
Formal Hardware Verification:
getting started

Mary Sheeran



Making Formal Verification work

Aim for automation (bit level)

Find niches where formal methods work well

Use assertions/ properties first in sim. and then in FV
(the acronym is ABV, assertion based verif.)



First question: what exactly do we
reason about (in this course)?

Answer: Finite State Machines (or state
transition systems) at the bit level

Always reasoning about models of circuits
Need to be sure conclusions really apply to the 

final physical circuit



What is a (gate level) circuit (for us)?

boolean gates

clocked state holding elements (d flip-flops)

components (or boxes) containing gate level
circuits







Rules

Each cycle contains at least one flip-flop
Wires can be split but not joined
Single clock

Simple synchronous circuits



and

and

or

dreq

q0

dack

D

D



View circuit as a transition system

(dreq, q0, dack)     (dreq’, q0’, dack’)

q0’     =  dreq

dack’  =  dreq & (q0 + (¬q0 & dack))



and

and

or

dreq

q0

dack

D

D



dreq

q0

dack dack’

q0’

Exercise:  draw the contents of the blue box



So the blue box (which contains only boolean gates) 
captures everything we need to know about the 
circuit (assuming we know which signals are 
states, inputs and outputs).

Sometimes pictured as
(see Magnus’ slide on BMC)  
Often output is a single OK wire
checking a property

in

out

state’state



Can view transition relation as state -> state

(dreq, q0, dack)    

(dreq’, dreq, dreq & (q0 || (¬q0 & dack)))

Exercise:

Draw state transition diagram

Q: How many states for a start?



Hint (partial answer)

000      100                                          110                     111

001                                                                         
101

010       

011



Question

000      100                                          110                     111

001                                                                         
101

010       

011

How many arrows should there be out of each state?     Why so?
(Complete the diagram in spare time)



and

and

or

dreq

q0

dack

D

D

0

1

Formal tools operate on Netlists



and

and

or

dreq

q0

dack

D

D

0

1

Formal tools operate on Netlists



input to SMV model checker

MODULE main
VAR w1 : boolean;
VAR w2 : boolean;
VAR w3 : boolean;
VAR w4 : boolean;
VAR w5 : boolean;
VAR i0 : boolean;
VAR w6 : boolean;
VAR w7 : boolean;
VAR w8 : boolean;
VAR w9 : boolean;
VAR w10 : boolean;
DEFINE w4 := 0;
DEFINE w5 := i0;
ASSIGN init(w3) := w4;
ASSIGN next(w3) := w5;
DEFINE w7 := !(w3);
DEFINE w9 := 1;
DEFINE w10 := w5 & w6;
ASSIGN init(w8) := w9;
ASSIGN next(w8) := w10;
DEFINE w6 := w7 & w8;
DEFINE w2 := w3 | w6;

MC builds internal 
representation of transition 
system



We reason about models of circuits

Circuits we will design and verify are synchronous with a 
single clock =>

very easy move to a formal representation. No worries
about accuracy of modelling.

In JG as we use it, if the circuit is not at the gate level, a 
netlist is synthesised to enable formal reasoning (e.g. 
comparison with the user’s gate level implementation)

We have no worries about the accuracy of our modelling



We reason about models of circuits

Real life circuits typically have multiple clocks => translation to 
transition system a bit more complicated with a finer view of time. 
Still a single abstract clock but now the real clocks are viewed as 
inputs.

To reason about finer details of circuits (e.g. gate delays) then a finer
degree of modelling is used to get to the transition system. More
delay elements in the model. No longer one to one match.

Lots of real life circuits also break the rules (e.g. with clocks that 
depend on each other), leading to special hacks in the formal tools

It is also possible (but much harder) to reason about analogue or 
asynchronous circuits



Questions?



Key ideas 1: Binary Decision Diagrams

Vital enabling technology  (along with SAT solving)

Data structure for representing a Boolean function
(current form introduced by Bryant, known earlier)

Canonical form (constant time comparison)

Used in Symbolic Model Checking

Following slides are by Bryant (used with thanks!)



Decision Structures

Truth Table Decision Tree

– Vertex represents decision
– Follow green (dashed) line for value 0
– Follow red (solid) line for value 1
– Function value determined by leaf value.

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f



Variable Ordering
– Assign arbitrary total ordering to variables

• e.g.,  x1 < x2 < x3

– Variables must appear in ascending order along all paths

OK Not OK

Properties
 No conflicting variable assignments along path
 Simplifies manipulation 

x1

x2

x3

x1

x3

x3

x2

x1

x1

x1



Reduction Rule #1

Merge equivalent leaves

a a

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

x3 x3

x2

x3

0 1

x3

x2

x1

a



Reduction Rule #2

y

x

z

x

Merge isomorphic nodes

x3 x3

x2

x3

0 1

x3

x2

x1

x3

x2

0 1

x3

x2

x1

y

x

z

x

y

x

z

x



Reduction Rule #3

x3

x2

0 1

x3

x2

x1

Eliminate Redundant Tests

y

x

y

x2

0 1

x3

x1



Example OBDD

Initial Graph Reduced Graph

• Canonical representation of Boolean function
 For given variable ordering
– Two functions equivalent if and only if graphs isomorphic

• Can be tested in linear time
– Desirable property: simplest form is canonical.

x2

0 1

x3

x1 (x1+x2)·x3

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1



Example Functions
Constants

Unique unsatisfiable function

Unique tautology1

0

Variable

Treat variable
as function

0 1

x

Typical Function

x2

0 1

x4

x1  (x1 ∨ x2 ) ∧ x4

 No vertex labeled x3

 independent of x3

Many subgraphs shared 



Exercise: make OBDD for

You an label the arcs with 0 and 1 instead of using colours



Exercise: make OBDD for

How does it look for     x1  ⊕  x2 ⊕  x3 ⊕ x4
and for odd parity in general?   



