
Lava II

Mary Sheeran, Thomas Hallgren
Chalmers University of Technology

Generating VHDL
•In the simplest case

writeVhdl "fullAdder" fullAdder

•Assigning names to the inputs
writeVhdlInput "fullAdder" fullAdder (var "carryIn",(var "a",var "b"))

•Assigning names also to the outputs
writeVhdlInputOutput "fullAdder" fullAdder

(var "carryIn",(var "a",var "b")) (var "sum",var "carryOut")

•Generic circuits are not supported, so you need to pick a size
writeVhdlInputOutput "rippleCarryAdder" rippleCarryAdder

(var "carryIn",(varList 8 "a",varList 8 "b"))
(varList 8 "sum",var "carryOut")

Generating VHDL (better)

Above method generates silly VHDL for combinational
circuits

importing file VhdlNew11.hs (on Schedule page)
allows gen. of clocked or unclocked VHDL netlists

Append Clk or NoClk to end of previous function names

see Lava2.hs

library ieee;

use ieee.std_logic_1164.all;

entity
rippleCarryAdder

is
port
(

carryIn : in std_logic
; a_0 : in std_logic
; a_1 : in std_logic
; a_2 : in std_logic
; a_3 : in std_logic
; b_0 : in std_logic
; b_1 : in std_logic
; b_2 : in std_logic
; b_3 : in std_logic

; sum_0 : out std_logic
; sum_1 : out std_logic
; sum_2 : out std_logic
; sum_3 : out std_logic
; carryOut : out std_logic
);

end rippleCarryAdder;

architecture
structural

of
rippleCarryAdder

is
signal w1 : std_logic;
signal w2 : std_logic;
signal w3 : std_logic;
signal w4 : std_logic;
signal w5 : std_logic;

…

signal w29 : std_logic;
begin
c_w2 : entity work.wire port map (carryIn, w2);
c_w4 : entity work.wire port map (a_0, w4);
c_w5 : entity work.wire port map (b_0, w5);
c_w29 : entity work.andG port map (w25, w26, w29);
c_w27 : entity work.xorG port map (w28, w29, w27);

c_sum_0 : entity work.wire port map (w1, sum_0);
c_sum_1 : entity work.wire port map (w6, sum_1);
c_sum_2 : entity work.wire port map (w13, sum_2);
c_sum_3 : entity work.wire port map (w20, sum_3);
c_carryOut : entity work.wire port map (w27, carryOut);

end structural;

…

…

Generic circuits again

Lava.Arithmetic.hs contains

binAdder :: ([Signal Bool], [Signal Bool]) -> [Signal Bool]

Generic circuits again

Lava.Arithmetic.hs contains

binAdder :: ([Signal Bool], [Signal Bool]) -> [Signal Bool]

> simulate binAdder ([low,high,low], [high,low,high])
[high,high,high,low]

Generic circuits again

Lava.Arithmetic.hs contains

binAdder :: ([Signal Bool], [Signal Bool]) -> [Signal Bool]

Let’s check if it is commutative!

First attempt

smv prop_AdderCommutative does not work!

prop_AdderCommutative (as,bs) = ok
where
out1 = binAdder (as,bs)
out2 = binAdder (bs,as)
ok = out1 <==> out2

First attempt

smv prop_AdderCommutative does not work!

prop_AdderCommutative (as,bs) = ok
where
out1 = binAdder (as,bs)
out2 = binAdder (bs,as)
ok = out1 <==> out2

smv prop_AdderCommutative does not work!

Need to fix size
prop_AdderCommutative_ForSize n =

forAll (list n) $ \ as ->
forAll (list n) $ \ bs ->
prop_AdderCommutative (as,bs)

Need to fix size
prop_AdderCommutative_ForSize n =

forAll (list n) $ \ as ->
forAll (list n) $ \ bs ->
prop_AdderCommutative (as,bs)

smv (prop_AdderCommutative_ForSize 16) works!

See Chapter 4 in the Lava tutorial.

