
A Slightly Revised Tutorial on Lava:A Hardware Desription and Veri�ation SystemKoen Claessenkoen�s.halmers.se Mary Sheeranms�s.halmers.seMay 3, 2007

Contents
1 Introdution 42 Getting Started 62.1 Your First Ciruit . 62.2 The Lava Interpreter . 72.3 Your Seond Ciruit . 82.4 Generating VHDL . 102.5 Exerises . 123 Bigger Ciruits 153.1 Reursion over Lists . 153.1.1 Generating VHDL for a binary adder 163.2 Connetion Patterns . 163.3 Arithmeti . 193.4 Exerises . 214 Veri�ation 234.1 Simple Properties . 234.2 Quanti�ation . 244.3 General Properties . 254.4 Helping Veri�ation . 254.5 Exerises . 275 Sequential Ciruits 285.1 The Delay Component . 281

5.2 Multiple Delays . 295.3 Counters . 305.4 Sequentialization . 305.5 Variations on rowSeq . 315.6 Exerises . 326 Sequential Veri�ation 346.1 Sequential Safety Properties . 346.2 Sequential Logi . 356.3 Veri�ation . 356.4 Indution . 366.5 Indution With Depth . 376.6 Indution With Restrited States 406.7 Exerises . 417 Time Transformations 437.1 Timing Issues . 437.2 Slowing Down . 447.3 Speeding Up . 477.4 Exerises . 488 More onnetion patterns 508.1 Connetion patterns revisited . 508.2 Tree shaped iruits . 538.3 Desribing Buttery Ciruits . 558.4 Bather's Bitoni Merger . 598.5 Exerises . 619 Synthesizing Lava Ciruits 649.1 State Mahines . 649.2 Behavioral Desriptions . 689.3 Exerises . 72

2

10 Types 7310.1 Signals and Ciruits . 7310.2 Connetion Patterns . 7410.3 Overloading . 74A Quik Referene Guide 77A.1 The lava ommand . 77A.2 Logial Gates . 77A.3 Arithmetial Gates . 78A.4 Generi Gates . 79A.5 Module: Patterns . 79A.6 Module: Arithmeti . 80A.7 Module: SequentialCiruits 81A.8 Interpretations . 81A.9 Errors . 82B Answers 84Bibliography 93Index 95

3

Chapter 1IntrodutionLava is an experimental tool for hardware design and veri�ation. Using Lava,one an desribe iruits using a simple funtional hardware desription lan-guage. The desriptions are short and sweet, and do not su�er from the ver-bosity of more standard hardware desription languages (HDLs) like VHDL andVerilog. On the other hand, we annot express the same things as in these large,expressive (and ompliated) languages. For example, we annot express lowlevel details about timing. What we an express very niely, though, is the waysin whih iruits are built from sub-iruits. Lava failitates the desription ofonnetion patterns so that they are easily reusable. For some kinds of iruits,for example in signal proessing, this is exatly what we want to do. Lava alsoprovides many di�erent ways of analysing our iruit desriptions. We an sim-ulate iruits, just as with more standard HDLs, but we an also use symbolimethods to generate input to analysis tools suh as automati theorem proversand model hekers. Indeed, the same methods are used to generate struturalVHDL from Lava iruit desriptions. Our aim in this tutorial is to gentlyintrodue this new style of iruit design and analysis, by means of examples.Lava is used at Chalmers as a platform for experiments in the formal veri�ationof hardware [3, 2℄. (Note, however, that both of these referenes are about anolder version of Lava, in whih iruit desriptions are a bit more ompliated.)Satnam Singh, on the other hand, uses Lava in real industrial design projetsat Xilinx In., one of the main suppliers of Field Programmable Gate Arrays(FPGAs). In partiular, Lava has been used with great suess in the develop-ment of FPGA ores suh as �lters and Bezier urve drawing iruits, and ofustomer appliations suh as digital signal proessing for high speed networksand for high performane graphis appliations.Lava really onsists of a simple hardware desription language embedded inthe powerful funtional programming language Haskell. So it an be seen as adomain spei� language embedded in a general purpose programming language.We desribe iruits by writing Haskell programs { and the Lava system itself4

onsists of a set of Haskell modules that give the user various failities. Theembedded language is quite similar to the Lustre synhronous dataow language[6℄. The idea of using a funtional programming language to desribe hardwarewas �rst proposed in the early eighties [13, 14, 7℄, and there has been quite a lotof work in the area sine then [15, 16, 10, 12, 11, 5℄. Our intention in buildingthe Lava system (together with Singh) is to provide a tool that demonstratesthe feasibility of doing iruit design and analysis using a funtional language.The main idea in Lava is that a single iruit desription an be analysed in avariety of di�erent ways, by giving di�erent interpretations to its omponents(and sometimes even to its onnetion patterns). The simplest of these inter-pretations gives us ordinary simulation. But we an do muh more. We anallow symboli rather than onrete data to ow in the iruit, and in this wayollet information about the iruit in various di�erent ways. For example, wean run the iruit on symboli data and produe expressions on the outputsthat indiate how eah output is related to the inputs. This an be useful whendeveloping a �rst implementation. However, the expressions an get too largefor humans to interpret. Then, we hook up external analysis tools, suh as au-tomati theorem provers, to help us to analyse our iruits. When we hook upto external theorem provers, we are atually using Haskell as a proof sriptinglanguage. This turns out to be very onvenient. Similarly, when we hook upto other external tools, suh as VHDL-based CAD tools, we use Haskell as asripting language. One way to view the Lava system is as a tool for linkingtogether and ontrolling other tools in a uni�ed way! Thus Haskell is used notonly to onstrut iruit desriptions but also to ontrol the tools that proessthose desriptions. The user sees only one language, rather than having to workwith many, as is more usual in the CAD world.This tutorial introdues the style of iruit desription used in Lava, by meansof very simple examples. It emphasises the way in whih Lava ombinators anbe used to apture ommon interonnetion patterns. It shows the three mostimportant interpretations or iruit analysis methods { simulation, generationof VHDL ode, and generation of logial formulas for input to theorem provers.After working through the tutorial, you should understand how to desribe andanalyse simple ombinational and sequential iruits using Lava. We hope thatthe quik referene setions at the bak of the tutorial will also help you to getstarted.
5

Chapter 2Getting StartedIn this hapter, we show how to desribe some simple iruits in the Lava system,and run the interpreter on them.2.1 Your First CiruitTo make a �rst iruit desription, start up the text editor of your hoie,and reate a text �le alled First.hs, for example. Lava �le names have theextension .hs.We are going to de�ne a so-alled half adder (see �gure 2.1). A half adder is aomponent that is for example used in the implementation of a binary adder. Ittakes as an input two bits, and adds them up. The result is a sum and a arrybit. A half adder is usually realized using one and and one xor gate.Here is how we de�ne a half adder halfAdd in Lava.import LavahalfAdd (a, b) = (sum, arry)wheresum = xor2 (a, b)arry = and2 (a, b)We import a module alled Lava, whih de�nes a number of operations that wean use to build iruits. Notably, it ontains the de�nitions of the gates xor2and and2. Appendix A ontains a list of suh prede�ned operations.Note that the order of de�nitions after a where does not matter! Sine theseiruit omponents at in parallel, we ould just as well have put them the otherway around. 6
suma

b

XOR

AND carry

Figure 2.1: A half adder.2.2 The Lava InterpreterDuring the development of a olletion of iruits, we mainly use the Lavainterpreter. This is atually the Haskell interpreter Hugs [8℄. The ommand islava.% lava-- Lava2000 ---...Prelude>We an use the interpreter to load di�erent modules with iruit de�nitions,and to type in ommands that we want to exeute.If we type in the half adder de�nition in the �le First.hs, we an load it in theinterpreter,using the ommand :l:Prelude> :l First.hsReading file "First.hs":...First.hsMain>One of the things we an do with a iruit is to simulate it. Simulation is donein Lava with the operation simulate. It takes two arguments; one is the iruitto simulate (in this ase halfAdd), and the other is the input to the iruit (inthis ase a pair of bits).Main> simulate halfAdd (low,low)(low, low)Main> simulate halfAdd (high,high)(low, high)If we make any hanges to the �le with our iruit de�nitions, we an type thereload ommand :r in the interpreter:Main> :r...Main> 7

carryOut

sumcarryIn

XORHA
b

a
HA

sum1

carry1

carry2Figure 2.2: A full adder.The hanges are now updated. If you ever want to exit from the interpreter,you an use the :q ommand.Main> :q[Leaving Hugs℄%2.3 Your Seond CiruitYou guessed it! Your seond iruit is going to be a full adder (see �gure 2.2),a omponent fullAdd that onsists of two half adders. To de�ne it, add thefollowing de�nition to the �le First.hs.fullAdd (arryIn, (a, b)) = (sum, arryOut)where(sum1, arry1) = halfAdd (a, b)(sum, arry2) = halfAdd (arryIn, sum1)arryOut = xor2 (arry2, arry1)Note that, just like the half adder, this iruit has one input. This one inputonsists of a pair of a bit and a pair of bits. We ould also have representedthe input as a triple of bits, but we shall later see why we made this partiularhoie.We transribe the diagram of the iruit (Figure 2.2) by giving names to all theinternal signals (here sum1, arry1 and arry2) and then simply writing downall the sub-parts of the iruit. To ease this proess, we have deided to readthe inputs to a sub-omponent from bottom to top. The order of the resultingequations doesn't matter. The equations an make use either of previouslyde�ned omponents (suh as halfAdd) or of the Boolean gates.We an simulate this iruit by using the simulate operation that we used inthe previous setion. Though as inputs get bigger, typing in di�erent test inputsin the interpreter is a lot of work. To avoid this, we an desribe a number oftest ases in the �le First.hs:test1 = simulate halfAdd (low,low)8

test2 = simulate fullAdd (low,(high,low))test3 = simulate fullAdd (high,(low,high))And we an perform tests in the interpreter.Main> test3(low, high)Main> test2(high, low)Note that if we try to simulate a iruit with inputs of the wrong type, we geta type error:Main> simulate fullAdd (low,high,low)ERROR - Type error in appliation*** Expression : simulate fullAdd (low,high,low)*** Term : fullAdd*** Type : (Signal Bool,(Signal Bool,Signal Bool))-> (Signal Bool,Signal Bool)*** Does not math : (Signal Bool,Signal Bool,Signal Bool)-> (Signal Bool,Signal Bool)Signal Bool is the type of a single bit wire in Lava.To simulate your iruit for more than one input at a time, you an use theoperation simulateSeq. It takes a iruit and a list of sample inputs as aparameter. Lists are denoted between square brakets.Main> simulateSeq halfAdd [(low,low), (low,high), (high,low)℄[(low,low), (high,low), (high,low)℄There is a speial list, alled domain, whih ontains all the values of a ertaininput shape.Main> simulateSeq halfAdd domain[(low,low), (high,low), (high,low), (low,high)℄Here, domain produed eah possible two bit input. To hek what those valueswere, we an simply ask for the value of domain at the appropriate type:Main> domain::[(Signal Bool, Signal Bool)℄[(low,low),(low,high),(high,low),(high,high)℄Main> domain::[(Signal Bool, (Signal Bool, Signal Bool))℄[(low,(low,low)),(low,(low,high)),(low,(high,low)),(low,(high,high)),(high,(low,low)),(high,(low,high)),(high,(high,low)),(high,(high,high))℄It is also possible to ask for the type of a given funtion:9

Main> :t halfAddhalfAdd :: (Signal Bool,Signal Bool) -> (Signal Bool,Signal Bool)Not all input shapes (for example inputs ontaining numbers!) have a �nitedomain list assoiated with them.2.4 Generating VHDLGiven a Lava iruit desription, we an generate VHDL from it, by using theoperation writeVhdl. It takes two arguments, the name of the VHDL de�nitionas a string, and the iruit.Main> writeVhdl "fullAdd" fullAddWriting to file "fullAdd.vhd" ... Done.The VHDL �le that is generated will assume that there are de�nitions of thegates. The Lava distribution provides these de�nitions in the �le Lava2000/Auxiliary/lava.vhd. We must load this �le into the VHDL working libraryand ompile it.Normally, the VHDL generator gives names to the inputs and outputs automat-ially. If we want to give names to the input ourselves, we an do this by usingthe operation writeVhdlInput. Here is how we use it:Main> writeVhdlInput "fullAdd" fullAdd(var "arryIn", (var "a", var "b"))Writing to file "fullAdd.vhd" ... Done.And lastly, if we also want to give names for the outputs, we an use the oper-ations writeVhdlInputOutput. Here is how we use it:Main> writeVhdlInputOutput "fullAdd" fullAdd(var "arryIn", (var "a", var "b"))(var "sum", var "arryOut")Writing to file "fullAdd.vhd" ... Done.See �gure 2.3 for the result of this last operation. Note that the desription hasbeen attened all the way down to a gate-level netlist. No hierarhy remains.Lava really is just some modules that help with writing netlist generators. Whathappens under the hood is that we run the iruit desription with symboliinputs, produing an internal representation of the netlist. Then, we walk overthis to print VHDL. Later, we will instead print the netlist in CNF (for inputto a SAT-solver) or in SMV input format (for input to a model heker).Looking at this VHDL ode, you an see that it is odd, in that it passesthe lok to every ombinational gate! If you don't feel like doing this, you10

-- Generated by Lava 2000use work.all;entityfullAddisport-- lok(lk : in bit-- inputs; arryIn : in bit; a : in bit; b : in bit-- outputs; sum : out bit; arryOut : out bit);end entity fullAdd;arhiteturestruturaloffullAddissignal w1 : bit;signal w2 : bit;signal w3 : bit;signal w4 : bit;signal w5 : bit;signal w6 : bit;signal w7 : bit;signal w8 : bit;begin_w2 : entity id port map (lk, arryIn, w2);_w4 : entity id port map (lk, a, w4);_w5 : entity id port map (lk, b, w5);_w3 : entity xor2 port map (lk, w4, w5, w3);_w1 : entity xor2 port map (lk, w2, w3, w1);_w7 : entity and2 port map (lk, w2, w3, w7);_w8 : entity and2 port map (lk, w4, w5, w8);_w6 : entity xor2 port map (lk, w7, w8, w6);-- naming outputs_sum : entity id port map (lk, w1, sum);_arryOut : entity id port map (lk, w6, arryOut);end strutural;Figure 2.3: The VHDL ode for the full adder in fullAdd.vhd.
11

ould use the module VhdlNew and the aompanying gate de�nitions avail-able in the �le gates.vhd in diretory Lava2000/Auxiliary. Now, eah of theVHDL generation funtions has a loked and unloked version (writeVHdlClk,writeVhdlNoClk et.). You should import the module VhdlNew if you want touse these funtions. (It has been assumed that your projet diretory is alledwork.) The full adder is a purely ombinational iruit, so it makes sense toprodue a iruit without a lok. (We will return to loks, D ip-ops et. ina later hapter.) The following exampletest1 = writeVhdlInputOutputNoClk "fullAddNew" fullAdd(var "in", (var "a", var "b")) (var "sum", var "out")produes the VHDL ode in Figure 2.42.5 Exerises2.1 De�ne the iruits swap and opy. Swap gets a pair of inputs, and outputsthem in the swapped order. Copy gets one input and outputs it twie, asa pair. Here is how they should behave:Main> simulateSeq swap [(low, high), (low, low), (high, low)℄[(high, low), (low, low), (low, high)℄Main> simulateSeq opy [low, high℄[(low, low), (high, high)℄2.2 De�ne a two-bit sorter. It takes as input a pair of bits, and outputs thesame bits, but the lowest one on the left hand side, and the highest oneon the right hand side.2.3 De�ne a iruit with no inputs, and one output, whih is always high.Hint: input onsisting of no wires is written as ().2.4 De�ne and simulate a multiplexer in Lava. A multiplexer iruit has asan input a pair of a signal and a pair (x, y). The output is equal to x ifthe signal is low, and to y if the signal is high.2.5 Use three full adders to make a three bit binary adder. Simulate yourdesign and generate VHDL ode.2.6 Suppose you are designing a digital wath. It might ome in handy tohave a iruit that takes a four-bit binary number and displays it as adigital digit, using a seven segment display. Your iruit might have thefollowing interfae (see �gure 2.5):digitalDisplay (one, two, four, eight) =(a, b, , d, e, f, g)where ... 12

library ieee;use ieee.std_logi_1164.all;entityfullAddNewisport(in : in std_logi; a : in std_logi; b : in std_logi; sum : out std_logi; out : out std_logi);end fullAddNew;arhiteturestruturaloffullAddNewissignal w1 : std_logi;signal w2 : std_logi;signal w3 : std_logi;signal w4 : std_logi;signal w5 : std_logi;signal w6 : std_logi;signal w7 : std_logi;signal w8 : std_logi;begin_w2 : entity work.wire port map (in, w2);_w4 : entity work.wire port map (a, w4);_w5 : entity work.wire port map (b, w5);_w3 : entity work.xorG port map (w4, w5, w3);_w1 : entity work.xorG port map (w2, w3, w1);_w7 : entity work.andG port map (w2, w3, w7);_w8 : entity work.andG port map (w4, w5, w8);_w6 : entity work.xorG port map (w7, w8, w6);_sum : entity work.wire port map (w1, sum);_out : entity work.wire port map (w6, out);end strutural;Figure 2.4: The VHDL ode produed by test1 for the full adder.
13

c

f

e

g

a

b

dFigure 2.5: Digital display.Hint: start by making a table with 10 entries (0 .. 9) where you an seewhat parts of the display should light up for what number.
14