BDD for        x1  ⊕  x2 ⊕  x3 ⊕ x4

Odd Parity

Linear
representation

x2

x3

x4

10

x4

x3

x2

x1



Representing Circuit Functions

b3 b3

a3

Cout

b3

b2 b2

a2

b2 b2

a2

b3

a3

S3

b2

b1 b1

a1

b1 b1

a1

b2

a2

S2

b1

a0 a0

b1

a1

S1

b0

10

b0

a0

S0

• Functions
– All outputs of 4-bit adder
– Functions of data inputs

A

B

Cout

S
A
D
D

Shared Representation
 Graph with multiple roots
 31 nodes for 4-bit adder
 571 nodes for 64-bit adder
Linear growth



Effect of Variable Ordering

Good Ordering Bad Ordering

Linear Growth

0

b3

a3

b2

a2

1

b1

a1

Exponential Growth

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

)()()( 332211 bababa ∧∨∧∨∧



Selecting Good Variable Ordering

• Intractable Problem
– Even when problem represented as OBDD

• I.e., to find optimum improvement to current ordering

• Application-Based Heuristics
– Exploit characteristics of application
– E.g., Ordering for functions of combinational circuit

• Traverse circuit graph depth-first from outputs to inputs
• Assign variables to primary inputs in order encountered



Dynamic Variable Reordering

– Richard Rudell, Synopsys
• Periodically Attempt to Improve Ordering for 

All BDDs
– Part of garbage collection
– Move each variable through ordering to find its 

best location
• Has Proved Very Successful

– Time consuming but effective
– Especially for sequential circuit analysis



Sample Function Classes
Function Class Best Worst Ordering Sensitivity
ALU (Add/Sub) linear exponential High
Symmetric linear quadratic None
Multiplication exponential exponential Low

• General Experience
– Many tasks have reasonable OBDD representations
– Algorithms remain practical for up to 100,000 node OBDDs      

(Note from MS: remember this was written in 1999)
– Heuristic ordering methods generally satisfactory



•
•
•

•
•
•

Lower Bound for Multiplication
– Bryant, 1991

• Integer Multiplier Circuit
– n-bit input words A and B
– 2n-bit output word P

• Boolean function
– Middle bit (n-1) of product

• Complexity
– Exponential OBDD for all possible 

variable orderings

Multn

•
•
•

•
•
•

a0

an-1

b0

bn-1

p0

pn-1

pn

p2n-1

Actual Numbers
 40,563,945 BDD nodes to 

represent all outputs of 16-
bit multiplier

 Grows 2.86x per bit of word 
size

Intractable
Function



Symbolic Manipulation with OBDDs

• Strategy
– Represent data as set of OBDDs

• Identical variable orderings
– Express solution method as sequence of symbolic operations
– Implement each operation by OBDD manipulation

• Algorithmic Properties
– Arguments are OBDDs with identical variable orderings.
– Result is OBDD with same ordering.
– “Closure Property”

• Contrast to Traditional Approaches
– Apply search algorithm directly to problem representation

• E.g., search for satisfying truth assignment to Boolean expression.



Arguments I, T, E
 Functions over variables X
 Represented as OBDDs

Result
 OBDD representing 

composite function
 (I ∧T) ∨ (¬I ∧ E)Implementation

 Combination of depth-first traversal and dynamic programming.
 Worst case complexity product of argument graph sizes.

MUX
1

0

I  → T, E 

X

I  

T 

E 

If-Then-Else Operation
Concept
 Basic technique for building OBDD from logic network or 

formula.



0 1

d

c

a

B3 B4

B2

B5

B1

Argument I

1

Argument T Argument E

A4,B3 A5,B4

A3,B2

A6,B2

A2,B2

A3,B4A5,B2

A6,B5

A1,B1

Recursive Calls

b

0

d

1

c

a

A4 A5

A3

A2

A6

A1

If-Then-Else Execution Example

• Optimizations
– Dynamic programming
– Early termination rules



0 1

d

c

b

11

c

a

A4,B3 A5,B4

A3,B2

A6,B2

A2,B2

A3,B4A5,B2

A6,B5

A1,B1

Recursive Calls Without Reduction With Reduction

C2

C4

C5

C3

C6

C1 0

d

c

b

1

a

If-Then-Else Result Generation

– Recursive calling structure implicitly defines unreduced BDD
– Apply reduction rules bottom-up as return from recursive 

calls
• Generates reduced graph



Restriction Operation

Implementation
 Depth-first traversal.
 Complexity near-linear in argument graph size