Same effect but easier
prop_AdderComm1 n

= prop_AdderCommutative (varList n "a", varList n "b")

fv_binAdd_Comm1 = smv (prop_AdderComm1 16)

works

Serial composition
useful connection pattern

f g

gf

f ->- g

Serial composition type
useful connection pattern

gf

(->-) :: (a -> b) -> (b -> c) -> a -> c

Serial composition example
doubSum :: [Signal Int] -> Signal Int
doubSum = map (*2) ->- sum

> simulate doubSum [1..8]
72

Serial composition example
doubSum :: [Signal Int] -> Signal Int
doubSum = map (*2) ->- sum

doubSum1 :: [Signal Int] -> Signal Int
doubSum1 as = sum (map double as)

where
double a = a * 2

could also have written

Feedback and sequential circuits

First example

bad inp = out
where
out = nand2(inp,out)

Feedback and sequential circuits

First example

bad inp = out
where
out = nand2(inp,out)

> simulate bad low
high
> simulate bad high
*** Exception: combinational loop

Delay in VHDL
Signal assignments have no delay by default:

out <= a nand b;

Delay can be introduced explicitly:

out <= a nand b after 4ns;

Delay in Lava
The logical gates in the Lava library are "ideal" and have zero delay

Delay has to be modelled explicitly:

delay init s

delays the signal s by one time unit

The output during the first time unit is init

Delay in Lava
The Lava library does not care how long a time unit is.

It could be the gate delay, for analyzing the effect of delay in
combinational circuits

But usually it is one clock cycle in a synchronously clocked sequential
circuit.

Feedback and sequential circuits

Second example

nand2D = nand2 ->- delay low

good a = out
where
out = nand2D(a,out)

Feedback and sequential circuits
nand2D = nand2 ->- delay low

good a = out
where
out = nand2D(a,out)

*Main> simulate good high
*** Exception: evaluating a delay component

Need to use sequential simulation

Feedback and sequential circuits
nand2D = nand2 ->- delay low

good a = out
where
out = nand2D(a,out)

*Main> simulateSeq good [high,high,low,high]
[low,high,low,high]

Retiming

nand2D = nand2 ->- delay low

delNand2 = delay (high,high) ->- nand2

sim0 = simulateSeq nand2D [(low,low),(high,low),(high,high),(low,low)]
sim1 = simulateSeq delNand2 [(low,low),(high,low),(high,high),(low,low)]

> sim0
[low,high,high,low]
> sim1
[low,high,high,low]

Retiming

nand2D = nand2 ->- delay low

delNand2 = delay (high,high) ->- nand2

sim0 = simulateSeq nand2D [(low,low),(high,low),(high,high),(low,low)]
sim1 = simulateSeq delNand2 [(low,low),(high,low),(high,high),(low,low)]

> sim0
[low,high,high,low]
> sim1
[low,high,high,low]

Note that delay works on many types,
not just bits

FV

-- A general function for equivalence testing
propEQ circ1 circ2 inp = ok
where
out1 = circ1 inp
out2 = circ2 inp
ok = out1 <==> out2

prop0 = propEQ nand2D delNand2

fv_prop0 = smv prop0
(on my laptop ca .1 sec, 60 BDD nodes allocated)

Register

reg init (w,din) = dout
where
dout = delay init m
m = mux (w,(dout,din))

Register

reg init (w,din) = dout
where
dout = delay init m
m = mux (w,(dout,din))

multiplexer (also polymorphic)

mux :: … => (Signal Bool,(a,a)) -> a

using Haskell to generate inputs
-- infinite lists
lh :: [Bit]
lh = low : high : lh

ins :: Int -> [[Signal Int]]
ins n = map (replicate n) [1..]

regtst n = simulateSeq (reg (zeroList n)) (take 10 (zip lh (ins n)))

*Main> regtst 5
[[0,0,0,0,0],[0,0,0,0,0],[2,2,2,2,2],[2,2,2,2,2],[4,4,4,4,4],
[4,4,4,4,4],[6,6,6,6,6],[6,6,6,6,6],[8,8,8,8,8],[8,8,8,8,8]]

Questions?