Chapter 3Bigger CiruitsIn this hapter we desribe how to make more ompliated iruits using reur-sion and onnetion patterns. We will also see how we use numbers in Lava.3.1 Reursion over ListsA bit adder takes a pair of inputs. The �rst part is a arry bit, the seond partis a binary number, represented as a list of bits, least signi�ant bit �rst. Thebit adder will add the bit to the binary number, resulting in a binary numberand a arry out.We de�ne a bit adder bitAdder in Lava by reursion over the list of bits. Thereare two ases. Either the list is empty, denoted as [℄, and there is nothing toadd. Or the list has at least one element a, and we an split the list up in twoparts, a, the least signi�ant bit, and as, the remaining bits, written a:as. Inthis ase, we will use a half adder to add a and the arry, and reursively addthe resulting arry to the rest of the binary number.bitAdder (arryIn, [℄) = ([℄, arryIn)bitAdder (arryIn, a:as) = (sum:sums, arryOut)where(sum, arry) = halfAdd (arryIn, a)(sums, arryOut) = bitAdder (arry, as)A more ompliated iruit is the iruit adder that takes a arry and a pair ofbinary numbers, and adds them up. This is alled a binary adder. The reursivestruture is almost the same, but we are doing simultaneous reursion over bothbinary numbers.adder (arryIn, ([℄, [℄)) = ([℄, arryIn)15

adder (arryIn, (a:as, b:bs)) = (sum:sums, arryOut)where(sum, arry) = fullAdd (arryIn, (a, b))(sums, arryOut) = adder (arry, (as, bs))[Note: This adder is atually prede�ned in the module Arithmeti.℄3.1.1 Generating VHDL for a binary adderTo generate a VHDL netlist for the adder that we have just de�ned, we needto speify the size of the iruit, that we need to �x the lengths of its inputlists. This is beause we have written a generi iruit desription using patternmathing over lists, but a netlist must have a �xed size. For example, to �x thelengths of the two binary numbers to be added to 4, we writetest2 = writeVhdlInputOutputNoClk "adder" adder(var "in", (varList 4 "a", varList 4 "b"))(varList 4 "sum", var "out")Typing test2 at the Lava prompt then produes the VHDL �le shown in Figure3.1. It is also possible to parameterise the de�nition with the adder size:test3 n = writeVhdlInputOutputNoClk "adder" adder(var "in", (varList n "a", varList n "b"))(varList n "sum", var "out")making it very easy to produe large netlists.3.2 Connetion PatternsLooking at the two iruit de�nitions in the previous setion, bitAdder andadder, we an see that they have a lot in ommon. Even though the gates thatthey use are di�erent, their struture is very similar.In Lava, we an apture these ommon strutures in onnetion patterns. Con-netion patterns are higher-order funtions that build iruits from other (smaller)iruits.A very ommon onnetion pattern is the serial omposition serial of twoiruits (see �gure 3.2). It is a iruit parametrized by two iruits ir1 andir2. This means that serial ir1 ir2 is a iruit, whih feeds its inputa to ir1, onnets the output b of it to the input of ir2, and results inthat output . 16

library ieee;use ieee.std_logi_1164.all;entityadderisport(in : in std_logi; a_0 : in std_logi; a_1 : in std_logi; a_2 : in std_logi; a_3 : in std_logi; b_0 : in std_logi; b_1 : in std_logi; b_2 : in std_logi; b_3 : in std_logi; sum_0 : out std_logi; sum_1 : out std_logi; sum_2 : out std_logi; sum_3 : out std_logi; out : out std_logi);end adder;arhiteturestruturalofadderissignal w1 : std_logi;signal w2 : std_logi;signal w3 : std_logi;signal w4 : std_logi;signal w5 : std_logi;signal w6 : std_logi;signal w7 : std_logi;signal w8 : std_logi;signal w9 : std_logi;signal w10 : std_logi;signal w11 : std_logi;...signal w28 : std_logi;signal w29 : std_logi;begin_w2 : entity work.wire port map (in, w2);_w4 : entity work.wire port map (a_0, w4);..._w29 : entity work.andG port map (w21, w24, w29);_w27 : entity work.xorG port map (w28, w29, w27);_sum_0 : entity work.wire port map (w1, sum_0);_sum_1 : entity work.wire port map (w6, sum_1);_sum_2 : entity work.wire port map (w13, sum_2);_sum_3 : entity work.wire port map (w20, sum_3);_out : entity work.wire port map (w27, out);end strutural;Figure 3.1: The VHDL ode produed for a 4-bit adder (with parts omitted forbrevity).
17

a b ccirc1 circ2Figure 3.2: Serial omposition of ir1 and ir2.
carryIn

a

b

a

b

F F

1 2

21

carryOut

a

b

a

b

F F

(n-1)

(n-1) n

n

Figure 3.3: The pattern row F , onneting n instanes of F .serial ir1 ir2 a = whereb = ir1 a = ir2 bMore interesting onnetion patterns beome possible when we onsider reur-sive iruit strutures. For example, instead of the half adder iruit in theaddBit de�nition, we an plug in any other iruit. The result onsists of a rowof smaller iruits (see �gure 3.3).Here is how we de�ne the row onnetion pattern.row ir (arryIn, [℄) = ([℄, arryIn)row ir (arryIn, a:as) = (b:bs, arryOut)where(b, arry) = ir (arryIn, a)(bs, arryOut) = row ir (arry, as)One we have made this de�nition, we do not need to use reursion anymore tode�ne iruits of this spei� pattern. Note that the de�nition of row assumesthat the omponent, ir, has a pair as input and produes a pair as output.This was why we hose the type of fullAdd also to be of this form. Also, if theomponents are to �t together properly into a linear array, it is neessary thatit be possible to onnet the seond output of one omponent to the �rst inputof the next. However, the types are not onstrained any further than this. Notealso that row itself also produes a \pair-to-pair" iruit, as does the relatedonnetion pattern olumn (see exerises 3.9 and 3.10).Here are alternative de�nitions of bitAdder and adder:bitAdder' (arry, inps) = row halfAdd (arry, inps)18

adder' (arry, inps) = row fullAdd (arry, inps)It turns out that one an get quite far with surprisingly few onnetion pat-terns. The module Lava2000/Modules/Patterns.hs ontains a few useful pat-terns (inluding row). Using these patterns an lead to very onise iruitdesriptions that are still easy to read for those familiar with the patterns. Itis also onvenient to mix the \named wire" style, whih we saw in the reursivede�nitions earlier, with the use of onnetion patterns.Even shorter de�nitions of the same iruits are:bitAdder' = row halfAddadder' = row fullAddNote that the type of adder' is slightly di�erent from adder, see exerise 3.3.3.3 ArithmetiIn Lava, we an not only deal with low-level wire types like bits, and gates likeand2 and xor2, but also with more abstrat wire types and gates. One of thesetypes is integers (and indeed the lowest level wires in our iruits arry eitherbits or integers).On these integers, we have operations orresponding to abstrat gates over in-tegers. A list of these gates an be found in appendix A.A simple iruit using these arithmeti gates is alled numBreak. It takes anumber as input, and has a pair of a bit and a number as output. The bit inthe pair orresponds to the value of the �rst binary digit of the number; theresulting number is the input number divided by 2.numBreak num = (bit, num')wheredigit = imod (num, 2)bit = int2bit digitnum' = idiv (num, 2)The iruit i2b onverts a number into a bit, by transforming a 0 into low, andany other number into high.We an use this arithmetial iruit to build a iruit that onverts a numberinto a binary number, that is, a list of bits. The iruit takes a parameter,orresponding to the size of the list it has to produe, and has as input thenumber that needs to be onverted.The onverter int2bin onverts an integer to a binary number. It has an extraparameter, whih spei�es the number of bits the binary number should have.Note again that parameters of iruits are di�erent from inputs; int2bin is not19

really a iruit, but int2bin 16 is. We de�ne this iruit by reursion over thesize of the binary number.int2bin 0 num = [℄int2bin n num = (bit:bits)where(bit,num') = numBreak numbits = int2bin (n-1) num'Here, the atual iruit input is num, whih is the kind of integer that ows in aLava iruit, and so has type Signal Int. Other arithmeti gates inlude plus,times, et.Here are some example simulations of these iruits:Main> simulate numBreak 7(high,3)Main> simulate (int2bin 3) 7[high, high, high℄Main> simulate plus (3,4)7At present, VHDL netlist generation supports only bit level operations. Itwill give an error if you try to generate VHDL for a iruit that operates onintegers. However, the integers an still be useful! For example, you an usethem in testing your arithmeti iruits. Let us wrap our binary adder up insuitable onversions:wrapAdd n (a,b) = outwhereas = int2bin n abs = int2bin n b(ss,) = adder (low,(as,bs))out = bin2int (ss ++ [℄)We supply it with two n-bit inputs, whih we produe from the integer inputsa and b. For the output, we stik the arry onto the end of the list of sumbits, sine that list is least signi�ant bit �rst. This is done by forming thesingleton list [℄ and appending that list to the end of the list ss. (++ is theHaskell operator that appends two lists.) Having made a single binary number,we onvert the result bak into an integer. We would then expet the resultingiruit to behave rather like plus, but with a limit on the size of the inputs thatit an deal with. Note that we must �x the size of the parameter n in order toget a iruit that an be simulated. 20

Main> simulate (wrapAdd 4) (3,5)8Perhaps you an �gure out why we getMain> simulate (wrapAdd 2) (3,5)4.3.4 Exerises3.1 De�ne a bit subtrator, alled bitSubber, whih takes a bit and a binarynumber as input, and subtrats the bit from the binary number.3.2 De�ne a binary adder, alled adder2, whih does not take in a arry bit,and throws away the resulting arry.3.3 What is the di�erene between adder and adder'? Hint: look at thetypes of the inputs.3.4 De�ne a iruit bin2int, whih onverts a bit vetor into an integer.3.5 De�ne the iruit zipp, whih takes a pair of list as inputs and produesa list of pairs, one by one grouped together.Main> simulate zipp ([low,high,low℄,[high,high,low℄)[(low,high),(high,high),(low,low)℄Also de�ne the iruit unzipp, whih is the inverse of zipp.3.6 De�ne the iruit pair, whih takes a list as input and produes a list ofpairs, with the neighbours grouped together.Main> simulate pair ([low,high,low,high,high,low℄)[(low,high),(low,high),(high,low)℄Also de�ne the iruit unpair, whih is the inverse of pair.3.7 De�ne a onnetion pattern alled par whih turns two iruits, eahtaking in one input and having one output, into one iruit taking in apair of inputs and having a pair of outputs.3.8 De�ne, using reursion, a binary multiplier. What is the reursive stru-ture? 21

3.9 Looking at the de�nition of row, de�ne a onnetion pattern alled olumnwhih arries the right part of the input and the left part of the outputthrough.(*) Can you de�ne olumn in terms of row?3.10 De�ne a onnetion pattern alled grid, whih puts a number of opiesof iruits in a matrix. The left parts of the inputs are arried throughfrom left to right, and the right parts of the inputs and outputs are arriedthrough from top to bottom.Hint: think of a grid as a row of olumns (or a olumn of rows).3.11 Can you think of a useful iruit that makes use of the grid onnetionpattern?3.12 Looking at the reursive de�nition of an adder, de�ne a simple subtrator.It will only have to subtrat smaller numbers from bigger numbers. Canyou use any of the onnetion patterns desribed in this hapter to makea non-reursive desription?3.13 De�ne a swapper, a iruit that takes in two inputs: an ativate signaland a pair of signals, and the output is a pair of signals. If the ativatesignal is high, the order of the input pair is swapped, otherwise is staysthe same.swapper (swap, (a, b)) = (x, y)where ...3.14 De�ne a omparator, a iruit that takes in two binary numbers of equallength and tells you if the left one is less than or equal than the right one.3.15 Implement a binary sorter. It takes as an input two binary numbers ofequal length, and outputs them in the orret order.
22

Chapter 4Veri�ationIn this hapter we desribe how we an de�ne properties of iruits, and howwe an formally verify these properties using a theorem prover.4.1 Simple PropertiesThe main kind of properties of iruits we deal with in Lava are so-alled safetyproperties. These are properties whih an be de�ned in suh a way that theystate that some ondition is always true (or, equivalently, never false).Here is an example; a property that heks that the outputs of a half adder arenever both true.prop_HalfAddOutputNeverBothTrue (a, b) = okwhere(sum, arry) = halfAdd (a, b)ok = nand2 (sum, arry)Note that this property looks pretty muh like a normal iruit de�nition, andin fat it is.The atual veri�ation question is: does this property iruit always yield true,no matter what the input is? To answer the question, we use the Lava operationverify.Main> verify prop_HalfAddOutputNeverBothTrueProving: ... Valid.This proess works in the following way. Just as we an generate VHDL froma iruit desription, we an also generate a logial formula representing theiruit. This logial formula is then given to an external theorem prover whih23

will prove (or disprove) the validity of the formula. The result is then takenbak into Lava.Here is another example; we formulate that a full adder does not are about theorder of the arguments, it will always produe the same result. This propertyis in general alled ommutativity.prop_FullAddCommutative (, (a, b)) = okwhereout1 = fullAdd (, (a, b))out2 = fullAdd (, (b, a))ok = out1 <==> out2Note that, sine we are not interested in the exat shape of the output of thetwo full adders, we an just give a name to the whole output, in this ase out1and out2. Another thing to notie is that we use the general equality <==>. Wean also use the iruit equal for that.4.2 Quanti�ationThe ommutativity property is not only true for full adders, but also in generalfor binary adders. Here is how we state that property:prop_AdderCommutative (as, bs) = okwhereout1 = adder2 (as, bs)out2 = adder2 (bs, as)ok = out1 <==> out2Note that we use the adder adder2 we de�ned in exerise 3.2 (the answer is onpage 85).The problem is that this property holds for all iruit sizes, but we an onlyverify it for spei� sizes! This is beause it is very hard to verify propertiesautomatially for all sizes.So, instead of verifying it for all sizes, we will pik a spei� size and verifythe property for those. Thus, we de�ne a new property, whih is expliit aboutwhat size of input we want to verify the property.prop_AdderCommutative_ForSize n =forAll (list n) $ \as ->forAll (list n) $ \bs ->prop_AdderCommutative (as, bs)This property means: \for all lists of size n alled as, and for all lists of sizen alled bs, the property that the adder is ommutative holds for (as, bs) asinput". 24