• Concept
– Effect of setting function argument xi to constant k (0 or 1).
– Also called Cofactor operation (UCB)

k F 
xi –1

xi +1

xn 

x1

F [xi =k]

Fx equivalent to F [x = 1]
Fx equivalent to F [x = 0]



Derived Operations

Express as combination of If-Then-Else and Restrict

Preserve closure property
• Result is an OBDD with the right variable ordering

Polynomial complexity
• Although can sometimes improve with special 

implementations



And(F, G)

X
F 

G MUX
1

0

F  → G, 0 

X

F 
 

G

0

X
F 

G MUX
1

0

F  → 1, G 

X

F 

G

1

Or(F, G)

If-Then-Else(F, G, 0)

If-Then-Else(F, 1, G)

Derived Algebraic Operations
– Other operations can be expressed in terms of If-Then-Else



G F 
xi –1

xi +1

xn 

x1

x1

xn 
F [xi =G]

x1

xn 
xi –1

xi +1

xn 

x1

xi –1

xi +1

xn 

x1

1 F 

0 F 

MUX
1

0

G 

Functional Composition

– Create new function by composing functions F and G.
– Useful for composing hierarchical modules.



xi –1

xi +1

xn 

x1

F ∃ ∃ xi F 

1 F 

0 F 

xi –1

xi +1

xn 

x1

xi –1

xi +1

xn 

x1

Variable Quantification

– Eliminate dependency on some argument through 
quantification

– Combine with AND for universal quantification.



Generating OBDD from Network

Network Evaluation

Task: Represent output functions of gate network as OBDDs.

A

B

C

T1

T2

Out

Resulting Graphs

A B C
T1 T2

Out

0 1

a

0 1

c

0 1

b

0 1

b

a

0 1

c

b

c

b

0 1

b

a

•A ← new_var ("a");
•B ← new_var ("b");
•C ← new_var ("c");
•T1 ← And (A, 0, B);
•T2  ← And (B, C);
•Out ← Or (T1, T2);



0 1

a

T1 ← Or (A, C);
O2  ← And (T1, B);
if (O2 == Out)

then Equivalent
else Different

Alternate Network Evaluation

Resulting Graphs

A

B
C

T1

O2

A B C
T1

O2

c

b

0 1

b

a

c

0 10 1

b

0 1

a

c

Checking Network Equivalence
Task: Do two networks compute same Boolean function?
Method: Compute OBDDs for both networks and compare

end of Bryant’s slides, with thanks



First form of FV
Equivalence Checking (EC,CEC)

Boolean network comparison, also known as 
combinational equivalence checking

Straight BDD comparison works for moderately 
sized circuits. For larger circuits, more 
sophisticated methods are used.

Invisible to user, automatic, effective



Second form of FV



Second form of FV























Pro and Cons of BDDs
+ Powerful operations (create, manipulate,test)

polynomial complexity, composable
+ Usually stay small enough

given good variable order
+ Provide quantification operations (unlike plain SAT)

- sometimes explode in size
- important circuits (multipliers and shifters) are 

problematic =>  yet more special hacks in the tools

In practice used together with SAT and other engines



Questions?

Next step in FV methods: Symbolic Model
Checking (week after next)

Next week:   PSL



Answer to earlier question

000     100                   110                                 111

001                                                                   101

010       
011

More questions:  
Given the initialisation of the state holding elements shown in slide 17,
how many initial states are there and why? What are they?
Write down the corrresponding binary relation as a set of pairs of states


	Formal Hardware Verification:�getting started
	Making Formal Verification work
	First question: what exactly do we reason about (in this course)?
	What is a (gate level) circuit (for us)?
	Slide Number 5
	Slide Number 6
	Rules
	Slide Number 8
	View circuit as a transition system
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Can view transition relation as state -> state
	Hint (partial answer)
	Question
	Slide Number 16
	Slide Number 17
	input to SMV model checker
	We reason about models of circuits
	We reason about models of circuits
	Questions?
	Key ideas 1: Binary Decision Diagrams
	Decision Structures
	Variable Ordering
	Reduction Rule #1
	Reduction Rule #2
	Reduction Rule #3
	Example OBDD
	Example Functions
	Exercise: make OBDD for
	Exercise: make OBDD for
	BDD for        x1  Å  x2 Å  x3 Å  x4 
	Representing Circuit Functions
	Effect of Variable Ordering
	Selecting Good Variable Ordering
	Dynamic Variable Reordering
	Sample Function Classes
	Lower Bound for Multiplication
	Symbolic Manipulation with OBDDs
	If-Then-Else Operation
	If-Then-Else Execution Example
	If-Then-Else Result Generation
	Restriction Operation
	Derived Operations
	Derived Algebraic Operations
	Functional Composition
	Variable Quantification
	Generating OBDD from Network
	Checking Network Equivalence
	First form of FV�Equivalence Checking   (EC,CEC)
	Second form of FV�
	Second form of FV�
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Pro and Cons of BDDs
	Questions?
	Answer to earlier question

