,140],[130,140],[130,140],[130,140],[130,140],[130,140],[130,130],[130,130],[130,130],[130,130],
[130,130],[130,130],[120,120],[120,120],[120,120],[120,120],[110,120],[110,120],[110,120],[110,110],
[110,110],[110,110],[110,110],[100,100],[100,100],[100,100],[90,100],[90,100],[90,90],[90,90],[80,90],
[80,80],[70,80],[70,80],[70,70],[60,70],[60,60],[50,60],[50,50],[40,20],[0,20]]



Use of predefined Haskell functions

http://www.haskell.org/definition/haskell98-report.pdf

splitAt is a  library function from   ”the standard prelude”. See

Reading the standard prelude is a good way to learn! Saves
you from reinventing commonly used functions (for example
on lists). Your code gets shorter and easier for me to read.
(Starting from scratch will not be penalised, if correct!)

http://www.haskell.org/definition/haskell98-report.pdf�


an ordinary Haskell function

Main> :t splitAt
splitAt :: Int -> [a] -> ([a],[a])

Main> splitAt 7 [1..10]
([1,2,3,4,5,6,7],[8,9,10])

Main> splitAt 7 [1..3]
([1,2,3],[])

Main> splitAt 2 [1..10]
([1,2],[3,4,5,6,7,8,9,10]) 



Verifying the multiplier

multDadda (as,bs) = ps
where

ps = multBin(halfAddL,fullAddL,
toEnd,toEnd,id,splitAt 2,splitAt 3)

propEQ circ1 circ2 a = ok
where
out1 = circ1 a
out2 = circ2 a
ok    = out1 <==> out2



prop_mults mymult n
= forAll (list n) $ \as ->

forAll (list n) $ \bs ->
propEQ multi mymult (as,bs)

OR
prop_mults mymult n
= forAll (list n) $ \as ->

forAll (list n) $ \bs ->
multi(as,bs) <==> mymult (as,bs)

Now smv(prop_mults multDadda 8) goes through in 
less than half a second. But size 16 doesn’t. Why?

See section 4.2 of Lava tutorial (replace verify by smv)



The cool thing

The same description with just some different wiring cells 
gives a GREAT VARIETY of different multipliers

One begins to see some order in the chaos...

The key point was finding the right connection pattern

Ideally, one would like to prove this extremely generic 
description correct!    Open research question....





Note
Layout for the Dadda-like tree is no more difficult than for 

any of the others. Important in practice!

We call it the High Performance Multiplier reduction  tree 
(Henrik, Per, Mary :)

Henrik Eriksson, CE, had first idea and then my mult. 
descriptions suggested something similar. This led to a 
layout strategy, which Henrik followed.

Next step is to generate layout from Wired (wire-aware 
version of Lava)



Promising, but we can do better!

Choose what wiring cells to use dynamically,
during circuit generation, rather than in 
advance

Base choice on delay behaviour of both wires 
and components



Shadow Values

Main>   tomarked  (map (*2)) [(1,True),(3,False),(5,True)]

[(2,True),(3,False),(10,True)]

Can use same idea to prune unwanted parts of circuits. Pair 
dummy  ”wires” with False and then use 

pattern (tomarked s)



Clever Components

in1 a1 decide what component to be
based on shadow values input  (A,used 
here)

can even try several components and 
decide which to be by looking at 
shadow values produced!!        (B,used 
to make small median circuits)

Try it and see  during generation



Idea: Harden the wiring during circuit generation
using clever circuits. Shadow values estimate delay 

through wires and cells.

fullAdd
s

c

cleverInsert

s3

cc

cleverInsert



cswap((a,x),(b,y)) 
= if (x>y) then ((b,y),(a,x))else((a,x),(b,y))



cleverInsert  =  row cswap ->- apr

forms necessary wiring based on context (delays on 
shadow wires)



adapt (hAdd, fAdd, cc) (d,pds) 
=  mmark pds ->-

redArray (hAdd // hIB, 
fAdd // fIB,               Haskell level

circuit level cInsert, 
cInsert, 
cc // cross d, 
sep2, 
sep3)  ->- unmark

Structure of  circuit generator 
remains unchanged



Main> getDiff delDaddaGW delAdGW 16

([[0,0],[-12,12],[12,0],[0,2],[2,0],[0,12],
[12,4],[4,3],[3,12],[12,8],[8,9],[9,7],
[7,3],[3,9],[9,11],[11,7],[7,6],[6,5],[5,5],
[5,5],[20,3],[19,2],[3,3],[4,3],[22,2],[20,2],
[21,0],[43,-24],[0,0]],[])