Now, we an verify the property using verify. We an of ourse do this formore than one size.Main> verify (prop_AdderCommutative_ForSize 2)Proving: ... Valid.Main> verify (prop_AdderCommutative_ForSize 4)Proving: ... Valid.Main> verify (prop_AdderCommutative_ForSize 32)Proving: ... Valid.4.3 General PropertiesGeneral properties are properties that are parametrized by one or more iruits.They an be de�ned just like onnetion patterns. Here is a general propertythat poses the question if the two given iruits are equivalent.prop_Equivalent ir1 ir2 a = okwhereout1 = ir1 aout2 = ir2 aok = out1 <==> out2The following property heks if a given iruit is ommutative.prop_Commutative ir (as, bs) = okwhereout1 = ir (as, bs)out2 = ir (bs, as)ok = out1 <==> out2Of ourse, the iruits that one uses to instantiate these properties have to beof the right shape (type).4.4 Helping Veri�ationThe formulas that we generate an sometimes be quite hard. It is often the asethat, the larger the formula, the harder it is to verify it. So sometimes, it isneessary to help the prover a bit.One way of doing this is to split up a large proof into a number of smaller ones.Then, we an prove these parts one by one, and for eah new proof, we anassume that the parts that are already proved are atually true.25

In Lava, we an do this by verifying not just one question, but a whole list ofquestions. For example, to verify that two iruits have the same output, wean prove this pin-by-pin instead of at one go. To do this, we have to de�neone-by-one equality.equalOneByOne ([℄, [℄) = [℄equalOneByOne ([℄, y:ys) = [low℄equalOneByOne (x:xs, [℄) = [low℄equalOneByOne (x:xs, y:ys) = eq : eqswhereeq = equal (x, y)eqs = equalOneByOne (xs, ys)Note that the omparison fails if the lists are not of the same length. To hekthat a binary adder is ommutative, we an now instead say:prop_AdderCommutative' (as, bs) = okswhereout1 = adder2 (as, bs)out2 = adder2 (bs, as)oks = equalOneByOne (out1, out2)prop_AdderCommutative_ForSize' n =forAll (list n) $ \as ->forAll (list n) $ \bs ->prop_AdderCommutative' (as, bs)Now we have de�ned a property that poses a list of questions, we an use thetheorem prover to prove all of them.Lava> verify (prop_AdderCommutative_ForSize' 4)Proving: pin 1 ... Valid.Proving: pin 2 ... Valid.Proving: pin 3 ... Valid.Proving: pin 4 ... Valid.Proving: pin 5 ... Valid.--Result: Valid.Note that in the proof for pin 2, we an assume that pin 1 holds, et.
26

4.5 Exerises4.1 Take a look at the two bit sorter you de�ned in exerise 2.2. To verifythat it is orret, two properties need to be true:{ The left part of the output is smaller than the right part of theoutput,{ The output of the iruit ontains the same bits as the input (butpossibly in a di�erent order).State these two properties separately, and verify them using verify.4.2 Some properties are so easy to verify that we an atually do it by simulat-ing them for all inputs (using domain). There are a few of these propertiesin this hapter. Verify them by testing them for all inputs. Can you thinkof other suh easy-to-verify properties?4.3 Chek that the various adders in the previous hapter are all ommuta-tive, for sizes up to 16 bits. What happens if you try to prove that thesubtrator is ommutative?4.4 Chek that the subtrator you de�ned in the previous hapter is really asubtrator. How do you formulate your property; what is the "de�nition"of subtration? Make sure you do not mess up the sizes of the binarynumbers.4.5 De�ne a general property that states that a given iruit is assoiative.An operator Æ is assoiative, if for every x; y; z it holds that (x Æ y) Æ z =x Æ (y Æ z). Are all the adders assoiative?4.6 Verify that the arry-save adder you de�ned in the previous hapter isequivalent to a binary adder. Be areful in how you formulate your prop-erty, sine the inputs do not have the same shape.4.7 Prove that, for an adder and subtrator of your hoie, it holds that x+(y� z) = (x+y)� z. What extra ondition should hold for y and z? Howdo you express that?4.8 (Haskell) How would you proeed if you want to verify a property for allsizes in between, say, 1 and n?
27

Chapter 5Sequential CiruitsIn this hapter we desribe how to deal with sequential iruits in Lava. Se-quential iruits in Lava are synhronous iruits, whih means that there is oneglobal lok a�eting all delay omponents in the iruit.5.1 The Delay ComponentA new omponent in sequential iruits is the delay omponent. It is a ir-uit with one parameter (the initial output of the delay) and one input, whihbeomes its output in the next lok yle.Here is an example of a simple iruit alled edge, that heks if its inputhas hanged with respet to its previous input. It uses a delay omponent toremember the previous input.edge inp = hangewhereinp' = delay low inphange = xor2 (inp, inp')We an simulate a sequential iruit by using the operation simulateSeq. Itneeds a iruit and a list of inputs. The list of inputs is interpreted as thedi�erent inputs at eah lok tik.Main> simulateSeq edge [high, low, low, high℄[high, high, low, high℄Here is another sequential iruit, whih is alled toggle. It has an internalstate, whih it outputs, and it takes one input. If the input is high, it hangesthe state. If not, it stays the same. 28

toggle hange = outwhereout' = delay low outout = xor2 (hange, out')As we an see, the de�nition of out' is dependent on out, whose de�nition isdependent on out'. Thus, there is a loop in the iruit. Loops are not allowedin ombinational iruits, sine the meaning of suh iruits is unlear. But insequential iruits, they are essential to implement any interesting behavior.Simulating toggle gives:Main> simulateSeq toggle [high, low, low, high℄[high, high, high, low℄5.2 Multiple DelaysWe have seen how we an delay a signal one time instant, so that we an refer tothe signal's previous value. Sometimes, we want to delay a signal multiple timeinstanes. We an do this by de�ning a parametrized iruit, alled delayN. Ithas two parameters, n, the number of delays to use, and init, the initial valuesof these delays.We use reursion over n to de�ne this iruit.delayN 0 init inp = inpdelayN n init inp = outwhereout = delay init restrest = delayN (n-1) init inpA useful sequential iruit that we an implement using delayN, is alled puls.It has no inputs, one output, and one parameter n. Its output is normally low,exept on the n-th, 2n-th, 3n-th, ... lok tik, where it outputs high.We implement the iruit by reating n�1 delay omponents in a row, initializedby low, ended with one delay omponent initialized by high.puls n () = outwhereout = delayN (n-1) low lastlast = delay high outNote that we need to use a loop bak here. This implementation is not optimal,in the sense that it uses too many delay omponents; see exerise 5.6.Simulating puls 3 gives: 29

Main> simulateSeq (puls 3) [(), (), (), (), (), (), ()℄[low, low, high, low, low, high, low℄5.3 CountersAn n-bit ounter is a iruit that outputs an n-bit binary number at every loktik, starting with 0, and inreasing it by 1 every lok tik. We implement thisby keeping an internal state, whih is a binary number. The iruit takes oneparameter, whih indiates the number of bits to use, and has no inputs.ounter n () = number'wherenumber' = delay (zeroList n) number(number, arryOut) = bitAdder (high, number')We use the funtion zeroList, whih reates a list of n zeros, denoting theinitial value. Note that the delay omponent not only works for bits, but alsofor example for pairs of bits and lists (as in this ase).Simulating ounter gives:Main> simulateSeq (ounter 3) [(), (), ()℄[[low, low, low℄, [high, low, low℄, [low, high, low℄℄A variant on this iruit is the up-ounter, whih takes an input, whih indiatesif the number should inrease or not. In this ase, we want the desired inreaseto take e�et immediately, so we output the number before we delay it.ounterUp n up = numberwherenumber' = delay (zeroList n) number(number, arryOut) = bitAdder (up, number')Simulating ounterUp gives:Main> simulateSeq (ounterUp 3) [high, low, high℄[[high, low, low℄, [high, low, low℄, [low, high, low℄℄5.4 SequentializationIn hapter 3, we have seen a ombinational binary adder. As an input, it takestwo n-bit binary numbers, and adds them up. For large n, this iruit an getquite large, whih means it takes more iruit area and onsumes more power,and will need a lower lok frequeny to work properly.30

We an make use of the regularity in the iruit to make a small version ofthe iruit that however needs several lok yles to ompute the result. If weapply this tehnique on the binary adder, we obtain a sequential adder. It takesone new digit of both binary numbers at eah lok yle. This is sometimesalled bit serial.We an implement this by storing the arry as an internal state, so that theurrent arry-in of the iruit is the previous arry-out.adderSeq (a,b) = sumwherearryIn = delay low arryOut(sum,arryOut) = fullAdd (arryIn, (a,b))Simulating adderSeq gives:Main> simulateSeq adderSeq [(high,low), (high,high), (low,high)℄[high, low, low℄Beause we �nd that many sequential iruits have this struture, we de�ne asequential onnetion pattern, alled rowSeq whih builds a row of iruits, justlike row, but interprets the row over time.rowSeq ir inp = outwherearryIn = delay zero arryOut(out, arryOut) = ir (arryIn, inp)Worth noting is that we make use of the generi delay and zero omponenthere. The struture is exatly the same as in the sequential adder.Realling the de�nition of a binary adder in terms of row, we an repeat it andimplement a sequential adder in terms of rowSeq:adder' = row fullAdd -- ombinationaladderSeq' = rowSeq fullAdd -- sequentialIn this way, using a onnetion pattern to de�ne a ombinational iruit helpsus to de�ne the sequential version of the iruit.5.5 Variations on rowSeqThe sequential row onnetion pattern is sometimes useful, but ertainly notalways. If we use it to implement a sequential adder, as we did, we an also useit to add up \in�nitely big" binary numbers. The addition never ends, so wean never start over adding two new numbers.31

Therefore, it is handy to have a onnetion pattern, alled rowSeqReset, whihtakes one extra input reset. When reset is high, the internal arry state willbe reset to zero.rowSeqReset ir (reset,inp) = outwherearryIn = delay zero arryarry = mux (reset, (arryOut, zero))(out, arryOut) = ir (arryIn, inp)We use the standard multiplexer omponent mux here, whih hooses the left orright omponent of an input pair, depending on if the �rst inoming signal islow or high, respetively.Now we an de�ne a resettable sequential adder adderSeqReset as follows:adderSeqReset = rowSeqReset fullAddVery often, it is the ase that the internal arry state has to be reset periodi-ally, that is, on every n-th, 2n-th, ... lok tik. Therefore, we reate a thirdsequential row variation, whih takes a parameter n, whih indiates the resetperiod.rowSeqPeriod n ir inp = outwherereset = puls n ()out = rowSeqReset ir (reset, inp)Now we an de�ne a sequential adder adderSeqPeriod adding n-bit numbersas follows:adderSeqPeriod n = rowSeqPeriod n fullAdd5.6 Exerises5.1 De�ne a iruit evenSoFar, whih takes one input, and has one output.The output is high if and only if the number of high inputs has been evenso far.Simulate your iruit in Lava and generate VHDL.5.2 Implement a flipFlop iruit, whih takes two inputs (set, reset), andhas one output. The iruit keeps an internal state, whih is set to highwhen set is high, and set to low when reset is high. The internal stateis also the output. You may deide yourself what to do when both inputsare high. 32

5.3 Implement a loked delay omponent delayClk. It has one parameter,the initial state, and it has an extra input lk. Only when lk is high, theoutput hanges to the state and the state hanges to the urrent input.5.4 De�ne a iruit alled always, whih has one input and one output. Theoutput is high as long as the input stays high. If the input drops to low,then the output stays low forever.5.5 De�ne three di�erent iruits that output high only on every 6th loktik (so it happens on the 6th, 12th, 18th, ... et.). Use 6 delay elementsin the �rst iruit, 5 delay elements in the seond, and 3 in the last.Is it possible to de�ne this iruit with less than 3 bit-level delay elements?5.6 De�ne a puls generator puls2 whih has a parameter k, and generates apuls every 2k-th lok tik. Your design should use a minimal number ofdelay omponents (how many is that?).5.7 De�ne an up-down ounter. The ounter gets a pair of inputs. If the leftinput is high, it ounts up. Otherwise, if the right input is high, it ountsdown. Otherwise, the state stays the same.5.8 De�ne a 0-to-9 ounter. The ounter has no inputs, and a 4-bit numberas output. Initially, the output starts at 0, and inrements at every loktik, but after the output 9, it returns to 0.Connet the display from exerise 2.6 to your ounter.5.9 De�ne a synhronizer, whih has two inputs go1 and go2, and one outputgo. The output only beomes true when both go1 and go2 have been highin the past or are high now sine the last go. .Here is an example simulation:Main> simulateSeq synhronize[(low,high),(high,low),(high,high),(high,low),(low,low),(low,high)℄[low, high, high, low, low, high℄5.10 De�ne a iruit alled outputList, whih has one parameter, a list ofvalues, no inputs, and one output. The iruit outputs the elements inthe parameter list one by one at every lok tik repeatedly. Here is anexample simulation:Main> simulateSeq (outputList [low, low, high℄)[(),(),(),(),(),()℄[low, low, high, low, low, high℄
33

Chapter 6Sequential Veri�ationIn this hapter we desribe how we an verify properties of sequential iruits.We restrit ourselves to sequential safety properties.6.1 Sequential Safety PropertiesLet us take a look at how to de�ne properties about sequential iruits. Inpriniple, we an use the same tehniques as we did with ombinational iruits.Let us take a look at some examples.Here is how we an ompare the two sequential adders from setion 5.4.prop_SameAdderSeq inp = okwhereout1 = adderSeq inpout2 = adderSeq' inpok = out1 <==> out2Here is another example; the omposition of edge and toggle from setion 5.1gives the identity iruit. This means that the input is the same as the output.prop_ToggleEdgeIdentity inp = okwheremid = toggle inpout = edge midok = out <==> inpThe properties we an desribe in this way are alled sequential safety properties.Reall that safety properties are properties whih an be desribed as a iruitwith one output, whih should always be true (or never be false) for the propertyto hold. 34

Examples of properties whih are not safety properties are for example livenessproperties. These an assert that a ertain ondition must hold at some pointin the future, for example.6.2 Sequential LogiApart from the tehniques we used to de�ne ombinational properties, there arealso speial tehniques we an apply to de�ne sequential properties.� When we want to refer to values of signals at di�erent time instanes, wean use a delay to get aess to previous values. But be areful aboutwhat initial value you hoose for this use of delay.� When we want a ertain property only to be true when a ertain onditionholds, whih does not neessarily hold all the time, we an use logialimpliation. Impliation is implemented by the Lava gate impl, and alsoby the binary operator ==>.Here is an example. Suppose we want to de�ne the following property aboutthe toggle iruit: "if the input is high, then the urrent output is di�erentfrom the previous output".The way we de�ne this in Lava is:prop_ToggleTogglesWhenHigh inp = okwhereout = toggle inpout' = delay low outhange = xor2 (out, out')ok = inp ==> hangeFirst, we ompute the output out from toggle. Then, we use a delay omponentto get aess to the previous output out'. We de�ne the situation hange inwhih these outputs di�er. And then we say: "if the input is high, then theoutputs di�er".6.3 Veri�ationAfter de�ning these properties, we would like to formally verify them. Veri�-ation of a sequential property means that we have to prove that the propertyholds at all times. In Lava, we do this by indution over time. It works asfollows. 35