Connection patterns
Higher order functions that capture common ways
of plugging circuits together

Connection patterns
Higher order functions that capture common ways
of plugging circuits together

We saw row

Connection patterns
Higher order functions that capture common ways
of plugging circuits together

We saw row

->-

Connection patterns
Higher order functions that capture common ways
of plugging circuits together

We saw row

->-

map

map f ->- map g = ??

f

f

f

f

g

g

g

g

More connection patterns:
column and grid

mirror circ (a, b) = (c, d)
where
(d, c) = circ (b, a)

column circ = mirror (row (mirror circ))

grid circ = row (column circ)

(in Lava.Patterns)
could just define column recursively (exercise)

More connection patterns:
compose

compose :: [a -> a] -> a -> a

[, ,]

(is in Lava.Patterns)

More connection patterns

compose :: [a -> a] -> a -> a
compose [] =
compose (circ : circs) =

[, ,]

[,]

circ circs

More connection patterns

compose :: [a -> a] -> a -> a
compose [] = id
compose (circ : circs) = circ ->- compose circs

[, ,]

[,]

circ circs

compose n copies of function

composeN :: Int -> (a -> a) -> a -> a
composeN n circ = compose (replicate n circ)

(in Lava.Patterns)

compose n copies of function

composeN :: Int -> (a -> a) -> a -> a
composeN n circ = compose (replicate n circ)

doubN :: Int -> Signal Int -> Signal Int
doubN n = composeN n (*2)

*Main> simulate (doubN 4) 1
16

compose n copies of function

composeN :: Int -> (a -> a) -> a -> a
composeN n circ = compose (replicate n circ)

Note that this is a Haskell Int
not a circuit level Int (Signal Int)

compose n copies of function
could also have defined this function recursively:

composeNR 0 circ = id
composeNR n circ = circ -> composeNR (n-1) circ

compose n copies of function
could also have defined this function recursively:

composeNR 0 circ = id
composeNR n circ = circ -> composeNR (n-1) circ

This is a second very standard way to
write recursive functions in Haskell

Par

f -|- g

g

f

(in Lava.Patterns)

Par

f -|- g

g

f
par circ1 circ2 (a, b) = (circ1 a, circ2 b)
circ1 -|- circ2 = par circ1 circ2

infixr 4 -|-

Par

f -|- g

g

f
par circ1 circ2 (a, b) = (circ1 a, circ2 b)
circ1 -|- circ2 = par circ1 circ2

infixr 4 -|-

Q: What is the type of par?

red f

red f

red f

red :: ((a,b) -> a) -> (a, [b]) -> a

red f

red :: ((a,b) -> a) -> (a, [b]) -> a
red f (a,[]) =
red f (a, (b:bs)) =

red f

red :: ((a,b) -> a) -> (a, [b]) -> a
red f (a,[]) = a
red f (a, (b:bs)) = red f (f(a,b), bs)

red f

red :: ((a,b) -> a) -> (a, [b]) -> a
red f (a,[]) = a
red f (a, (b:bs)) = red f (f(a,b), bs)

redtst = simulate (red plus) (3,[1..5])

>redtst
18

This is very like foldl in Haskell
Here, I like to gather circuit inputs into
one structure (pair). Makes it easier to

see where the circuits are and to
compose again with more connection

patterns

lin (more like foldl1)

> simulate (lin plus) [1..5]
15

lin f (a:as) = red f (a,as)
lin _ [] = error “lin: empty list”

> simulate (lin plus) []
*** Exception: lin: empty list

tri f

f

f

f

ff

f

Triangles (tri in Lava.Patterns)

tri circ [] =
tri circ (inp:inps) =

Triangles (tri in Lava.Patterns)

tri circ [] = []
tri circ (inp:inps) = inp : (map circ ->- tri circ) inps

Triangles (tri in Lava.Patterns)

tri circ [] = []
tri circ (inp:inps) = inp : (map circ ->- tri circ) inps

downtri f = reverse ->- tri f ->- reverse

Converting msb first binary to
integer

*2 *2*2

*2

*2

*2

bit2int

binary to integer

msbbin2int = map bit2int ->- downtri (*2) ->- lin plus

(bin2int is in Arithmetic module, lsb first)

Another way

*2 *2 *2

binary to integer

msbbin2int' = map bit2int ->- lin cell
where
cell (a,b) = 2*a + b

binary to integer

msbbin2int' = map bit2int ->- lin cell
where
cell (a,b) = 2*a + b

Note: we have no solver hooked up to
Lava that can do arithmetic

So we can’t formally verify equivalence
of the two different msb-bin to int

functions

On the bright side: a general rule!
If

=

Then, this is the same as

this, no matter what the
components are (and for any size)

Why?

map

tri

What’s left?