Better than Dadda



Main> getDiff delTDMGW delAdGW 54

([[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,4],[4,0],
[0,0],[0,0],[0,1],[1,4],[4,0],[0,4],[4,0],[0,0],[0,6],[6,6],[6,3],[3,4],
[4,7],[7,2],[2,2],[2,3],[3,4],[4,-3],[-3,8],[8,8],[8,12],[12,6],[6,9],[9,5],
[5,8],[8,2],[2,7],[7,3],[3,7],[7,2],[2,5],[5,6],[6,5],[5,12],[12,17],[17,14],
[14,11],[11,13],[13,10],[10,11],[11,18],[18,14],[14,10],[10,9],[9,11],[11,13],
[13,13],[13,16],[16,16],[16,16],[16,16],[17,17],[18,18],[18,18],[17,18],
[17,17],[17,16],[16,2],[2,3],[3,3],[3,6],[6,6],[6,7],[8,7],[8,8],[8,12],
[13,12],[13,13],[5,13],[11,5],[12,1],[2,2],[2,2],[2,6],[6,6],[7,6],[6,7],
[6,6],[-1,6],[0,1],[2,2],[2,2],[1,2],[1,1],[-1,1],[0,-1],[0,0],[0,0],[0,0],
[0,0],[0,0],[0,0],[0,0]],[])

Better than TDM



Result  (multiplication)

Simple parameterised description of fast adaptive multiplier

Adaption to incoming delay profile can be arranged (clever 
circuits again)

Can also easily adapt description to take account of 
limitations on cross-cell tracks (see FMCAD04 paper)

Much remains to be done (e.g. insertion of buffers, fine delay 
modelling, transistor sizing, other layouts, the rest of the 
multiplier...).   The approach feels right!



Reading

Published paper about this is at

http://www.cse.chalmers.se/~ms/fmcadMultSubmit.pdf 

NOT required reading. Read if interested.

http://www.cse.chalmers.se/~ms/fmcadMultSubmit.pdf�


Next step: Wired
(see links page)

Captures layout exactly

Can still use our bag of programming tricks
(still embedded in Haskell)

Quick but relatively accurate design exploration

Being pursued in the VLSI design group (K. Subramaniyan)



Obvious questions

This is very low level. What about higher up, earlier in the 
design?

(Tentative assertion: these were general programming idioms 
with possible application at other levels of abstraction.)

What about the cases when such a structural approach is 
inappropriate?           Datapath vs. control

Can we make refinement work? 

Can we design appropriate GENERIC verification methods?



Putting the designer in control

Connection patterns are essential first step (and give some 
layout awareness when wanted)

We write circuit generators rather than circuit descriptions. 
Everything is done behind the scenes by symbolic 
evaluation. Full power of Haskell is available to the user 
(but we have some useful idioms to reduce the fear).

Circuit generators are short and sweet and LOOK LIKE 
circuit descriptions.



It’s all about programming

Non-standard interpretation used after generation (as we have
long done) and now also to guide synthesis

Clever circuits a good idiom. Can control choice of 
components, wiring and topology. Greatly increase
expressive power of the connection patterns approach. 

Having a full functional language available is a great thing
once one has had some practice. More idioms to be 
discovered (for example multi-format circuits)

Ideas compatible (I believe) with Intel’s IDV



We can’t only think about function

Clever circuits give a way to allow non-functional properties
to influence design (even early on). Makes blocks context
sensitive.      (Can make modelling finer)

Vital as we move to deep sub-micron

Separation of concerns becoming less and less possible

We need to study the algebra of the connection patterns with 
this in mind



You should think about

The two different design flows that you have seen

What was good and bad about them

YOUR opinions based on your experience (which is influenced
by previous expertise)
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