Firstly, we have to do the base ase: proving that the property holds for the �rsttime instane. Sine looking at just one time instane does not involve time atall, we an use the same tehniques as we did in the ombinational ase.Then, we do the indutive step. We want to prove that if the property holds attime t, it also holds at time t+1. We do this as follows: we reate an arbitrarytime instane by �lling the states of the iruits with fresh variables. Then, werun the iruit one on that state, obtaining an output and new state values.Then we assert that the output is true, and run the iruit on the new statevalues. Finally, we need to prove that the new output is true.After proving the base ase and the indutive step, we have proved our property.Here is what happens in Lava:Main> verify prop_ToggleEdgeIdentityProving: base 1 ... Valid.Proving: step 1 ... Valid.--Result: Valid.Lava> verify prop_ToggleTogglesWhenHighProving: base 1 ... Valid.Proving: step 1 ... Valid.--Result: Valid.We give a more detailed explanation of indution in the next setion.6.4 IndutionTo perform indution on a Lava property, we onvert it to a logial formularelating input `inp' and old state variables `qold' to output `ok' and new statevariables `qnew'. Whenever we use a signal-level delay omponent in a iruitor property, we introdue one state variable.In this translation, we also introdue a speial input, alled `init', whih is trueonly in the �rst time instane. So, after we have translated the property, wehave a logial formula of the following form:T (init; inp; qold; qnew; ok)This formula is usually alled the transition relation.A very simple way to prove that the output `ok' is always true, would be to tryproving the following: T (init; inp; qold; qnew; ok)) ok (6.1)36

Unfortunately however, this method does not work very often, beause evenwhen the property is always true in any run of the iruit, it might not betrue in every possible on�guration of the state variables. This is why we useindution.First, we prove the base ase, that is: `ok' is true at the �rst time instane. Inthis ase, we know that the variable `init' is true, so we prove:T (true; inp; qany; qnew; ok)) ok (6.2)This is usually easy, sine initially, we know the values of the state variables.Then, we prove the indution step, that is: if `ok' is true at time t, it is also trueat time t+ 1. So, we are looking at two time instanes of the property.T (init1; inp1; q1; q2; true)T (false; inp2; q2; q3; ok2) �) ok2 (6.3)Note how we onnet the di�erent time instanes 1 and 2 by reuse of the statevariables `q2' as new states in the �rst time instane and as old states in theseond time instane. Also note that we use false for the value of `init' in theseond time instane, beause we know it is not the initial time instane. Andwe use true for the value of ok in the �rst time, sine we may assume that theindution hypothesis holds.If we have proven the two formulas 6.2 and 6.3, then we know that `ok' must betrue at all time instanes. This is the basi notion of indution.6.5 Indution With DepthUnfortunately, the method of indution mentioned in the previous setion is notomplete. This means that there are properties whih are true, whih annotbe proven by simple indution.Here is an example: Consider the toggle iruit from setion 5.1 and the pulsiruit from setion 5.2. We might want to verify that these iruits do exatlythe opposite if toggle always has a high input, and puls has a period of 2.prop_Toggle_vs_Puls () = okwhereout1 = toggle highout2 = puls 2 ()ok = inv (out1 <==> out2)This annot be proven by normal indution, sine the puls iruit has two delayomponents in a row, so it is not enough to look at two time instanes at a time.So, instead, we will look at more time instanes in the indution proof. Weintrodue the onept of indution with depth k, whih means that the base37

x

x

xk

1

T

T

T

qinit

ok1

ok2

okk

?

?

?

2

Figure 6.1: Base ase for indution with depth k.ase proves that the �rst k steps are okay, and the step ase may assume that asequene of k steps went okay, in order to prove that the k + 1-th step is okay.Here is the onrete formula for the base ase (see also �gure 6.1):T (true; inp1; q1; q2; ok1)T (false; inp2; q2; q3; ok2): : :T (false; inpk; qk; qk+1; okk) 9>>=>>;) ok1; ok2; : : : ; okk (6.4)Note that we use the same trik of reusing the state variables of onseutivetimes to line up the time instanes. Here is the onrete formula for the stepase (see also �gure 6.2): T (init1; inp1; q1; q2; true)T (false; inp2; q2; q3; true): : :T (false; inpk; qk; qk+1; true)T (false; inpk+1; qk+1; qk+2; okk+1) 9>>>>=>>>>;) okk+1 (6.5)So, for any depth k, if we an prove the formulas 6.4 and 6.5, we have provedthat `ok' holds at every time instane. Note that if we hoose k = 1, then weare bak to normal indution again.Here is what happens when we verify prop Toggle vs Puls in Lava:Main> verify prop_Toggle_vs_PulsProver: base 1 ... Valid.Prover: step 1 ... Falsifiable.Prover: base 2 ... Valid. 38
x

x

1

T

T

qany

2

xk T

T okk+1x
k+1

?

true

true

true

Figure 6.2: Indutive step for indution with depth k.Prover: step 2 ... Valid.--Result: Valid.So, the veri�er realizes that indution depth 1 is not enough for the step to gothrough, and inreases the indution depth automatially. It will keep inreasingthe depth until either the base ase turns out to be false, or until it manages toprove both the base ase and the step ase.If we want to speify a spei� depth to do the indution for, we an use theoperation verifyWith, whih takes an extra list of verify options.Main> verifyWith [Depth 2℄ prop_Toggle_vs_PulsProver: base 2 ... Valid.Prover: step 2 ... Valid.--Result: Valid.The operation verify is atually just a short-hand for verifyWith [Depth 1,Inreasing℄. With the option Depth, one an speify the indution depth.Inreasing means that it will keep inreasing the depth until it proves ordisproves the property.
39

6.6 Indution With Restrited StatesUnfortunately, even indution with depth is not a omplete method. This meansthat there exists properies whih are always true, but for whih there exists nok suh that the property an be proven by indution with depth k.An example of suh a property is to hek if a periodi sequential adder of period2 is equivalent to a resettable adder whih we reset every seond lok tik.prop_AdderPeriod2 ab = okwheresum1 = adderSeqPeriod 2 abtwo = delay low (inv two) -- 010101...sum2 = adderSeqReset (two, ab)ok = sum1 <==> sum2Verifying this property results in an in�nite loop:Main> verify prop_AdderPeriod2Prover: base 1 ... Valid.Prover: step 1 ... Falsifiable.Prover: base 2 ... Valid.Prover: step 2 ... Falsifiable....The problem is that there exist a lot of state variable on�gurations that neverour when we run the iruit, but are logially possible. In some ases, theseso-alled unreahable states mess up the indution proof. Even assuming thatthe property we want to prove is true for a very large number k of onseutiverunning steps (like we do in the indution step) is not enough to ensure we arein a reahable state. The reason for this is that we might be running around inthe unreahable states in irles for these k steps, so inreasing k does not help.Instead, we will strengthen the indution step by saying that all k+1 states wevisit in the formula must be distint. In this way, we ensure that we are notrunning around in irles.The new formula for the indutive step beomes:T (init1; inp1; q1; q2; true)T (false; inp2; q2; q3; true): : :T (false; inpk; qk; qk+1; true)T (false; inpk+1; qk+1; qk+2; okk+1)q1 6= q2; q1 6= q3; : : : ; qk�1 6= qk+1; qk 6= qk+1
9>>>>>>=>>>>>>;) okk+1 (6.6)For this method, proving formulas 6.4 and 6.6 for some k is enough to provethe `ok' holds at all time instanes. Moreover, this is a omplete method! This40

means that, if the property holds, there is always a k suh that we an prove itby indution with depth k with restrited states.To use indution with restrited states in Lava, we an use the option RestritStates:Main> verifyWith [RestritStates,Inreasing℄ prop_AdderPeriod2Proving: base 1 ... Valid.Proving: step 1 ... Falsifiable....Proving: base 5 ... Valid.Proving: step 5 ... Valid.--Result: Valid.We needed indution depth 5 for this property. Note that we used the optionInreasing also, otherwise the veri�ation would have stopped at depth 1.6.7 Exerises6.1 Why is simulation not enough to do sequential veri�ation?6.2 Verify that the edge iruit and the iruit evenSoFar from exerise 5.1always have opposite outputs if fed with the same inputs.6.3 Verify that the three di�erent implementations of a puls generator withperiod 6 in exerise 5.5 are equivalent. What is the indution depth thatis needed?6.4 Verify the obvious relationship between the puls iruit and the puls2iruit from exerise 5.6, for di�erent values of k. What is the indutiondepth that is needed?6.5 Verify that the up-part of the up-down ounter you de�ned in exerie 5.7 isequivalent to the up-ounter from setion 5.3. Do this for di�erent valuesof n.6.6 De�ne and verify the following property: "if the input to toggle is thesame twie in a row, then the urrent output is the same as the outputtwo steps ago".6.7 Consider the following general property: "As long as A holds, then Bmust hold". How would you de�ne suh a property? Hint: use the alwaysiruit from 5.4.6.8 Show that doing indution with depth 1 amounts to normal indution.6.9 (*) Show that doing indution with depth k is sound, that is, if we haveproven the base ase and the indutive step, then we have really proventhat the property always holds. 41

6.10 (**) Show that doing indution with depth k and restrited states is sound.You may use the fat that exerise 6.9 holds.6.11 (**) Show that doing indution with depth k and restrited states is om-plete.
42

Chapter 7Time TransformationsIn this hapter, we will see some tehniques with whih we an ompare iruitsthat operate at di�erent lok rates.7.1 Timing IssuesSo far, when we were omparing two iruits, we always assumed that theyonsumed their inputs and produed their outputs at the same rate. Let ustake a look at an example where this is not the ase: omparing a sequentialadder against a ombinational adder.The sequential adder (see �gure 7.1) takes in a pair of bits every lok tik, andoutputs the sum, and remembers the arry for the next lok yle. The arryis reset every n-th lok tik. Here is how we de�ned it:adderSeqPeriod n =rowSeqPeriod n fullAddThe ombinational adder (see �gure 7.2) takes in two n-bit binary numbers andprodues the sum as a n-bit binary number in one lok tik. Here is how wede�ne it:adderCom abs = sumwhere(sum, arryOut) = row fullAdd (low, abs)

b
a sum

Seq
ADDERFigure 7.1: A sequential adder.43

a
b

a
b

.

.

.

.

.

.

.

.

.

.

A
D
D
E
R

C
o
m

7

sum

sum

1

7

1
Figure 7.2: A ombinational adder.

P
a
r
a
l
l
e
l

t
o

P
a
r
a
l
l
e
l

S
e
r
i
a
l

t
oa

b sum

S
e
r
i
a
l

Puls

A
D
D
E
R

C
o
m

Figure 7.3: The slowed down ombinational adder.For onveniene, we abstrat away from the arry.There are two basi methods for omparing these two iruits.The �rst method involves slowing down the ombinational adder, so that ittakes more lok tiks to alulate the sum. So instead of taking n pairs of bitsat a time, it takes them in one-by-one, and when it has gotten all of them, itoutputs the sums one-by-one. The iruits now operate at the same rate, andan be ompared by onventional methods.The seond method involves speeding up the sequential adder, so that it om-putes several results in one lok tik. So instead of taking in one pair of bitsat a time, it takes in n pairs of bits, and produes n sums in one lok yle.7.2 Slowing DownThe �rst tehnique we desribe slows down the ombinational iruit. So, in-stead of omputing everything in one lok tik, we fore it to take n lok tiksinstead. We do this by transforming the iruit into a iruit that looks just likethe sequential version: it takes one input and produes one output at a time(see �gure 7.3).Sine the inputs ome in one-by-one, we have to wait for n lok tiks until wehave the full input available for the iruit. This is done by the serial to parallelonverter (see �gure 7.4). We an implement this omponent as follows:44
lowD

D

Dlow

low

x x

x

x

x

1

2

3

nFigure 7.4: A serial to parallel onverter.

Dlow

Dlow

Dlow

1

0

1

0

low

1

0

y

y

y

y

y
1

2

3

n

load

1

0

Figure 7.5: A parallel to serial onverter.45

serialToParallel 1 inp = [inp℄serialToParallel n inp = inp : restwhereinp' = delay zero inprest = serialToParallel (n-1) inp'Then we have to take are of the outputs. At every lok tik, the ombinationaliruit produes n outputs, but they only make sense on every n-th, 2n-th, ...lok tik, beause then we have the right input. Therefore, we need to add aomponent on the outputs that spreads out the outputs of the important loktiks over the other lok tiks. This is done by the parallel to serial onverter(see �gure 7.5). We an implement this omponent as follows:parallelToSerial (load, [inp℄) = outwhereout = mux (load, (low, inp))parallelToSerial (load, inp:inps) = outwherefrom = parallelToSerial (load, inps)prev = delay low fromout = mux (load, (prev, inp))Then, we an put these omponents together in a new sequential adder:adderSlowedDown n ab = sumwhereabs = serialToParallel n absums = adderCom absload = puls n ()sum = parallelToSerial (load, sums)The load input to the parallel to serial onverter is a puls with period n. Letus take a look at how this sequential adder adds up binary numbers for n = 4.lok 1 2 3 4 5 6 7 8 9input ab1 ab2 ab3 ab4 ab'1 ab'2 ab'3 ab'4 ab"1output 0 0 0 s1 s2 s3 s4 s'1 s'2As we an see, the results si are delayed by n� 1 lok tiks. This is of oursebeause the result is omputed at the n-th, 2n-th, ... lok tik. So, when weompare this with the original sequential adder, we have to slow the output ofthat one down with n� 1 delay omponents. Here is the property:prop_AdderSeqSlowedDown n ab = okwhere 46
Fexplx y

q

qnew

old

Figure 7.6: A ombinational iruit with expliit states qold and qnew.

x y

Fexpl

Fexpl

x

x

y

y

D

n

1

2

n

1

Fexpl2

Figure 7.7: A time transformed sequential iruit F .sum1 = adderSeqPeriod n absum1' = delayN (n-1) low sum1sum2 = adderSlowedDown n abok = sum1' <==> sum2Unfortunately, this way of speifying the property introdues a lot of extralogi, and moreover, extra state. This makes the veri�ation of these kind ofproperties very hard. In partiular, the indution methods need an extremelyhigh indution depth. In the next setion, we will see a simpler and more diretmethod for speifying retiming properties.7.3 Speeding UpAnother tehnique for retiming works as follows. Instead of slowing down theombinational iruit, we speed up the sequential iruit. Unfortunately, thisannot be done by adding retiming omponents around the iruit. Instead,47

we transform the iruit into another iruit. This is done by a built-in Lavaoperation, alled timeTransform.The idea is that we make the state of the sequential iruit expliit by turninga sequential iruit F into a ombinational iruit Fexpl, that takes in the oldstate as an extra input, and has the new state as an extra output (see �gure7.6).The next step is to reate a olumn of Fexpl, where we thread the states throughas arry. The last step is to make the state impliit again by adding delayomponents and a loop bak (see �gure 7.7).All this is implemented by Lava's primitive operation timeTransform. So, wean make a new adder from the sequential adder, by using time transformation:adderSpedUp abs = sumswheresums = timeTransform (adderSeqPeriod n) absn = length absThe funtion length omputes the length of a list, so that we know what periodthe sequential adder requires.The property of omparing the two di�erent adders now looks as follows:prop_AdderSeqSpedUp abs = okwheresum1 = adderSpedUp abssum2 = adderCom absok = sum1 <==> sum2Beause this is a property that has a list as an input, we need to be expliitabout the length of the list:prop_AdderSeqSpedUp_ForSize n =forAll (list n) $ \abs ->prop_AdderSeqSpedUp absVerifying this by indution is easy, and needs indution depth 2 for any n.7.4 Exerises7.1 Consider the following iruit:highLow () = [high, low℄Verify that the iruit toggle behaves twie as slow as this iruit if itsinput is always high. Do this by slowing down and speeding up.48

7.2 What goes wrong when we try using the slowing down method for ompar-ing two sequential iruits that operate at di�erent rate? Also see exerise7.5.Hint: what happens to the state of a iruit that is slowed down?7.3 Does the speeding up method work when we use it for omparing twosequential iruits that operate at di�erent rate?7.4 Design a property onnetion pattern that veri�es two iruits that operateat di�erent rates equivalent. You may deide yourself what method tohoose.7.5 Can you �nd a method to �x the problem in exerise 7.2?Hint: use loked delays (see exerise 5.3).
49

Chapter 8More onnetion patternsIn this hapter, we �rst review some standard onnetion patterns, and thenonsider the problem of desribing tree shaped iruits and buttery iruits.These are ommon iruit strutures in digital signal proessing.8.1 Connetion patterns revisitedIn an earlier hapter, we saw the serial onnetion pattern, whih onnets twoiruits in series. It is onvenient to have an in�x version, so that we an writef ->- g, instead of serial f g, see �gure 8.1. Note that serial omposition isassoiative:f ->- (g ->- h) === (f ->- g) ->- hSometimes we want to ompose a list of iruits. We all this ompose.ompose [℄ inp = inpompose (ir:irs) inp = outwherex = ir inpout = ompose irs xNote that we ould have written this de�nition in a di�erent style, using theserial onnetion pattern.ompose1 [℄ inp = inpompose1 (ir:irs) inp = outwhereout = (ir ->- ompose1 irs) inp50

f g
Figure 8.1: f ->- gWe ould go even further and drop the iruit inputs (inp) from eah side ofthe de�nitions. The identity iruit (whih just returns its input) is written id.This is a de�nite hange of style to one in whih the emphasis is on onnetionpatterns.ompose2 [℄ = idompose2 (ir:irs) = ir ->- ompose2 irsAll of these styles are equally good, and the hoie is really just a matter oftaste. In fat it is quite onvenient to be able to mix styles, sometimes hoosingone and sometimes the other.Out of ompose, we an easily make a onnetion pattern, alled omposeN, thatomposes several opies of the same iruit in sequene.omposeN n ir = ompose (repliate n ir)Main> simulateSeq (omposeN 5 in) [0,2,4,6℄[5,7,9,11℄Here in is the iruit that adds one to its integer input.We also saw the par onnetion pattern: par f g takes a pair of inputs, passingthe �rst to f and the seond to g, and ombining the results into a pair. Thein�x version of par f g is written f -|- g.A version of par that \does" f to the �rst half of a list and g to the seond halfalso turns out to be useful. We all this pattern parl. First, we de�ne a helperfuntion, halveList, whih divides a list in two.halveList inps = (left,right)whereleft = take half inpsright = drop half inpshalf = length inps `div` 251

ggg
g

Figure 8.2: map gMain> simulate halveList [high,low,high,low℄([high,low℄,[high,low℄)Then, we de�ne the iruit append, whih takes a pair of lists of length mand n, and joins them together (or onatenates them), to give a list of lengthm+n. This iruit is de�ned in terms of Haskell's built-in in�x list onatenateoperator (++).append (a,b) = a ++ bLastly, we de�ne parl:parl ir1 ir2 =halveList ->- (ir1 -|- ir2) ->- appendMain> simulate (parl reverse id) [1..16℄[8,7,6,5,4,3,2,1,9,10,11,12,13,14,15,16℄Sometimes, we want to perform an operation of eah element of a list of signalsor bus. For this we use the onnetion pattern map, whih you will have seenif you have used a funtional programming language. For example, map invinverts eah of a list of bits.Main> simulate (map inv) [high, low, high, low℄[low,high,low,high℄Buses need not ontain only lists of bits. They an be more strutured, sothat our iruit desriptions an math the logial struture of the iruit. Forexample, the iruit map fullAdd makes perfet sense.Main> simulate (map fullAdd)[(low,(high,low)),(high,(high,high)),(low,(high,high))℄[(high,low),(high,high),(low,high)℄52

ff
f ff f

Figure 8.3: tri fFigure 8.2 shows a map in the ase where the input is a 4-list (of pairs or 2-lists).Strangely enough, the onnetion pattern that plaes zero opies of a iruiton the �rst signal in a bus, one opy on the next, two on the next, and so on,is one that arises often in hardware design. It is a sort of mixture of map andomposeN. We all it tri for triangle. You should understand why when youlook at the diagram in �gure 8.3. We leave the de�nition of tri as exerise 8.3.An example of the use of triangle isMain> simulate (tri in) (repliate 10 0)[0,1,2,3,4,5,6,7,8,9℄The onnetion patterns that we have seen in this setion are all useful in manydi�erent kinds of iruits. Now let us onsider how to desribe tree shapediruits.8.2 Tree shaped iruitsCiruits in the shape of trees, like that shown in �gure 8.4, an be used to sys-tematially apply a funtion that ombines data values together to a olletionof data. A binary tree iruit �rst ombines eah half of the input values, usingtwo smaller trees and then ombines the two remaining results. One exampleof suh a iruit is an adder tree that adds up a list of numhers.The outline of the reursive de�nition of a tree onnetion pattern is:tree ir [inp℄ = ... inp ...tree ir inps = ... tree ir ... tree ir ... ir ... inpsWe all the parameter ir the omponent iruit. The �rst line in this outlinede�nes what should be done when we get down to the base ase of the reursion.The seond line should use two opies of tree ir and ombine their results53

6 6 6 66 6 6 6��� ��I����� ��� ��I����I

6
Figure 8.4: A tree shaped iruitusing ir. Exatly how these de�nitions should look depends partly on whatthe omponent ir looks like, and in partiular on its type.For example, if ir is a binary funtion taking a pair of inputs and returninga single output, then it makes sense to make the following de�nition of a binarytree onnetion pattern, binTree.binTree ir [inp℄ = inpbinTree ir inps =(halveList ->- (binTree ir -|- binTree ir) ->- ir) inpsThis gives the behaviour that we expet: a binary tree of ir omponents getsbuilt.An example use of a tree onnetion pattern is when we want to build a iruitthat adds up a lot of numbers. One way of doing this to make a so-alled addertree. To do this, we need a binary adder that adds two n bit numbers, to givean n + 1 bit number. This means that we must inlude the arry out in theresult. The resulting adder is therefore slightly di�erent from those that we sawearlier. We all it binAdder.binAdder (as, bs) = s ++ [arryOut℄where(s, arryOut) = adder (low, (as, bs))And here is the de�nition of our adder tree addTree:addTree = binTree binAdderTo test it, we wrap the iruit in onverters from integer to binary and bak.wrapAddTree n =map (int2bin n) ->- addTree ->- bin2int54

Main> simulate (wrapAddTree 8) [3,4,5,6,10,9,8,7℄52Beware, this adder tree works only for input lists whose length is a power oftwo. Exerise 8.5 asks you to de�ne an adder tree that works for any size.8.3 Desribing Buttery CiruitsButtery iruits are iruits with a partiular reursive struture. Figures 8.6and 8.7 show two suh iruits and also indiate their reursive strutures byshowing, by means of dotted boxes, where to �nd sub-iruits that themselveshave the same reursive struture. It turns out that these two iruits are infat equivalent: the same network of omponents an be reursively desribedin two ompletely di�erent ways. And indeed it turns out that there are manymore ways to desribe the same network. We will study some of them.Buttery iruits are used for example to build routing networks from swithes,and in building eÆient sorting iruits. Perhaps the best known buttery-like iruit is the standard Cooley-Tukey algorithm [4℄ for omputing the FastFourier Transform (FFT). We will not onsider the FFT here. The twiddle-fators ompliate matters a bit. The iruit is not quite as uniform as thosethat we onsider. However, the interested reader is referred to [3℄, whih showshow to desribe and ompare various FFT iruits in an older version of Lava.For more details about how the veri�ation is atually done, see [2℄.In this setion, we �rst introdue two new onnetion patterns, and then showthat buttery iruits an be made with just these two patterns and serialomposition.The �rst of these patterns we all two. The iruit two ir ontains two opiesof ir. The �rst of these operates on the �rst half of the input list, and theseond on the seond half. Eah opy of ir should have a list as output, andthe two resulting lists are appended. This pattern is easily de�ned in terms ofparl, whih was introdued earlier in this hapter.two ir = parl ir irMain> simulate (two reverse) [1..16℄[8,7,6,5,4,3,2,1,16,15,14,13,12,11,10,9℄Main> simulate (two (two reverse)) [1..16℄[4,3,2,1,8,7,6,5,12,11,10,9,16,15,14,13℄Related to two, we also introdue the pattern ilv, for interleave. Whereas twof applies f to the top and bottom halves of a list, ilv f applies f to the odd andeven elements. We de�ne it in terms of the wiring pattern ri�e, whih performs55

��AAABBBBB���������� ff ������������AAABBBBB �������� ggg
g

��������Figure 8.5: ilv f and two (ilv g)the perfet shu�e on a list. Think of taking a pak of ards, halving it, and theninterleaving the two half paks. If you now unri�e the pak, you reverse theproess, returning the pak to its original ondition. (This is somewhat morediÆult to aomplish with aplomb at the poker table.)Main> simulate riffle [1..16℄[1,9,2,10,3,11,4,12,5,13,6,14,7,15,8,16℄Main> simulate (riffle ->- unriffle) [1..16℄[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16℄Main> simulate unriffle [1..16℄[1,3,5,7,9,11,13,15,2,4,6,8,10,12,14,16℄Note that unri�ing the sequene from 1 to n divides into its odd and its evenelements. We use this fat to de�ne ilv in terms of two.ilv ir = unriffle ->- two ir ->- riffleMain> simulate (ilv reverse) [1..16℄[15,16,13,14,11,12,9,10,7,8,5,6,3,4,1,2℄Main> simulate (ilv (ilv reverse)) [1..16℄[13,14,15,16,9,10,11,12,5,6,7,8,1,2,3,4℄Figure 8.5 shows ilv f and two (ilv g). We leave the de�nition of riffleand unriffle as exerise 8.6.We have seen from our examples that it makes sense to apply two and ilvrepeatedly. We will do this so often in the buttery iruits, that it is useful tode�ne speial funtions.twoN 0 ir = irtwoN n ir = two (twoN (n-1) ir)56

��AAABBBBB������������������ ggg
g

�������� ggg
g

������������AAABBBBB ggg
g

Figure 8.6: bfly 3 gilvN 0 ir = irilvN n ir = ilv (ilvN (n-1) ir)Clearly, there are similarities between these two de�nitions. We might just aswell have de�ned a funtion that takes a onnetion pattern as input.iter 0 omb ir = iriter n omb ir = omb (iter (n-1) omb ir)Now, we an use iter n two f instead of twoN n f and iter n ilv f insteadof ilvN n f.Now we are in a position to de�ne a onnetion pattern for buttery iruits,that is iruits, like those shown in �gures 8.6 and 8.7, that have a very parti-ular reursive struture. Beause the iruits are reursive, the orrespondingonnetion pattern is de�ned using reursion.bfly 0 ir = idbfly n ir = ilv (bfly (n-1) ir) ->- twoN (n-1) irThe smallest buttery is just the identity. A buttery of size n, for n greaterthan zero, onsists of two interleaved butteries of size n � 1, the output ofwhih is fed into a stak of ir omponents, whih is made using twoN. Thisonnetion pattern is shown in �gure 8.6, whih shows bfly 3 g.The larger dashed box shows one instane of bfly 2 g, and there is anotherinstane just below it. These two smaller butteries are interleaved, so thereis atually an unri�e to their left and a ri�e to their right. (Make sure to�nd these wiring patterns, and look again at the de�nition of ilv.) The twointerleaved butteries feed their outputs into four g omponents, one above theother, that is twoN 2 g. And if you look inside the bfly 2 g in the outerdashed box, you will �nd that it again has the same reursive struture.Strangely enough, the same onnetion pattern (that is the same netlist andthe same order of inputs and outputs, though a possibly di�erent layout) anbe desribed using a di�erent pattern of reursion.57

������������AAABBBBB ggg
g

��AAABBBBB������������������ ggg
g

�������� ggg
g

Figure 8.7: bfly1 3 gbfly1 0 ir = idbfly1 n ir = ilvN (n-1) ir ->- two (bfly1 (n-1) ir)This time, we start with a repeatedly interleaved stak of basi omponents,whose outputs are fed into two smaller butteries, whih are ombined usingtwo. Figure 8.7 shows this reursive deomposition.It turns out that ilv (bfly n ir) is the same as bfly n (ilv ir). (Seethe question below about two ilv g if you want to �gure out why.) This meansthat we an de�ne the buttery network using a single reursive all, but witha larger omponent:bfly2 0 ir = idbfly2 n ir = ilvN (n-1) ir ->- bfly2 (n-1) (two ir)bfly3 0 ir = idbfly3 n ir = bfly3 (n-1) (ilv ir) ->- twoN (n-1) irThe surprising thing is that all of these onnetion patterns give equivalentiruits (for the same size and omponent).The original buttery de�ntions (bfly and bfly1) an also be expressed usinga tree-like ombinator. Take a look at the onnetion pattern listTree, whihis a version of binTree whih works for a omponent iruit ir proessinglists.listTree ir [inp℄ = [inp℄listTree ir inps = (two (listTree ir) ->- ir) inpsYou should think about the types involved in this de�nition.Replaing that two by ilv, we get ilvTree, a sort of interleaved tree.ilvTree ir [inp℄ = [inp℄ilvTree ir inps = (ilv (ilvTree ir) ->- ir) inps58

If we have a omponent that takes a pair as input and produes a pair as output,then we an desribe a stak of suh omponents by using pairing, unpairingand map as follows (see exerise 3.6 and the answer on page 85 for pair andunpair).pmap ir = pair ->- map ir ->- unpairMain> simulate (pmap swap) [1..16℄[2,1,4,3,6,5,8,7,10,9,12,11,14,13,16,15℄Then, for inputs of length 2n, ilvTree (pmap ir) is the same as bfly nirl, where irl is the same as ir exept that it relates a 2-list to a 2-list.So what kinds of iruits an we build with these remarkably reursive stru-tures? Well, it turns out that bfly 3 id is a ompliated way to write theidentity funtion (on lists of length 8n.) And bfly n swapl reverses a list oflength 2n.swapl [a,b℄ = [b,a℄Main> simulate (bfly 4 swapl) [1..16℄[16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1℄Main> simulate (ilvTree (pmap swap)) [1..16℄[16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1℄If we hoose our basi omponent to be the perfet shu�e on lists of length 4,the iruit that we all s2, then we �nd that a buttery of suh omponentsperforms the perfet shu�e!s2 [a,b,,d℄ = [a,,b,d℄Main> simulate (bfly 3 s2) [1..16℄[1,9,2,10,3,11,4,12,5,13,6,14,7,15,8,16℄But all of these examples were just wiring funtions. What happens when weadd some funtionality to the omponent?8.4 Bather's Bitoni MergerOne of the best known uses of the buttery network is in the building of mergersand sorters based on a two-input two-output omparator. Let us start with twoabstrat omparators that work on integer inputs. One sorts into asendingorder, and the other into desending.ompUp [x,y℄ = [imin (x,y), imax (x,y)℄ompDown [x,y℄ = [imax (x,y), imin (x,y)℄59

Main> simulate (two ompUp) [1,2,4,3℄[1,2,3,4℄Main> simulate (ilv ompDown) [1,2,4,3℄[4,3,1,2℄It turns out that bfly n ompUp sorts (into asending order) a list whose �rsthalf is asending and seond half is desending or vie-versa. We all suh listsin-de and de-in lists. (The merger sorts many other lists too, the so-alledbitoni lists, but we don't need to worry about them.) This network is known asBather's bitoni merger [1℄. Also, bfly n ompDown sorts in-de and de-inlists into desending order.Main> simulate (bfly 3 ompUp) [1,3,5,7,8,6,4,2℄[1,2,3,4,5,6,7,8℄Main> simulate (bfly 3 ompDown) [1,3,5,7,8,6,4,2℄[8,7,6,5,4,3,2,1℄Knowing that the merger sorts in-de lists allows us to build a reursive sorter.In fat, we an parameterise the iruit on the omparator (the omp parameter),and de�ne both an up and a down sorter at the same time. sorter n ompUpsorts into asending order, while sorter n ompDown sorts into desending or-der.sorter 0 omp [inp℄ = [inp℄sorter n omp inps = outswheresortL = sorter (n-1) ompsortR = sorter (n-1) (omp ->- swapl) -- reversed omparatormerger = bfly n omp -- bitoni mergerouts = (parl sortL sortR ->- merger) inpsMain> simulate (sorter 3 ompUp) [8,7,1,2,3,4,6,5℄[1,2,3,4,5,6,7,8℄Main> simulate (sorter 3 ompDown) [8,7,1,2,3,4,6,5℄[8,7,6,5,4,3,2,1℄Note that our sorter is parameterised on the omparator or two-sorter ompo-nent. So we have really designed the onnetion pattern that must be used toonnet omparators. We have not in any way tied ourselves down to ompara-tors of a partiular type. So, as long as we provide a omparator omponentof the right type, then we get bak a funtion of the same type that ats as asorter.The next step is to re�ne the omparator omponent, by hoosing a onreterepresentation for the integer data. Examples of suh representations are parallel60

least signi�ant bit �rst binary, or serial signed twos omplement. The point isthat whatever re�nement we hoose, we an simply plug in the new omponentinto our sorter funtion. This is an example of how Lava allows us to designonnetion patterns and then reuse them. Exerise 8.9 asks you to build asorter based on the omparator for binary numbers that you designed in anearlier exerise.An interesting property of sorting iruits made from omparators is that theyobey the zero-one priniple. If suh a sorter works orretly on lists of integersontaining only zeros and ones, then it works orretly for arbitrary integers.So, we an test an integer sorter by heking that it works on bits! In exerise2.2, you were asked to de�ne twoBitSort, whih sorts a pair of bits. Here, weneed the iruit twoBitSortl that sorts a two-list of bits:twoBitSortl [a,b℄ = [min, max℄where(min, max) = twoBitSort (a, b)Now, all we need to do is to plug this omponent into our sorter.Main> simulateSeq (sorter 2 twoBitSortl) (domainList 4)[[low,low,low,low℄,[low,low,low,high℄,[low,low,low,high℄,[low,low,high,high℄,[low,low,low,high℄,[low,low,high,high℄,[low,low,high,high℄,[low,high,high,high℄,[low,low,low,high℄,[low,low,high,high℄,[low,low,high,high℄,[low,high,high,high℄,[low,low,high,high℄,[low,high,high,high℄,[low,high,high,high℄,[high,high,high,high℄℄If, after studying these examples, you �nd that you have developed an interest inbuttery networks, you might like to look at a paper that poses a puzzle aboutbuttery networks of swithes [17℄. Do let us know if you solve the puzzle,beause we have not managed to do so!8.5 Exerises8.1 Is parallel omposition (-|-) assoiative?8.2 Are the iruits (a->-b) -|- (->-d) and (a-|-) ->- (b-|-d) thesame or not?8.3 De�ne the onnetion pattern tri.8.4 What does a triangle of delay elements do to its inputs? When might suha iruit be useful? 61

������������AAABBBBB ggg
g

������������AAABBBBB ggg
g

������������AAABBBBB ggg
g

Figure 8.8: the shu�e-exhange network8.5 The binary adder shown in this hapter works only when the binary num-bers to be added are of the same length. De�ne a binary adder that addstwo binary numbers, whatever their lengths. Use this to make a generaladder tree that works for any size.8.6 De�ne the wiring pattern riffle that orresponds to the perfet shu�eof a pak of ards.8.7 De�ne the wiring pattern unriffle that is the inverse of riffle.8.8 Verify that the sorter de�ned in this hapter works on list of bits, forseveral di�erent sizes. How do you state the property? Hint: look atexerise 2.2.8.9 De�ne a omparator that works on binary numbers and use it to make abinary number sorter.8.10 If you have a pak of ards of size 2n and ri�e it repeatedly, how manyri�es does it take before you are bak where you started?8.11 Consider the iruits two (ilv f) and ilv (two f). Are they the sameor not?8.12 How would you show (using penil and paper) that the two onnetionpatterns bfly and bfly1 are the same?8.13 (*) Give an iterative rather than reursive desription of the butterynetwork. Hint: think of the number of two and ilv ombinators in eahstak of basi omponents. You might �nd a list omprehension useful.8.14 It turns out that for two-input two-output omponents the buttery net-work is also the same as the so-alled shu�e-exhange network, whihonsists of a sequene of idential bloks, eah of whih is riffle ->-twoN n ir.Figure out how many suh olumns you need (assuming that ir has twoinputs and two outputs). De�ne the shu�e-exhange network in Lava.62

Chek that it is really the same as the buttery network. In what irum-stanes might a iruit designer prefer the shu�e-exhange network?8.15 We saw that bfly n swapl reverses its input list. Can you make riffleby plugging a two-input two-output wiring omponent into a buttery? Ifnot, why not?
63

Chapter 9Synthesizing Lava CiruitsIn this hapter, we present a number of examples where we generate a Lavairuit from a di�erent kind of spei�ation. We assume that the reader isfamiliar with the Haskell programming language [9℄.9.1 State MahinesA very ommon way of speifying a sequential system is by onstruting a statemahine. A state mahine onsists of four parts: a set of states, a set of inputs,a set of initial states and a transition funtion. The transition funtion maps astate and an input to a set of next states. Usually, we draw state mahines aspitures. An example of a state mahine is pitured in �gure 9.1.In Haskell, here is how we might speify a datatype for representing state ma-hines. We parametrize over the types of the states and the inputs.data StateMahine state inp= StateMahine{ states :: [state℄, inputs :: [inp℄, initial :: [state℄, transition :: state -> inp -> [state℄}Here is how we an desribe the state mahine in �gure 9.1:theStateMahine =StateMahine{ states = ["A", "B", "C"℄, inputs = ['a', 'b'℄, initial = ["A"℄ 64
B

A

C

a

ba
b

a

b
start

Figure 9.1: An example of a state mahine.

a

a

a b

b

b

A

B

C

active

active

active

when

when

whenFigure 9.2: A shemati translation of the state mahine of �gure 9.1., transition = \state inp ->[next | (state', inp', next) <-[("A", 'a', "C"), ("A", 'b', "A"), ...℄, state == state', inp == inp'℄}Note that the somewhat lumsy de�nition of the transition funtion would beeasier in an appliation where the states and inputs atually mean something.Given a spei�ation in terms of a state mahine, we would like to be ableto translate in into a iruit. One reason for this might be beause we wanta prototype implementation of the state mahine. Another reason might bebeause we want to verify that a given iruit implementation is equivalent tothe translated version.One method of translating a state mahine into a iruit is pitured in �gures 9.2and 9.3. The idea is that every state in the state mahine maps to a omponent65

a

AND

DOR

b

AND

emits

activeactivate

Figure 9.3: A more detailed view of the omponent belonging to a state.in the iruit. The omponent has a delay element that keeps trak of if weare in that state. The omponent reeives messages from other omponentthat ativate it, and, depending on the inputs, also sends messages to otheromponents ativating them.An advantage of this translation method is that we an be in several states atthe same time, allowing for non-deterministi exeution of our state mahine.A disadvantage is that, even when our state mahine is deterministi, we stillhave one delay omponent per state, whih is often too muh.The type of iruits we are translating state mahines to is a iruit from inputsignals to a list of indiators for eah state.type StateCiruit= [Signal Bool℄ -> [Signal Bool℄From these two type, we an delare the type of our translation funtion, whihtakes a state mahine into a state iruit.stateMahine :: (Eq inp, Eq state)=> StateMahine state inp -> StateCiruitstateMahine mahine inSignals = outSignalswhere...First, we de�ne the funtion inSignal whih maps an input from the statemahine to the orresponding signal wire.inSignal input =head [sig| (input',sig) <- inputs mahine `zip` inSignals, input == input'℄Then, we reate a list of the omponents, whih we use as a lookup table in therest of the translation.omponents = 66

[omponent state| state <- states mahine℄A omponent for a ertain state onsists of a pair (ative, emits), whereative is the indiator signal for the state, and emits is a lookup table, repre-senting what signal to send to what state.omponent state = (ative, emits)whereinit = state `elem` initial mahineative = delay (bool init) (ativating state)emits =[(state', and2 (ative, inSignal input))| input <- inputs mahine, state' <- transition mahine state input℄The delaration of ative uses one delay omponent, whose initial value de-pends on this state being an initial state or not, and whose next value dependson the signals the other omponents are sending to it (omputed using thefuntion ativating).The list emits is onstruted as follows. For every input signal, we use thetransition funtion to hek what next states we have. We then send a signalto the omponent of state if and only if we are ative, and we have that inputas an inoming signal.Here is how we de�ne the funtion ativating.ativating state =orl [ativate| (_, emits) <- omponents, (state', ativate) <- emits, state == state'℄For all omponents, we look at what messages it wants to send, and �lter outthe signals going to the right state. Then, we take the or of all these signals.Finally, we an reate the list of state indiators, by taking the �rst output ofthe omponents.outSignals =[ative| (ative, _) <- omponents℄ 67

Here is how we an make the iruit for the state mahine we spei�ed earlier.theCiruit (a, b) = (inA, inB, inC)where[inA, inB, inC℄ =stateMahine theStateMahine [a, b℄9.2 Behavioral DesriptionsAnother way of speifying the behavior of a iruit is by a behavioral desriptionlanguage. Examples of these kind of languages are behavioral VHDL, Verilog,Esterel, et. The idea is to write a program in suh a language, and thentransform the program to a iruit with the same behavior.We show how to ompile programs in a very simple desription language to airuit. We all the language Pae. Here is a Haskell datatype respresentingPae programs:data Pae out= Skip| Emit out| Wait| IfThenElse (Signal Bool) (Pae out, Pae out)| While (Signal Bool) (Pae out)| Pae out :>> Pae out| Pae out :|| Pae outA Pae program an send out messages of type out. Running a Pae programtakes a number of lok yles. Here is the informal semantis of Pae onstruts:� Skip: This program does not send any messages, and takes no time toexeute.� Emit msg: This program sends out the message msg, and takes no timeto exeute.� Wait: This program does not send any messages, and takes 1 lok yleto exeute.� IfThenElse ond (p1, p2): If the signal ond is high, it exeutes p1,and sends the messages p1 sends, and takes as long time as p1 takes. Ifond is low, the same, but for p2.� While ond p: If ond is high, then it exeutes p, and sends the messagesp sends, waits for the amount of time p takes to �nish, and then tries toexeute the program again. If ond is low, it �nishes right away withoutsending any messages. For this program to be valid, p must at least takeone lok yle to exeute if ond is high.68
finish

start

em
it

s

Figure 9.4: The shape of a iruit representing a Pae program.� p1 :>> p2: (sequential omposition) The program exeutes p1, waits forthe time it takes to �nish, and then exeutes p2.� p1 :|| p2: (parallel omposition) The program exeutes p1 and p2 inparallel, waiting for both to �nish until it �nishes.Here is an example of a Pae program, where we desribe a toggle:togglePae hange =While high(While (inv hange)(Wait):>> Emit ():>> Wait:>> While (inv hange)(Emit ():>> Wait):>> Wait)We an read the program as follows. Forever: wait until hange is not low,then emit a message, and wait. Then, wait until hange is not low, and emita message all the time, then wait. The type of messages this Pae program isusing, is (), beause there is only one message.We an give a more formal semantis to this language by giving a translationfrom a program to a iruit. And then we get an implementation for free!We are going to de�ne a funtion iruit, whih takes a Pae program to aPae iruit.type PaeCiruit out= Signal Bool -> (PaeEmits out, Signal Bool)69

type PaeEmits out= [(out, Signal Bool)℄iruit :: Pae out -> PaeCiruit outA Pae iruit (see �gure 9.4) takes in one input, alled start, whih is used toativate the program, and has two outputs, a list emits, and a signal finished,whih the iruit uses to indiate that it is done. The list emits is a lookuptable, whih relates output messages and signals.We start with Skip. Here, we just onnet start to finish, so that we �nishimmediately.iruit Skip start = ([℄, finish)wherefinish = startIn the ase of Emit, we onnet the start to the right output, and we �nishimmediately.iruit (Emit out) start = (emits, finish)whereemits = [(out, start)℄finish = startWhen we exeute a Wait, we onnet start and finish, but with a delay, sothat it takes one lok yle to �nish.iruit Wait start = ([℄, finish)wherefinish = delay low startTo transform an IfThenElse, we �rst transform the two subprograms prog1and prog2. We start prog1 if start is high and if the ondition is true, and westart prog2 if start is high and the ondition is false. We ollet all emittedmessages, and �nish if either one of them �nishes.iruit (IfThenElse ond (prog1, prog2)) start = (emits, finish)where(emits1, finish1) = iruit prog1 start1(emits2, finish2) = iruit prog2 start2start1 = and2 (start, ond)start2 = and2 (start, inv ond)emits = emits1 ++ emits2finish = or2 (finish1, finish2)70

To transform a While, we �rst transform the subprogram prog. Then, weintrodue an auxiliary signal alled ative, whih is high exatly when weshould onsider starting prog, that is when the whole while loop is started orwhen prog has �nished. We atually start prog when we are ative, and theondition is true. We �nish the while loop when we are ative but the onditionis false.iruit (While ond prog) start = (emits, finish)where(emits, finish') = iruit prog start'ative = or2 (start, finish')start' = and2 (ative, ond)finish = and2 (ative, inv ond)Transforming sequential omposition just onnets the finish of the �rst withthe start of the seond, and ollets the emitted messages.iruit (prog1 :>> prog2) start = (emits, finish)where(emits1, finish1) = iruit prog1 start(emits2, finish) = iruit prog2 finish1emits = emits1 ++ emits2And lastly, transforming parallel omposition starts both iruits when started,ollets the emitted messages, and synhronizes the �nish signals for �nishing.We use the synhronize iruit, de�ned in exerise 5.9 (the answer is on page89).iruit (prog1 :|| prog2) start = (emits, finish)where(emits1, finish1) = iruit prog1 start(emits2, finish2) = iruit prog2 startemits = emits1 ++ emits2finish = synhronize (finish1, finish2)Now we have made this translator, we an use it to turn a Pae program plusa list of output messages we are interested in into a iruit, outputting thesemessages.ompile :: Eq out => Pae out -> [out℄ -> [Signal Bool℄ompile prog outputs = signalswherestart = delay high low(emits, _) = iruit prog start71

signals =[orl [sig| (out',sig) <- emits, out == out'℄| out <- outputs℄We �rst reate a top-level start signal, whih is to be high on the �rst loktik, and then low forever, then �lter out the signals we are interested in fromthe resulting iruit. Note that we have to take the or for these signals, sinethere might be several parts of the Pae program emitting the same signal.Here is how we an reate a toggle iruit from the given Pae program:toggle' hange = outwhere[out℄ = ompile (togglePae hange) [()℄We ompile the Pae iruit, and say that we are only interested the ()messages.9.3 Exerises9.1 In the iruit produed by the state mahine translation, all inputs willonly have e�et on the outputs in the next lok yle. Sometimes, how-ever, it might be desirable to hange state depending on the urrent inputright away. In this way, you are not interested in the initial state.Show how to hange the de�nition of stateMahine to inorporate thishange.9.2 Verify that the toggle iruit derived from the Pae program is equivalentto a diret de�nition of a toggle iruit.9.3 Desribe the synhronize iruit from exerise 5.9 in terms of a statemahine, and generate a iruit for it. Verify that the implementation inyour answer to 5.9 is orret!9.4 Desribe the synhronize iruit from exerise 5.9 in terms of a Paeprogram, and generate a iruit for it. Verify that the implementation inyour answer to 5.9 is orret!
72

Chapter 10TypesIn this hapter, we will desribe what role types play in the Lava system.10.1 Signals and CiruitsThe iruits in Lava are funtions from input signals to output signals. Thebasi signals in Lava are low, high, and integer signals. The type of the �rsttwo signals is Signal Bool, and that of integer signals is Signal Int. Thenotation for this is:low :: Signal Boolhigh :: Signal Bool3 :: Signal Int42 :: Signal Int-17 :: Signal IntThe types of iruits are written using the symbol ->. Examples are:and2 :: (Signal Bool, Signal Bool) -> Signal Booltimes :: (Signal Int, Signal Int) -> Signal InthalfAdd :: (Signal Bool, Signal Bool) -> (Signal Bool, Signal Bool)adder2 :: [(Signal Bool, Signal Bool)℄ -> [Signal Bool℄As we an see, the types for pairs are written using (, , and), and the typesfor lists are written using [and ℄.Types do not have to be expliitly written in Lava; they are automatiallyderived and heked. So, if we make a type error, for example by giving a list ofsignals rather than a pair of signals to an and gate as input, we get:Main> and2 [high, low℄ 73

ERROR: Type error in appliation*** Expression : and2 [low,high℄*** Term : [low,high℄*** Type : [Signal Bool℄*** Does not math : (Signal Bool,Signal Bool)10.2 Connetion PatternsTo be able to deal with types in the presene of onnetion patterns, we needtwo features: polymorphism and higher-order funtions.� Polymorphism means that some iruits or onnetion patterns do notare about what kind of type we are using, as long as it mathes withanother (unknown) type.� Higher-order funtions allow us to have funtions as parameters to otherfuntions.Here is an example: the type of the row onnetion pattern.row :: ((,a) -> (b,)) -> (,[a℄) -> ([b℄,)From this we an see that row expets a iruit of the following type as aparameter:(,a) -> (b,)The onnetion pattern does not are however what exatly a, b or is, as longas the two uses of are the same. This has to be the ase sine is the type ofthe arry, and the arries are mathed up in the row. But apart from that, a, band an be any type, a signal, a pair of signals, a list of pairs of signals, et.10.3 OverloadingWe have seen a number of iruits and funtions that behave di�erently when weuse them in di�erent ontexts. This is alled overloading. We use overloadingbeause it is onvenient, we do not have to have di�erent versions of opera-tions around, and we an write general operations and iruits using overloadedoperations.An example is the onstant zero, whih is a generalized version of low. Itbehaves as follows. 74

Main> zeroERROR: Unresolved overloadingMain> zero :: Signal BoollowMain> zero :: (Signal Bool, Signal Bool)(low, low)Main> zero :: Signal Int0Main> zero :: (Signal Bool, Signal Int)(low, 0)In the �rst example, we see that Lava omplains beause it has no idea in whatkind of ontext you want to use zero. In a Lava program, this an usually be�gured out, but we an be expliit about the shape of the result by using the:: notation.A similar onstant we have seen is domain. It reates a list of all the possiblevalues of a ertain type. Here is how it behaves.Main> domain :: [Signal Bool℄[low, high℄Main> domain :: [(Signal Bool,Signal Bool)℄[(low, low), (low, high), (high, low), (high, high)℄And so forth. Other examples of overloaded operators are var and random.All these overloaded operations have a speial version that works for lists. Thereason for this is that, in the ase of lists, we want to know how long they shouldbe. How else an we reate a list with only low bits in it, or sum up all thepossible lists in a ertain domain?Here are some examples of how the speial list versions behave in di�erentontexts.Main> zeroList 3 :: [Signal Bool℄[low, low, low℄Main> zeroList 2 :: [(Signal Bool,Signal Bool)℄[(low, low), (low, low)℄Main> domainList 2 :: [[Signal Bool℄℄[[low, low℄, [low, high℄, [high, low℄, [high, high℄℄75

Main> varList 3 "apa" :: [Signal Bool℄[apa_1, apa_2, apa_3℄Examples of a iruits that are overloaded are delay, mux, and equal.
76

Appendix AQuik Referene GuideIn this appendix we present an overview of options, operations, prede�ned ir-uits and onnetion patterns in Lava.A.1 The lava ommandHere are the ommand-line options for the lava ommand.-hsize set memory size to size for interpreter- module ompile-gh module ompile using GHC (default)-hb module ompile using HBC-u update internal modules after hange-x exeutable use <exeutable> instead of ompilerA.2 Logial GatesHere are the logial gates de�ned in the Lava system. Some binary gates have aorresponding binary operator (for example, and2 an also be written as <&>).-- Nullary gates :: Signal Boollow -- onstant lowhigh -- onstant high-- Unary gates :: Signal Bool -> Signal Boolid -- identityinv -- inverse, negation77

-- Binary gates :: (Signal Bool, Signal Bool) -> Signal Booland2, <&> -- logial andnand2 -- inverse of logial andor2, <|> -- logial ornor2 -- inverse of logial orxor2, <#> -- logial exlusive orxnor2, <=> -- inverse of exlusive orequiv, <=> -- logial equivaleneimpl, ==> -- logial impliation-- n-ary gates :: [Signal Bool℄ -> Signal Boolandl -- logial andnandl -- inverse of logial andorl -- logial ornorl -- inverse of logial orxorl -- logial exlusive orA.3 Arithmetial GatesHere are the arithmetial gates de�ned in the Lava system. Some binary gateshave a orresponding binary operator (for example, plus an also be written as+).-- Nullary gates :: Signal Intn -- onstant integer signal-- Unary gates :: Signal Int -> Signal Intid -- identityneg, - -- negation-- Unary onversionint2bit -- integer signal to boolean signalbit2int -- boolean signal to integer signal-- Binary gates :: (Signal Int, Signal Int) -> Signal Intplus, + -- additiontimes, * -- multipliationsub, - -- subtrationidiv, / -- integer divisionimod, %% -- moduloimin -- minimumimax -- maximum-- Binary gates :: (Signal Int, Signal Int) -> Signal Bool78

gte, >>== -- greater than or equal-- n-ary gates :: [Signal Int℄ -> Signal Intplusl -- additiontimesl -- multipliationA.4 Generi GatesHere are some generi gates de�ned in the Lava system.equal, <==> -- equalitydelay, |-> -- delay omponentmux -- multplexer, if-else-thenFurthermore, Lava de�nes some operations whih an be used on some of thesetypes:domain :: [a℄domainList :: Int -> [[a℄℄zero :: azeroList :: Int -> [a℄var :: String -> avarList :: Int -> String -> [a℄A.5 Module: PatternsYou get aess to the following wiring iruits and onnetion patterns if youinludeimport Patternsat the top of your Lava program.swap :: (a, b) -> (b, a)swapl :: [a℄ -> [a℄opy :: a -> (a, a)riffle :: [a℄ -> [a℄unriffle :: [a℄ -> [a℄zipp :: ([a℄,[b℄) -> [(a,b)℄unzipp :: [(a,b)℄ -> ([a℄,[b℄)79

pair :: [a℄ -> [(a,a)℄unpair :: [(a,a)℄ -> [a℄halveList :: [a℄ -> ([a℄,[a℄)append :: ([a℄,[a℄) -> [a℄serial :: (a -> b) -> (b ->) -> (a ->)(->-) :: (a -> b) -> (b ->) -> (a ->)ompose :: [a -> a℄ -> (a -> a)omposeN :: Int -> (a -> a) -> (a -> a)par :: (a -> b) -> (-> d) -> ((a,) -> (b,d))(-|-) :: (a -> b) -> (-> d) -> ((a,) -> (b,d))parl :: ([a℄ -> [b℄) -> ([a℄ -> [b℄) -> ([a℄ -> [b℄)two :: ([a℄ -> [b℄) -> ([a℄ -> [b℄)ilv :: ([a℄ -> [b℄) -> ([a℄ -> [b℄)twoN :: Int -> ([a℄ -> [b℄) -> ([a℄ -> [b℄)ilvN :: Int -> ([a℄ -> [b℄) -> ([a℄ -> [b℄)iter :: Int -> (b -> b) -> (b -> b)bfly :: Int -> ([b℄ -> [b℄) -> [b℄ -> [b℄tri :: (a -> a) -> ([a℄ -> [a℄)pmap :: ((a,a) -> (b,b)) -> [a℄ -> [b℄mirror :: ((a,b) -> (,d)) -> ((b,a) -> (d,))row :: ((,a) -> (b,)) -> ((,[a℄) -> ([b℄,))olumn :: ((a,) -> (,b)) -> (([a℄,) -> (,[b℄))grid :: ((a,b) -> (b,a)) -> (([a℄,[b℄) -> ([b℄,[a℄))A.6 Module: ArithmetiYou get aess to the following arithmetial iruits if you inludeimport Arithmetiat the top of your Lava program.halfAdd :: (Signal Bool,Signal Bool)-> (Signal Bool,Signal Bool)fullAdd :: (Signal Bool,(Signal Bool,Signal Bool))-> (Signal Bool,Signal Bool)80

bitAdder :: (Signal Bool,[Signal Bool℄)-> ([Signal Bool℄,Signal Bool)adder :: (Signal Bool,([Signal Bool℄,[Signal Bool℄))-> ([Signal Bool℄,Signal Bool)binAdder :: ([Signal Bool℄,[Signal Bool℄)-> [Signal Bool℄bitMulti :: (Signal Bool,[Signal Bool℄)-> [Signal Bool℄multi :: ([Signal Bool℄,[Signal Bool℄)-> [Signal Bool℄numBreak :: Signal Int -> (Signal Bool,Signal Int)int2bin :: Int -> Signal Int -> [Signal Bool℄bin2int :: [Signal Bool℄ -> Signal IntA.7 Module: SequentialCiruitsYou get aess to the following often used sequential iruits if you inludeimport SequentialCiruitsat the top of your Lava program.edge :: Signal Bool -> Signal Booltoggle :: Signal Bool -> Signal BooldelayClk :: a -> (Signal Bool,a) -> adelayN :: Int -> a -> a -> aalways :: Signal Bool -> Signal Boolpuls :: Int -> () -> Signal BooloutputList :: [a℄ -> () -> arowSeq :: ((a,b) -> (,a)) -> (b ->)rowSeqReset :: ((a,b) -> (,a)) -> ((Signal Bool,b) ->)rowSeqPeriod :: Int -> ((a,b) -> (,a)) -> (b ->)Note that these funtions are not ompletely polymorphi in a, but there areertain restritions.A.8 InterpretationsHere are the various interpretations for iruits that Lava provides.-- simulations 81

simulate iruit inputsimulateSeq iruit inputssimulateCon iruit inputstest iruit-- VHDLwriteVhdl name iruitwriteVhdlInput name iruit inputwriteVhdlInputOutput name iruit input output-- verifiationverify propertyverifyWith options propertyfixit propertyPossible veri�ation opions are:Name nameShowTimeSat levelNoBaktrakingDepth depthInreasingRestritStatesA.9 ErrorsHere, we list a number of error messages that might our when running theLava system.� ERROR: Garbage olletion fails to relaimsuffiient spaeThis means that Lava does not have enough memory to exeute the ir-uit. Try to start up Lava with more memory, do this by saying lava-h9999999. You an inrease the number if you need more.If this does not work, you might have an error in your iruit de�nition.Do you have a irular de�nition somewhere?� Program error: evaluating a delay omponentYou get this error when you try to use ombinational simulation simulateto simulate a sequential iruit. Use simulateSeq instead.� Program error: evaluating a symboli valueYou get this error when you have used the forAll or var property on-strutors, and then later tried to simulate the iruit.82

� Program error: ombinational loopYou get this error when you have de�ned a iruit whih has a loop init, on whih there is no delay. In general, these iruits are hard to givemeaning to, and are therefore not allowed in normal Lava simulation. Youhave probably made a mistake somewhere.You might try the onstrutive simulation simulateCon when this hap-pens.� Program error: ombining inompatible struturesYou get this error when you use a delay omponent or mux omponent onstrutures of a di�erent shape, for example two lists of di�erent lengths.This is not allowed, sine the length of a list needs to be known when youevaluate the iruit.� Program error: there is no equality defined for this typeSigh ... you get this error when you use the Haskell equality == on a signaltype. You probably want to use signal equality <==> instead.� Program error: short iruitThis happens when you have a bad ombinational loop in your iruit, andyou onstrutively simulate it using simulateCon. A real iruit wouldhave osillated. An example is the following iruit:shortCiruit () = outwhereout = inv out� Program error: undriven outputThis also happens when you have a bad ombinational loop in your iruit.The output wire is not driven by any omponent. An example is thefollowing iruit:undrivenOutput () = outwhereout = and2 (out, out)� Program error: you an not enumerate symboli valuesYou get this error when you use .. on wires from a iruit instead of ononstants. Use .. only on onstants!� Program error: INTERNAL ERROR ...Oops! This probably means that there is a bug in the Lava system. Pleasereport this bug by sending your program to us, so that we an �x it.If you have some typial error that you would have liked to appear here, pleasee-mail us so that we an make this list more omplete.83

Appendix BAnswers2.1 Here is how we de�ne swap and opy:swap (a, b) = (b, a)opy a = (a, a)2.2 We ould de�ne the sorter twoBitSort in the following way:twoBitSort (a, b) = (min, max)wheremin = and2 (a, b)max = or2 (a, b)2.3 Here is the onstant alwaysHigh iruit:alwaysHigh () = high2.4 One ould de�ne a multiplexer as follows:multiplexer (,(x,y)) = outwhereout = or2 (left, right)left = and2 (inv , x)right = and2 (, y)There is a built-in multiplexer in Lava, alled mux. Using that one, weould de�ne:multiplexer' (,(x,y)) = mux (,(x, y))2.5 A threeBitAdder an be de�ned as follows:84

threeBitAdder (arryIn, ((a1,b1,1), (a2,b2,2))) =((a3, b3, 3), arryOut)where(a3, arryA) = fullAdd (arryIn, (a1, a2))(b3, arryB) = fullAdd (arryA, (b1, b2))(3, arryOut) = fullAdd (arryB, (1, 2))3.2 We an make use of the adder we already have:adder2 (as, bs) = swhere(s, arryOut) = adder (low, (as, bs))3.3 The adder iruit takes as an input a pair of lists of bits, whereas theadder' iruit gets a list of pairs of bits.3.4 Here is a binary number to integer onverter bin2int:bin2int [℄ = 0bin2int (b:bs) = numwherenum' = bin2int bsnum = bit2int b + 2 * num'3.5 Here is how we an de�ne zipp:zipp ([℄, [℄) = [℄zipp (a:as, b:bs) = (a,b) : restwhererest = zipp (as, bs)And here is how we de�ne unzipp:unzipp [℄ = ([℄, [℄)unzipp ((a,b):abs) = (a:as, b:bs)where(as, bs) = unzipp abs3.6 Here is how we an de�ne pair:pair (x:y:xs) = (x,y) : pair xspair xs = [℄We hoose to ignore the last input if the number of elements is odd. Andhere is how we de�ne unpair: 85

unpair ((x,y):xys) = x : y : unpair xysunpair [℄ = [℄3.7 This is how we an de�ne parallel omposition of iruits par:par ir1 ir2 (a, b) = (, d)where = ir1 ad = ir2 b3.9 Here is how we an de�ne olumn:olumn ir ([℄, arryIn) = (arryIn, [℄)olumn ir (a:as, arryIn) = (arryOut, b:bs)where(arry, b) = ir (a, arryIn)(arryOut, bs) = olumn ir (as, arry)Here is how we an de�ne olumn in terms of row. First, we de�ne aonnetion pattern alled mirror, whih swaps the left and right parts ofinput and output:mirror ir (a, b) = (, d)where(d,) = ir (b, a)And then, we use row and mirror the input to row:olumn ir (as, arryIn) = (arryOut, bs)where(bs, arryOut) = row (mirror ir) (arryIn, as)We ould even say:olumn ir = mirror (row (mirror ir))3.10 We ould de�ne grid as:grid ir (as, bs) = (s, ds)where(s, ds) = row (olumn ir) (as, bs)Or, even shorter:grid ir = row (olumn ir)86

3.13 Here is how we de�ne a swapper:swapper (swap, (a, b)) = (x, y)where(x, y) = mux (swap, ((a, b), (b, a)))4.1 The �rst property an be de�ned as:prop_SorterHasSortedOutput (a, b) = okwhere(x, y) = twoBitSort (a, b)ok = or2 (inv x, y) -- x <= yThe seond property an be stated as:prop_SorterHasSameBits (a, b) = okwhere(x, y) = twoBitSort (a, b)same = (a, b) <==> (x, y)swapped = (a, b) <==> (y, x)ok = or2 (same, swapped)4.4 To hek that the subtrator really subtrats, we an de�ne:prop_SubtratorSubtrats (as, bs) = okwheres = subtrator (as, bs)as' = adder2 (s, bs)ok = as <==> as'4.5 Here is the general property of assoiativity:prop_Assoiative ir (as, bs, s) = okwhereout1 = ir (as, ir (bs, s))out2 = ir (ir (as, bs), s)ok = out1 <==> out24.8 One an de�ne a general verify funtion, as follows:verifyFor prop ns = sequene [prop n | n <- ns ℄and verify a property by saying for example:Main> verifyFor prop_AdderCommutative_ForSize [1..32℄... 87

5.1 We an de�ne evenSoFar as follows:evenSoFar inp = outwhereout = delay high eveneven = xor2 (inp, even)This is almost the same as the edge iruit.5.2 We an de�ne flipFlop as follows:flipFlop (set, reset) = statewherestate' = delay low statestate = and2 (up, inv reset)up = or2 (state', set)5.3 We an de�ne delayClk as follows:delayClk init (lk, inp) = outwhereout = delay init valval = mux (lk, (out, inp))5.4 The iruit always an be de�ned as follows:always inp = okwheresofar = delay high okok = and2 (inp, sofar)5.5 The iruits are:pulsSix6 () = outwhereout = puls 6 () -- 000001...pulsSix5 () = outwherea = puls 2 () -- 010101...b = puls 3 () -- 001001...out = and2 (a, b)pulsSix3 () = outwherea = delay low (inv a) -- 010101...b = delay low (xor2 (b,)) -- 001001... = delay low (nand2 (b,)) -- 011011...out = and2 (a, b) 88

5.6 Using a ounter, we an de�ne puls2 as follows:puls2 k () = outwherenumber = ounter k ()out = norl number5.7 We an de�ne the iruit ounterUpDown as follows:ounterUpDown n (up, down) = numberwherenumber' = delay (zeroList n) numbernumber = adder2 (diff, number')diff = one : repliate (n-1) restone = or2 (up, down) -- should I hange?rest = and2 (inv up, down) -- +1 or -1?5.9 Here is how we ould de�ne synhronize:synhronize (go1, go2) = gowhereboth = and2 (go1, go2)one = xor2 (go1, go2)wait = delay low (xor2 (one, wait))go = or2 (both, and2 (wait, one))5.10 First, we de�ne the following helper iruit outputDone. It does the sameas output, but takes an extra parameter done, the signal to output at thetime when the list is empty.outputDone [℄ done () = doneoutputDone (sig:sigs) done () = outwhereout = delay sig restrest = outputDone sigs done ()Now, we an de�ne the iruit outputList as follows:outputList sigs () = outwhereout = outputDone sigs out ()6.2 Here is a property that heks that:89

prop_Edge_vs_Even inp = okwhereout1 = edge inpout2 = evenSoFar inpok = inv (out1 <==> out2)6.3 Here is a property that heks if they are equivalent:prop_PulsSixEquivalent () = okwhereout3 = pulsSix3 ()out5 = pulsSix5 ()out6 = pulsSix6 ()ok35 = out3 <==> out5ok56 = out5 <==> out6ok = and2 (ok35, ok56)These an be veri�ed with indution depth 6 or 7.6.4 Here is a property that heks if they are equivalent:prop_PulsesEquivalent k () = okwhereout1 = puls (2^k) ()out2 = puls2 k ()ok = out1 <==> out26.5 Here is a property that heks that:prop_CountingUp n up = okwhereout1 = ounterUp n upout2 = ounterUpDown n (up, low)ok = out1 <==> out26.6 Here is how we ould de�ne the property.prop_ToggleTwieStaysSame inp = okwhereout = toggle inpout' = delay low outout'' = delay low out'sameOut = out <==> out''inp' = delay low inpsameInp = inp <==> inp'ok = sameInp ==> sameOut90

First we ompute the output from the input. Then, we de�ne the outputsand inputs at several di�erent points in time. And then we ompute theimpliation.7.1 Here are the properties whih state this:prop_ToggleHighLow_SlowedDown () = okwhereload = puls 2 ()out1 = highLow ()out1' = parallelToSerial (load, out1)out2 = toggle highok = out1' <==> out2prop_ToggleHighLow_SpedUp () = okwhereout1 = highLow ()out2 = timeTransform toggle [high,high℄ok = out1 <==> out2Note that we do not need to use a serial to parallel onverter in the �rstproperty sine highLow does not have any interesting input.7.2 Slowing down a iruit means that there are only a few important lokyles, and we ignore all unimportant lok yles. If we do not look atsome outputs, we annot say anything about how the iruit behaves inthese outputs. The slowed down property might be true, but the iruitsare not equivalent.7.3 Yes, here there is no problem.8.1 No, parallel omposition is not assoiative. (a,(b,)) and ((a,b),) arenot the same.8.2 Yes, they are the same.8.3 One possibility to de�ne tri istri ir [℄ = [℄tri ir (inp:inps) = inp : outswhereouts = (map ir ->- tri ir) inpsThere are many other ways of de�ning it. For example, you should tryde�ning tri using omposeN.8.6 We give a de�nition that losely reets our informal explanation of howa ard sharp shu�es the pak. He halves it, zips the two halves together(to get a lot of pairs of ards) whih he then pats arefully on the sides soas to unstik the pairs. 91

riffle = halveList ->- zipp ->- unpairWe use the iruit zipp, whih we de�ned in exerise 3.5.8.7 This de�nition is exatly the inverse of the de�nition of riffle:unriffle = pair ->- unzipp ->- append8.8 We need to verify two properties:{ The output of the sorter is sorted. We an verify this by hekingthat the �rst output is smaller than the seond, the seond output issmaller than the third, et.{ The bits in the output are the same as the bits in the input, butmaybe in a di�erent order. We an verify this by ounting the numberof high inputs and high outputs, and heking that they are the same.The details are left to the reader.8.10 On inputs of length 2n, n ri�es in a row gets you bak to where youstarted.Main> simulate (omposeN 4 riffle) (map int [1..(2^4)℄)[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16℄8.13 Here is how we de�ne the buttery iruit iteratively:ibfly 0 ir = idibfly n ir =ompose [ilvN (n-1-j) (twoN j ir) | j <- [0..(n-1)℄℄9.1 We ould make the following hange to the loal de�nition of omponent:omponent state = (ativated, emits)whereinit = state `elem` initial mahineativated = ativating stateative = delay (bool init) ativated...The rest of the de�nition stays the same.
92

Bibliography[1℄ K.E. Bather. Sorting networks and their appliations. In AFIPS SpringJoint Computing Conferene, volume 32, 1969.[2℄ Per Bjesse. Automati veri�ation of ombinational and pipelined FFTiruits. In Computer Aided Veri�ation. Springer Verlag, July 1999.[3℄ Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava -Hardware design in Haskell. In International Conferene on FuntionalProgramming. ACM SigPlan, Sept. 1998.[4℄ J.W. Cooley and J.W. Tukey. An algorithm for the mahine omputation ofomplex fourier series. In Mathematis of Computation, 19, pages 297{301,1965.[5℄ Alexandre Frey, G�erard Berry, Patrie Bertin, Fran�ois Bourdonle, andJean Vuillemin. Jazz. Available from http://www.ma.ensmp.fr/jazz,1998.[6℄ Niolas Halbwahs, Paul Caspi, Pasal Raymond, and Daniel Pilaud. Thesynhronous dataow programming language LUSTRE. Pro. IEEE, 79(9),1991.[7℄ Steven Johnson. Synthesis of Digital Designs from Reursion Equations.The ACM Distinguished Dissertation Series, The MIT Press, 1984.[8℄ M. P. Jones. The Hugs distribution. Currently available fromhttp://haskell.org/hugs, 1999.[9℄ Simon Peyton Jones, John Hughes, (editors), Lennart Augustsson, DaveBarton, Brian Boutel, Warren Burton, Joseph Fasel, Kevin Hammond,Ralf Hinze, Paul Hudak, Thomas Johnsson, Mark Jones, John Launh-bury, Erik Meijer, John Peterson, Alastair Reid, Colin Runiman, andPhilip Wadler. Report on the Programming Language Haskell 98, a Non-strit, Purely Funtional Language. Available from http://haskell.org,February 1999. 93

[10℄ Wayne Luk, Geraint Jones, and Mary Sheeran. Computer-based tools forregular array design. In J MCanny, J MWhirter, and E Swartzlander,editors, Systoli Array Proessors, pages 589 { 598. Prentie-Hall Interna-tional, 1989.[11℄ John Matthews and John Launhbury. Elementary miroarhiteture alge-bra. In Int. Conf. on Computer Aided Veri�ation. Springer Verlag, LNCS,1999.[12℄ John O'Donnell. From transistors to omputer arhiteture: Teahing fun-tional iruit spei�ation in Hydra. In Funtional Programming Languagesin Eduation. Springer Verlag, LNCS, 1996.[13℄ Mary Sheeran. �FP, an algebrai VLSI design language. PhD thesis, Pro-gramming Researh Group, Oxford University, 1983.[14℄ Mary Sheeran. �FP, a language for VLSI design. In ACM Symp. on LISPand Funtional Programming, 1984.[15℄ Mary Sheeran. Designing regular array arhitetures using higher orderfuntions. In Int. Conf. on Funtional Programming Languages and Com-puter Arhiteture, LNCS 201. Springer Verlag, 1985.[16℄ Mary Sheeran. Desribing and reasoning about iruits using relations. InWorkshop on Foundations of VLSI Design. Kluwer, 1990.[17℄ Mary Sheeran. Puzzling permutations. In Pro. Glasgow Funtional Pro-gramming Workshop, 1996.
94

Index++, 47*, 73+, 73->-, 45, 74-|-, 46, 74-, 73/, 73<==>, 19<=>, 72<#>, 72<&>, 72<|>, 72==>, 30, 72>>==, 73%%, 73adderbinary, 12bit, 12full, 8half, 6sequential, 26, 27tree, 49adder, 12, 76adder2, 80adderSeq, 26adderSeqPeriod, 27adderSeqReset, 27addTree, 49always, 76, 83alwaysHigh, 79and2, 73andl, 73append, 47, 75base ase, indution, 31bfly, 75

bin2int, 76, 80binAdder, 49, 76binTree, 49bit2int, 73bitAdder, 12, 76bitMulti, 76bitoni, 55bitSubber, 16buttery, 45olumn, 75, 81ommand-line options, 72ommutativity, 19ompilation, 16ompose, 45, 75omposeN, 46, 75ompositionparallel, 46, 81serial, 13, 45onnetion pattern, 13properties, 20sequential, 26opy, 74, 79ounter, 25ounterUpDown, 84delay, 74delayClk, 76, 83delayN, 24, 76Depth, 34edge, 23, 76equal, 19, 74equality, 19equiv, 73error messages, 77evenSoFar, 8395

fixit, 77flipFlop, 83fullAdd, 8, 75garbage olletion, 77grid, 75, 81gte, 74halfAdd, 6, 75halveList, 46, 75high, 72Hugs, 7i2b, 15id, 46, 72, 73idiv, 73ilv, 75ilvN, 75ilvTree, 53imax, 73imin, 73imod, 73impl, 30, 73impliation, 30in, 46Inreasing, 34indution, 30, 31restrited states, 35with depth, 32int2bin, 15, 76int2bit, 73inv, 72iter, 75Lava interpreter, 7lava.vhd, 9length, 43list, 12listTree, 53low, 72map, 47mirror, 75, 81multi, 76multiplexer, 10multiplexer, 79mux, 27, 74, 79
mux, see multiplexernand2, 73nandl, 73neg, 73nor2, 73norl, 73numBreak, 15, 76or2, 73orl, 73outputList, 76, 84Pae, 63pair, 75, 80par, 46, 75, 81parl, 47, 75plus, 73plusl, 74pmap, 75program error, 77properties, 18puls, 24, 76puls2, 84quanti�ation, 19reursion, 12RestritStates, 36riffle, 74row, 14, 75rowSeq, 26, 76rowSeqPeriod, 76rowSeqReset, 27, 76safety properties, 18serial, 13, 45, 75simulateombinational, 7sequential, 9, 23simulate, 77simulateCon, 77simulateSeq, 77step, indution, 31sub, 73swap, 74, 79swapl, 7496

swapper, 82synhronize, 84test, 77threeBitAdder, 79times, 73timesl, 74timeTransform, 43toggle, 23, 76transition relation, 31tree shaped iruits, 45tri, 48, 75, 86two, 75twoBitSort, 79twoBitSortl, 56twoN, 75unpair, 75, 80unriffle, 74unzipp, 74, 80varList, 74veri�ation, 30verifyombinational, 18one-by-one, 21options, 77sequential, 29verify, 18, 77verifyWith, 34, 77VHDLgeneration, 9writeVhdl, 9, 77writeVhdlInput, 9, 77writeVhdlInputOutput, 9, 77xnor2, 73xor2, 73xorl, 73zero, 26, 69zeroList, 25zipp, 74, 80
97