So, by induction

Does this look familiar?

=

Pipelining!

Equality holds for circle=delay

Checking equiv. of an instance
propEQ circ1 circ2 a = ok
where
out1 = circ1 a
out2 = circ2 a
ok = out1 <==> out2

propEQS circ1 circ2 n = propEQS circ1 circ2 (varList n "a")

withtri f = downtri (delay low) ->- lin f

piped f = lin cell
where
cell (a,b) = f (delay low a, b)

pipetst = smv (propEQS (withtri and2) (piped and2) 4)

Checking equiv. of an instance
propEQ circ1 circ2 a = ok
where
out1 = circ1 a
out2 = circ2 a
ok = out1 <==> out2

propEQS circ1 circ2 n = propEQS circ1 circ2 (varList n "a")

withtri f = downtri (delay low) ->- lin f

piped f = lin cell
where
cell (a,b) = f (delay low a, b)

pipetst = smv (propEQS (withtri and2) (piped and2) 4)

On Mary’s i5 laptop
Size 4 and 8 very quick

size 12 14 secs
size 16 didn’t finish

Lava is good for stress-testing tools

Are connection patterns useful??

or do they just make programming harder?

Xilinx Lava provides part of the answer:

Full Adder in Xilinx Lava

fa

fa (cin, (a,b)) = (sum, cout)
where

part_sum = xor (a, b)
sum = xorcy (part_sum, cin)
cout = muxcy (part_sum, (a, cin))

a
b

cin

cout

sum

Generic Adder

fa

fa

fa adder = col fa

Top Level
adder16Circuit
= do a <- inputVec ”a” (bit_vector 15 downto 0)

b <- inputVec ”b” (bit_vector 15 downto 0)
(s, carry) <- adder1 (a, b)
sum <- outputVec ”sum” (s++[carry])

(bit_vector 16 downto 0)

? circuit2VHDL ”add16” adder16Circuit
? circuit2EDIF ”add16” adder16Circuit
? circuit2Verilog ”add16” adder16Circuit

114 Lines of VHDL
library ieee ;
use ieee.std_logic_1164.all ;
entity add16 is
port(a : in std_logic_vector (15 downto 0) ;

b : in std_logic_vector (15 downto 0) ;
c : out std_logic_vector (16 downto 0)
) ;

end entity add16 ;

library ieee, unisim ;
use ieee.std_logic_1164.all ;
use unisim.vcomponents.all ;
architecture lava of add16 is
signal lava : std_logic_vector (0 to 80) ;

begin
...
lut2_48 : lut2 generic map (init => "0110") port map (i0 => lava(5), i1 => lava(21), o => lava(48)) ;
xorcy_49 : xorcy port map (li => lava(48), ci => lava(47), o => lava(49)) ;
muxcy_50 : muxcy port map (di => lava(5), ci => lava(47), s => lava(48), o => lava(50)) ;
lut2_51 : lut2 generic map (init => "0110") port map (i0 => lava(6), i1 => lava(22), o => lava(51)) ;
xorcy_52 : xorcy port map (li => lava(51), ci => lava(50), o => lava(52)) ;
muxcy_53 : muxcy port map (di => lava(6), ci => lava(50), s => lava(51), o => lava(53)) ;
lut2_54 : lut2 generic map (init => "0110") port map (i0 => lava(7), i1 => lava(23), o => lava(54)) ;

...

EDIF...
(edif add16
(edifVersion 2 0 0)
(edifLevel 0)
(keywordMap (keywordLevel 0))
(status
(written (timeStamp 2000 11 19 15 39 43)
(program "Lava" (Version "2000.14"))
(dataOrigin "Xilinx-Lava") (author "Xilinx Inc.")

)
)
...
(instance lut2_78

(viewRef prim
(cellRef lut2 (libraryRef lava_virtex_lib))

)
(property INIT (string "6"))

(property RLOC (string "R-7C0.S1"))
)

…
(net lava_bit38

(joined
(portRef o (instanceRef muxcy_38))
(portRef ci (instanceRef muxcy_41))
(portRef ci (instanceRef xorcy_40))

)
)

Xilinx FPGA Implementation

• 16-bit implementation on a XCV300 FPGA
• Vertical layout required to exploit fast carry

chain
• No need to specify coordinates in HDL

code

16-bit Adder Layout

Four adder trees

No Layout Information

Research questions: FPGA gen.

It is already quite hard to make use of fast carry chains on
FPGAs (see papers on making fast adders, for instance)

How on earth can we make good use of DSPs, processors etc.??

One answer might be to use Functional Programming
(This is what my latest grant proposal was about)

Another motivation for
connection patterns and algebra

Work on Hawk for describing and reasoning about
processors showed really nice applications of transformations

See John Matthew’s slides

http://web.cecs.pdx.edu/~jmatthew/papers/Algebra.ppt�
http://web.cecs.pdx.edu/~jmatthew/papers/Algebra.ppt�
http://web.cecs.pdx.edu/~jmatthew/papers/Algebra.ppt�
http://web.cecs.pdx.edu/~jmatthew/papers/Algebra.ppt�

Notes

Abstract circuits useful during design exploration (in
simulation rather than formal verification)

Verify fixed size instances of generic circuits

Input to solvers (or VHDL netlist) generated by symbolic
evaluation

Notes

No mechanical assistance in algebraic reasoning currently
in Lava (but earlier research by Cachera using PVS was
promising, 30 interactions down to 4 in mult. verif.)

Research question: what could we do with a first order
logic theorem prover or SMT solver?

Exercise: Zero detection
•Define a generic circuit that

•inputs a bit vector, and
•outputs high if all bits are zero.

zero_detect :: [Bit] -> Bit

•Simple solution first
•Also think about circuit depth and delay

	Lava II
	Generating VHDL �
	Generating VHDL (better) �
	Slide Number 4
	Generic circuits again
	Generic circuits again
	Generic circuits again
	First attempt
	First attempt
	Need to fix size
	Need to fix size
	Same effect but easier
	Serial composition
	Serial composition type
	Serial composition example
	Serial composition example
	Feedback and sequential circuits
	Feedback and sequential circuits
	Delay in VHDL
	Delay in Lava
	Delay in Lava
	Feedback and sequential circuits
	Feedback and sequential circuits
	Feedback and sequential circuits
	Retiming
	Retiming
	FV
	Register
	Register
	using Haskell to generate inputs
	Questions?
	Connection patterns
	Connection patterns
	Connection patterns
	Connection patterns
	map f ->- map g = ??
	More connection patterns: column and grid
	More connection patterns: compose
	More connection patterns
	More connection patterns
	compose n copies of function
	compose n copies of function
	compose n copies of function
	compose n copies of function
	compose n copies of function
	Par
	Par
	Par
	red f
	red f
	red f
	red f
	red f
	red f
	lin (more like foldl1)
	tri f
	Triangles (tri in Lava.Patterns)
	Triangles (tri in Lava.Patterns)
	Triangles (tri in Lava.Patterns)
	Converting msb first binary to integer
	binary to integer
	Another way
	binary to integer
	binary to integer
	On the bright side: a general rule!
	Then, this is the same as
	this, no matter what the components are (and for any size)
	Why?
	Slide Number 69
	What’s left?
	So, by induction
	Does this look familiar?
	Pipelining!
	Equality holds for circle=delay
	Checking equiv. of an instance
	Checking equiv. of an instance
	Are connection patterns useful??
	Full Adder in Xilinx Lava
	Generic Adder
	Top Level
	114 Lines of VHDL
	EDIF...
	Xilinx FPGA Implementation
	16-bit Adder Layout
	Four adder trees
	No Layout Information
	Research questions: FPGA gen.
	Another motivation for connection patterns and algebra
	Notes
	Notes
	Exercise: Zero detection�

