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Abstract

Many di�erent methods have been devised for automatically veri�
fying �nite state systems by examining state�graph models of system
behavior� These methods all depend on decision procedures that ex�
plicitly represent the state space using a list or a table that grows in
proportion to the number of states� We describe a general method that
represents the state space symbolically instead of explicitly� The gener�
ality of our method comes from using a dialect of the Mu�Calculus as
the primary speci�cation language� We describe a model checking al�
gorithm for Mu�Calculus formulas that uses Bryant�s Binary Decision

Diagrams ��	
�� to represent relations and formulas� We then show
how our new Mu�Calculus model checking algorithm can be used to de�
rive e
cient decision procedures for CTL model checking� satis�ability
of linear�time temporal logic formulas� strong and weak observational
equivalence of �nite transition systems� and language containment for
�nite ��automata� The �xed point computations for each decision pro�
cedure are sometimes complex� but can be concisely expressed in the
Mu�Calculus� We illustrate the practicality of our approach to sym�
bolic model checking by discussing how it can be used to verify a simple
synchronous pipeline circuit�
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� Introduction

Over the last decade� it has become apparent that �nite�state systems can
often be veri�ed automatically by examining state�graph models of system
behavior� A number of di�erent methods have been proposed� temporal
logic model checking� language containment algorithms for automata� �con�
formation checking	 in trace theory� and testing for various equivalences and
preorders between �nite CCS�like models� Although each of these methods
uses a di�erent computational model and a di�erent notion of veri�cation�
they all rely on algorithms that explicitly represent a state space� using a
list or table that grows in proportion to the number of states� Because the
number of states in the model may grow exponentially with the number
concurrently executing components� the size of the state table is usually the
limiting factor in applying these algorithms to realistic systems�

Our technique for combating this �state explosion problem	 is to repre�
sent the state space symbolically instead of explicitly� In many cases� the
intuitive �complexity	 of the state space is much less than the number of
states would indicate� Often systems with a large number of components
have a regular structure that would suggest a corresponding regularity in
the state graph� Consequently� it may be possible to �nd more sophisticated
representations of the state space that exploit this regularity in a way that
a simple table of states cannot� One good candidate for such a symbolic
representation is the binary decision diagram 
BDD� 
Bryant� ��
��� which
is widely used in various tools for the design and analysis of digital circuits�
BDDs do not prevent a state explosion in all cases� but they allow many
practical systems with extremely large state spaces to be veri�ed�systems
that would be impossible to handle with explicit state enumeration meth�
ods� Indeed� we present empirical results in this paper that show that the
method can be applied in practice to verify models with in excess of ����

states� Explicit state enumeration methods described in the literature are
limited to systems with at most ��� reachable states�

Several groups have applied this idea to di�erent veri�cation methods�
Coudert� Berthet� and Madre 
��
�� describe a BDD�based system for show�
ing equivalence between deterministic Moore machines� Their system per�
forms a symbolic breadth��rst execution of the state space determined by of
the product of the two machines� This model is not generalized to models
other than deterministic Moore machines� or notions of veri�cation other
than strict equivalence� Bose and Fisher 
��
�� have described a BDD�
based algorithm for CTL model checking that is applicable to synchronous
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circuits� However� their method is unable to handle asynchronous concur�
rency� or properties of in�nite computations� such as liveness and fairness�

All of these methods are based on iterative computation of �xed points�
It seems clear that numerous additional papers could be generated by ap�
plying this technique to di�erent veri�cation methodologies� Our goal is to
provide a uni�ed framework for these results by showing that all can be seen
as special cases of symbolic evaluation of Mu�Calculus formulas�

Another technique for reducing the state explosion problem is to exploit
concurrency� Two actions x and y 
e�g�� program statements� are said to
be concurrent if executing xy is equivalent to executing yx� By considering
only one order of the concurrent actions� or considering the actions to be
unordered� the state explosion can be reduced� Examples of such techniques
are the stubborn sets method of Valmari 
��
�� ������ the trace automaton
method of Godefroid and Wolper 
Godefroid� ����� Godefroid and Wolper�
������ the behavior machines method of Probst and Li 
������ and the Time
Petri Nets method of Yoneda et al� 
��
��� These methods are limited in that
they only address one source of the state explosion problem�the interleaving
of concurrent actions� They are not e�ective� for example� on synchronous
�nite state machines� which do not involve interleaving of actions� The
symbolic model checking technique� on the other hand� can be e�ective in
dealing with the state explosion in the synchronous case� as demonstrated
in section ��� Symbolic methods have also been shown to be e�ective for
asynchronous �nite state machines 
Burch et al�� ����� Burch et al�� ����b��
In practice� much of the state explosion that results from interleaving can
be handled e�ciently by symbolic methods�

We describe the syntax and semantics of a dialect of the Mu�Calculus�
and present a model checking algorithm for Mu�Calculus formulas that uses
BDDs to represent relations and formulas� We then show how our new Mu�
Calculus model checking algorithm can be used to derive e�cient decision
procedures for CTL model checking� satis�ability of linear�time temporal
logic formulas� strong and weak observational equivalence of �nite transition
systems� and language containment for �nite ��automata� In each case� a
Mu�Calculus formula can be directly derived from an instance of the prob�
lem� This formula can be evaluated automatically� eliminating the need to
describe complicated �xed point computations for each decision procedure�
We illustrate the practicality of our approach to symbolic model checking
by discussing how it can be used to verify a simple synchronous pipeline
circuit�
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Figure �� A Binary Decision Diagram

� Binary Decision Diagrams

Binary decision diagrams 
BDDs� are a canonical form representation for
Boolean formulas 
Bryant� ��
��� They are often substantially more com�
pact than traditional representations such as conjunctive normal form and
disjunctive normal form� Hence� BDDs have found application in many
computer aided design tasks� including symbolic veri�cation of combina�
tional logic� A BDD is similar to a binary decision tree� except that its
structure is a directed acyclic graph rather than a tree� and there is a total
order placed on the occurrence of variables as one traverses the graph from
root to a leaf� Consider� for example� the BDD of �gure �� It represents
the formula 
a � b� � 
c � d�� using the variable ordering a � b � c � d�
Given an assignment of Boolean values to the variables a� b� c and d� one
can decide whether the assignment satis�es the formula by traversing the
graph beginning at the root� branching at each node based on the assigned
value of the variable which labels that node� For example� the assignment
ha � �� b � �� c � �� d � �i leads to a leaf node labeled �� hence this
assignment satis�es the formula�

Bryant showed that there is a unique BDD for a given Boolean function
together with a given variable ordering� The size of the BDD representing
a given function depends critically on the variable ordering� Bryant also
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described e�cient algorithms for basic operations on BDDs� such as com�
puting the BDD representations of �f and f�g given the BDDs for formulas
f and g� The only other operations required for the algorithms that follow
are quanti�cation over Boolean variables and substitution of variable names�
Bryant gives an algorithm for computing the BDD for a restricted formula
of the form f ja�� or f ja��� The restriction algorithm allows us to compute
the BDD for the formula �v�f �� where v is a Boolean variable and f is a
formula� as f ja�� � f ja��� The substitution of a variable w for a variable v
in a formula f � denoted fhv � wi can be accomplished using quanti�cation�
that is�

fhv � wi � �v�
v � w� � f ��

More e�cient algorithms are possible� however� for the case of quanti�cation
over multiple variables� or multiple renamings� In the latter case� e�ciency
depends on the ordering of variables in the BDDs being the same on both
sides of the substitution�

BDDs can also be viewed as a form of deterministic �nite automata 
Ki�
mura and Clarke� ������ An n�argument Boolean function can be identi�ed
with the set of strings in f �� � gn that represent valuations where the function
is true� Since this is a �nite language and all �nite languages are regular�
there is a minimal �nite automaton that accepts this set� This automa�
ton provides a canonical representation for the original Boolean function�
Logical operations on Boolean functions can be implemented by set op�
erations on the languages accepted by the �nite automata� For example�
conjunction corresponds to language intersection� Standard constructions
from elementary automata theory can be used to compute these operations
on languages�

� The Mu�Calculus

A number of di�erent versions of the Mu�Calculus have been proposed� In
this paper we use the notation of Park 
������ It can be shown that this
version of the Mu�Calculus can express any property expressible in other ver�
sions of the Mu�Calculus 
Cleaveland� ��
�� Emerson and Lei� ��
�� Kozen�
��
�� Stirling and Walker� ��
���

The Mu�Calculus is similar to standard �rst�order logic� with the follow�
ing changes� First� as a simplifying assumption� we do not include function
symbols or constant symbols� Also� relational symbols are replaced by re�
lational variables� In formulas of the form R
z�� z�� � � � � zn�� the R can be a

�



relational variable 
analogous to a relational symbol in �rst�order logic�� or
it can be a relational term in one of two other forms� The �rst of the these
forms is

�y�� y�� � � � � yn�f ��

where f is a formula and the yi are individual variables� Most often the
yi are free in f � but this need not be the case� Also� the free variables of
f need not be contained in the set of yi� The other form for a relational
term is �P �R�� where R is a relational term with some arity n and P is a
relational variable� also with arity n� The term �P �R� represents the least
�xed point of R� To insure that the least �xed point exists� we require
that R be formally monotone with respect to P � which means that all free
occurrences of P in R fall under an even number of negations�

As an example� let 
V�E� be a directed graph� and let V� and Q be
subsets of V � The Mu�Calculus formula

V�
y� � �x�Q
x� �E
x� y��

is true if and only if the vertex y is in V� or is reachable in one step from a
vertex in Q� The Mu�Calculus relational term

�Q��y�V�
y� � �x�Q
x� �E
x� y����

represents the smallest set Q such that

Q � �y�V�
y� � �x�Q
x��E
x� y����

This is the set V� of vertices reachable from V��
The above description of the syntax of the Mu�Calculus can be formalized

as follows� We assume we are given a �nite signature S� Each symbol in
S is either an individual variable or a relational variable with some positive
arity� We recursively de�ne two syntactic categories� formulas and relational

terms� Formulas have the following form�

�� R
z�� z�� � � � � zn�� where R is an n�ary relational term and z�� z�� � � � � zn
are individual variables in S not free in R�

�� �f � f � g� �z�f �� where f and g are formulas and z is an individual
variable in S�

Also� relational terms of arity n have the following form�

�� P � where P is an n�ary relational variable in S�
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�� �z�� z�� � � � � zn�f �� where f is a formula and z�� z�� � � � � zn are distinct
individual variables in S�

�� �P �R�� where P is an n�ary relational variable in S and R is an n�ary
relational term that is formally monotone with respect to P �

The formal de�nition of when an individual variable or relational variable
is bound or free in some formula or relational term is standard� and will not
be given here� Note� however� that individual variables can be bound by
both the existential quanti�er � and by the abstraction operator �� while
relational variables can only be bound by the �xed point operator ��

We will assume that �� �� �� and 	� are treated as abbreviations in
the usual manner� If R and R� are n�ary relational terms we write �R as
an abbreviation for �z�� � � � � zn��R
z�� � � � � zn��� and we write R � R� as an
abbreviation for

�z�� � � � � zn�R
z�� � � � � zn� �R
�
z�� � � � � zn���

The relational term �P �R� is introduced as an abbreviation for

��P ��RhP � 
�P �i�

and denotes the greatest �xed point of an n�ary relational term R� where
RhP � 
�P �i denotes the relational term formed from R by substituting
�P for the free instances of P �

The truth or falsity of a formula is determined with respect to a model

M � 
D� IR� ID� where D is a non�empty set called the domain of the
model� IR is the relational variable interpretation and ID is the individual

variable interpretation� More speci�cally� for each individual variable y�
ID
y� is a value in D� and for each n�ary relational variable P � IR
P � is
an n�ary relation on the set D� In this paper� the domain of a model
will always be �nite� For a given domain� let ID and IR be the set of
all possible individual variable interpretations and the set of all possible
relational variable interpretations� respectively�

The semantic function D maps formulas to elements of


IR 
 
ID 
 ftrue� falseg���

and n�ary relational terms to elements of


IR 
 
ID 
 ��D
n����
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where ��D
n� denotes the set of n�ary relations on D� The semantic function

D is de�ned inductively on the structure of formulas and relational terms�
First� we de�ne D on formulas� If R is an n�ary relational term� then

D
R
z�� � � � � zn��
IR�
ID�

is true if and only if

hID
z��� � � � � ID
zn�i � D
R�
IR�
ID��

If f and g are formulas� then

D
�f�
IR�
ID� � �
D
f�
IR�
ID��

D
f � g�
IR�
ID� �

D
f�
IR�
ID� � D
g�
IR�
ID�

D
�z�f ��
IR�
ID� �

�e �D �D
f�
IR�
IDhz � ei���

Next� we de�ne D on relational terms� The �rst two cases are given by

D
P �
IR�
ID� � IR
P ��

D
�z�� � � � � zn�f ��
IR�
ID� �

fhe�� � � � � eni �Dn � D
f�
IR�
IDhz� � e�� � � � � zn � eni�g�

Finally�
D
�P �R�� � Z�

where Z is the subset of Dn that is the least �xed point 
under the inclusion
ordering� of the equation

Z � D
R�
IRhP � Zi�
ID��

It is clear from elementary �xed point theory that the least �xed point exists�
since R is formally monotone with respect to P �

IfM is a model and f is a formula� then we will writeM j� f to indicate
that f is true in M according to the above semantics�

� Model Checking Algorithm

Model checking is the process of determining whether a given formula f

is true in a given model M � In this section� we present a model checking






algorithm for the Mu�Calculus that uses BDDs as its internal representation�
First� we describe the algorithm for the Boolean domain D � f�� �g� Later
we show that a model with any �nite domain can be encoded as a model with
the Boolean domain� hence our model checking algorithm is fully general�

The algorithm is divided into two functions� Bddf and BddR� which
recurse over the structure of formulas and relational terms� respectively

Figure ��� We assume here that the syntactic correctness of the formula
has already been checked� including the formal monotonicity requirement�

The value of each relational variable in a relational interpretation IR is
represented by a BDD� using a set of place�holder 
dummy� variables not in
the signature S� We refer to these variables as d�� d�� � � �� where di is used to
stand for the ith argument of a relation� Thus� an n�ary relation represented
by a BDD is said to hold for some arguments x�� � � � � xn if and only if the
interpretation hd� � x�� � � � � dn � xni satis�es the BDD� In many practical
instances� this representation of a relation is much more compact than an
enumeration of its elements�

The function Bddf takes two arguments� a formula f and a relational
variable interpretation IR� which assigns values to the free relational vari�
ables in f � It returns a BDD which has the following property� Bddf 
f� IR�
is satis�ed by a given interpretation ID for the individual variables if and
only if f is satis�ed by the model M � 
D� IR� ID�� The �rst case in the
de�nition treats individual variables as formulas� which is possible because
the domain D is Boolean� The function BddAtom
v� returns a BDD that
is true if and only if v � �� The next three cases in the de�nition derive
directly from the respective semantic de�nitions for BDDs and Mu�Calculus
formulas and should require no explanation� The algorithms for BddAnd
and BddNegate were described by Bryant 
��
��� The implementation
of BddExists in terms of disjunction and restriction was discussed in Sec�
tion �� The last case� application of a relational term R� uses the function
BddR to �nd a representation of the relational term R 
under the inter�
pretation IR�� then substitutes the argument variables x�� � � � � xn for the
place�holder variables d�� � � � � dn�

The function BddR takes as arguments a relational term R and a rela�
tional interpretation IR� It returns a BDD which represents the relational
term in the manner described above� Since the relational term may have free
individual variables� the BDD may contain both the place�holder variables
and the individual variables of the logic� Thus� given an interpretation ID
for the individual variables� and an interpretation IA for the place�holder
variables� BddR
R� IR� is satis�ed if and only if the relation D
R�
IR�
ID�
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function Bddf 
f � formula� IR � rel�interp� � BDD�
case

f is an individual variable�
return BddAtom
f��

f is of the form f� � f��
return BddAnd
Bddf
f�� IR�� Bddf 
f�� IR���

f is of the form �f��
return BddNegate
Bddf 
f�� IR���

f is of the form �x�f���
return BddExists
x�Bddf 
f� IR���

f is of the form R
x�� � � � � xn��
return BddR
R� IR�hd� � x�� � � � � dn � xni�

end case�

function BddR
R � rel�term� IR � rel�interp� � BDD�
case

R is a relational variable�
return IR
R��

R is of the form �x�� � � � � xn�f ��
return Bddf 
f� IR�hx� � d�� � � � � xn � dni�

R is of the form �P �R���
return FixedPoint
P�R�� IR�FalseBdd��

end case�

function FixedPoint
P � rel�var� R � rel�term� IR � rel�interp�
Z � BDD� � BDD�

let Z� � BddR
R� IRhP � Zi��
if Z � � Z then return Z

else return FixedPoint
P�R� IR� Z���

Figure �� Mu�Calculus Model Checking Algorithm�
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contains the n�tuple hIA
d��� � � � � IA
dn�i� where n is the arity of R�
The �rst case in the de�nition of BddR� a relational variable� simply

returns the BDD representation of the variable in the interpretation IR�
The second case� lambda abstraction� produces a BDD with place�holder
variables d�� � � � � dn substituted for the variables x�� � � � � xn� The most inter�
esting case involves the �xed point operator �� To �nd the �xed point of a
relational term with respect to a relational variable P � we use the standard
technique for �nding the least �xed point of a monotonic function with a
�nite domain� This computes the �xed point by a series of approximations
Z�� Z�� � � �� beginning with the empty relation 
which is represented by the
BDD constant FalseBdd�� To compute Zi��� we let the interpretation of
P be Zi� while evaluating the relational term R using BddR� Since the do�
main is �nite and R is formally monotone with respect to P � the series must
converge to the least �xed point� Convergence is detected when Zi�� � Zi�
Note that testing for convergence is easy� since testing BDDs for equivalence
is a constant time operation�

A performance improvement can be realized in the above �xed point
algorithm by observing that any subterms or subformulas of R which do
not have P as a free variable will not change in their evaluation from one
iteration to the next� Thus� the evaluations of these terms do not need to be
recomputed� For this reason� it is useful when possible to rewrite formulas
so that �xed point subterms contain fewer free relational variables�

In order to do model checking over a non�Boolean 
but �nite� domain
D� we use an encoding function 	 � f�� �gm 
 D which maps each Boolean
vector of length m to an element of D� This function must be surjective�
but it need not be injective� The minimum possible value of m is dlog� jDje�
but encodings with a larger number of bits are also possible� Using such an
encoding� we construct a corresponding model M � over the Boolean domain�
If R is an n�ary relation symbol in the model M � then R� is a relation of
arity mn in M �� constructed by the following rule�

R�
�x�� � � � � �xn�� R
	
�x��� � � � � 	
�xn��

where �xi is a shorthand for m Boolean variables encoding xi� In order to
check the truth of a given formula f � we replace each individual variable
in the formula with a vector of m Boolean valued variables� and check the
resulting formula f � in the model M �� The homomorphism between M and
M � guarantees that M j� f if and only if M � j� f ��

The choice of an encoding function 	 and an ordering for the BDD
variables has a substantial impact on the e�ciency of the model checking
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algorithm� For digital circuits� the choice of encoding is generally trivial�
since all components of the state are Boolean valued to begin with�

� Iterative Squaring

It is often possible to rewrite a Mu�Calculus formula or relational term so
that it can be analyzed more e�ciently by the model checking algorithm�
In this section we describe a systematic method for rewriting relational
terms� called the iterative squaring transformation� that can result in an
exponential reduction in the number of iterations necessary to compute �xed
points� We begin by showing how the iterative squaring transformation can
be applied to a particular relational term� Later we describe more general
conditions under which the transformation can be applied�

��� Transitive Closure

Let W be the relational term

�Q��y�V�
y� � �x�Q
x�� E
x� y�����

which describes the set V� of vertices reachable in the directed graph 
V�E�
from the set of vertices V� 
see section ��� When the model checking al�
gorithm is applied to W � it requires n iterations to compute the set Vn of
vertices reachable via a path of length n or shorter� Thus� the number of
iterations is linear in the diameter of the subgraph 
V��E

��� where E� is
the set of edges in E connecting only vertices in V�� However� a standard
technique can be used to rewrite W so that the model checking algorithm
converges faster� The �rst step is to compute the transitive closure of E�

E� � �P ��x�y�E
x� y� � �w�P 
x�w� � P 
w� y�����

Let En be the binary relation computed by the model checker after n iter�
ations in the computation of E�� The following theorem can be proved by
induction on n�

Theorem � For all vertices y and non�negative integers n�

�x�V�
x�� En��
x� y�� 	� V�n
y��
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The number of iterations necessary to compute E� is logarithmic in the
diameter of 
V�E�� If the diameters of 
V�E� and 
V��E

�� are roughly the
same 
the usual case in practice�� this leads to a signi�cant reduction in
the number of iterations needed to compute V�� However� iterative squar�
ing can be impractical if the BDDs needed to represent the intermediate
computations become too large�

��� General Transformation

We consider r�ary relational terms of the form �Q�R� or �Q�R�� where R is
some r�ary relational term� We further restrict R to be of the form 
using
�y as a shorthand for y�� � � � � yr��

��y�S
�y�� ��x�Q
�x� �N
�x� �y����

where S and N are relational terms that do not have Q as a free variable� It
may seem overly restrictive to require that terms be of this form� However�
nearly all the Mu�Calculus terms that we have used as speci�cations in
practice can be written in this form�

The relational term �Q�R� is analogous to the relational term W de�
scribed above� Recall that W represented the set V�� which is the set of
vertices reachable from V� in the graph 
V�E�� The analogy is clear if we
let V be the set of r�tuples over the domain D� let E be N � and let V� be S�
Under this analogy� �Q�R� represents V�� the set of vertices reachable from
S via N �

We can re�express �Q�R� in terms of the transitive closure of N � This
allows us to use iterative squaring to compute the least �xed point� De�ne
the relational term T such that

T � �P ���x� �y�N
�x� �y� � � �w�P 
�x� �w� � P 
 �w� �y�����

which is the transitive closure of N � The set of vertices reachable from S

via N can be expressed as

��y�S
�y�� ��x�S
�x� � T 
�x� �y����

This observation provides the intuition behind the proof of the following
theorem�

Theorem � �Q�R� � ��y�S
�y� � ��x�S
�x� � T
�x� �y����
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There is a straightforward relationship between the least and greatest
�xed points� We claim that �y is in �Q�R� if and only if �y is in �Q�R� or
�y can be reached from some �x that is on a cycle in the graph of N � The
formula T ��x� �x� is true if and only if �x is on a cycle� Assuming that the
domain D is �nite	 we have the following theorem


Theorem � �Q�R� � �Q�R� � ��y���x�T ��x� �x�� T ��x� �y���

Proof� Let

Z � �Q�R� � ��y���x�T ��x� �x�� T ��x� �y���

� ��y�S��y� � ��x�S��x� � T��x� �y�� � ��x�T ��x� �x�� T ��x� �y���

It is straightforward �but tedious� to show that Z is a �xed point of R�Q�	 so
we omit this argument� It remains to show that Z is the greatest �xed point	
that is	 if Q � R�Q�	 then Q � Z � Suppose that �x� is an element of Q� It
follows that �x� is an element ofR�Q�	 hence S��x�����x�Q��x��N��x� �x�� holds�
Thus	 �x� is in S	 or �x� has a predecessor in Q� Under the �rst condition	
it follows immediately that �x� is in Z � Under the second condition	 there
exists an �x� such that N��x�� �x�� and Q��x�� both hold� Since �x� is in Q	
we can continue the above process	 generating a sequence �x�� �x�� � � � where
N��xi��� �xi� holds for all i� Either this sequence terminates at some �xi in
S	 or it is in�nite� In the terminating case	 T ��xi� �x�� holds	 since there is a
path from �xi to �x�� Hence �xi is a witness for ��x�S��x�� T ��x� �x���	 so �x� is in
Z� In the in�nite case	 there must exist � � m � n such that �xm � �xn	 since
we have assumed the domain is �nite� In this case T��x� �x� holds	 where �x is
the common value of �xm and �xn� Thus ��x�T ��x� �x��T ��x� �x�� holds	 implying
that �x� is in Z� We have shown that in all cases	 if Q � R�Q� and �x� is in
Q	 then �x� is in Z� Thus	 Z is the greatest �xed point of R�Q�� �

The iterative squaring theorems can often be applied more than once
to terms that have several �xed point operators� For example	 consider the
directed graph �V�E� described earlier� The relational term

R � �P
h
V� � �Q

h
�y��x��P �x�� Q�x���N�y� x���

ii

represents the set of vertices y in V� such that there is a path starting at y
that passes through a vertex in V� in�nitely often� Theorems 
 and � can
be used twice to show that R is equal to

�y�V��y� � �x�V��x� � T �x� x� � T �y� x����
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Unless otherwise noted	 all the Mu�Calculus relational terms used in
the remainder of this paper can be computed using the iterative squaring
technique� As a result	 the number of �xed point iterations can be made
logarithmic in the cardinality of the domain�

� Computation Tree Logic

Computation Tree Logic �CTL� is a propositional	 branching�time	 temporal
logic �Clarke et al�	 ������ Each of the usual forward�time operators of
linear temporal logic �G globally or invariantly	 F sometime in the future	
X nexttime and U until � must be directly preceded by a path quanti�er�

The path quanti�er can either be an A �for all computation paths� or an E
�for some computation path�� Thus	 some typical CTL operators are AGf 	
which holds in a state provided that f holds at all points along all possible
computation paths starting from that state	 and EFf 	 which holds in a state
provided that there is a computation path such that f holds at some point
on the path�

In our description of the syntax and semantics of CTL	 we specify the
existential path quanti�ers directly and treat the universal path quanti�ers
as syntactic abbreviations� Let A be the set of atomic propositions	 then


�� Every atomic proposition p in A is a formula in CTL�


� If f and g are CTL formulas	 then so are �f 	 f � g	 EXf 	 E�fUg� and
EGf �

The semantics of a CTL formula is de�ned with respect to a labeled state
transition graph or Kripke structure M � �A�S� L�N�S��	 where A is a set
of atomic propositions	 S is a �nite set of states	 L 
 S � 
A is a function
labeling each state with a set of atomic propositions	 N � S � S is a total
transition relation	 and S� is the set of initial states� A path is an in�nite
sequence of states s�� s�� s�� � � � such that N�si� si��� is true for every i�

The propositional connectives � and � have their usual meanings of
negation and conjunction� The other propositional operators can be de�ned
in terms of these� X is the nexttime operator� EXf is true in a state s
of M if and only if s has a successor t such that f is true at t� U is the
until operator� E�fUg� is true in a state s of M if and only if there exists a
path starting at s and an initial pre�x of the path such that g holds at the
last state of the pre�x and f holds at all other states along the pre�x� The
operator G is used to express the invariance of some property over time�
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EGf is true at a state s if there is a path starting at s such that f holds at
each state on the path�

We also use the following syntactic abbreviations for CTL formulas


� AXf 	 �EX�f which means that f holds at all successor states of
the current state �f must hold at the next state��

� EFf 	 E�trueUf � which means that for some path	 there exists a
state on the path at which f holds �f is possible in the future��

� AFf 	 �EG�f which means that for every path	 there exists a state
on the path at which f holds �f is inevitable in the future��

� AGf 	 �EF�f which means that for every path	 at every node on
the path f holds �f holds invariantly along all paths��

� A�fUg� 	 �E��gU�f � �g� � �EG�g which means that for every
path	 there exists an initial pre�x of the path such that g holds at the
last state of the pre�x and f holds at all other states along the pre�x
�f holds until g holds	 along all paths��

��� CTL Model Checking

Checking whether a CTL formula f is true of a Kripke structure M �
�A�S�L�N� S�� can be reduced to checking whether a Mu�Calculus formula
f � is true of a structure M � � �S� IR� ID�� In the reduction	 IR provides
the obvious interpretations for N and S�� it also interprets each atomic
proposition p in A to be a unary relation such that IR�p��s� is true if and
only if p 
 L�s�� The individual variable interpretation ID is not relevant
since f � is de�ned to have no free individual variables�

The reduction of a CTL formula f to a Mu�Calculus formula f � is best
understood by viewing CTL formulas as abbreviations for Mu�Calculus re�
lational terms� In this view	 if the CTL formula f is an abbreviation for the
Mu�Calculus relational term R	 then f is true at state s if and only if R�s� is
true� If f has no temporal operators	 then it represents the relational term
R that has exactly the same syntax as f � It remains only to consider CTL
formulas of the form EXf 	 EGf or E�fUg�� For the remainder	 we identify
a CTL formula f with the Mu�Calculus relational term that it represents�

The CTL formula EXf is true of a state s if and only if there exists a
state t such that f is true of t and N�s� t� is true� We therefore de�ne EXf
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to be a syntactic abbreviation for the Mu�Calculus relational term

�s��t�f�t� �N�s� t����

The Mu�Calculus expansions for EG and EU are based on a charac�
terization of the CTL operators as �xed points of predicate transformers�
The �xed points can be computed using either direct iteration or iterative
squaring�

The �xed point characterization for EG is derived from the identity

EGf � f � EXEGf�

It is straightforward to show that not only does EGf satisfy this equation	
it is the greatest �xed point of the equation� Thus	

EGf � �Q�f �EXQ�

� �Q��s�f�s� � �t�Q�t� �N�s� t�����

The operator EU has a �xed point characterization that is similar to the
one for EG� However	 this time the characterization is the least �xed point
of the corresponding predicate transformer rather than the greatest


E�fUg� � g � �f � EXE�fUg��

� �Q�g � �f � EXQ��

� �Q��s�g�s� � �f�s� � �t�Q�t� �N�s� t������

Once a CTL formula f has been transformed into a Mu�Calculus rela�
tional term R	 it is still necessary to construct a Mu�Calculus formula f �

that is true if and only if f is true of all the states in S�� One such f � is

f � � �s�S��s�� f�s���

As described in section �	 the Mu�Calculus model checking algorithm re�
quires encoding the domain in terms of a Boolean domain� For Mu�Calculus
formulas derived from CTL formulas	 it is convenient to encode each state in
the domain with the set of atomic propositions that are true for that state�
This requires that no two distinct states have the same labeling of atomic
propositions�
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��� Fairness Constraints

Next	 we consider the issue of fairness� In many cases	 we are only inter�
ested in correctness along fair computation paths� For example	 we may
wish to consider only those computations in which some resource that is
continuously requested by a process will eventually be granted to the pro�
cess� This type of property cannot be expressed directly in CTL� In order
to handle such properties we must modify the semantics of the logic slightly�
A fairness constraint can be an arbitrary CTL formula� A path is said to
be fair with respect to a set of fairness constraints if each constraint holds
in�nitely often along the path� The path quanti�ers in CTL formulas are
now restricted to fair paths� In the remainder of this section we describe
how to translate CTL formulas to Mu�Calculus relational terms that re�ect
the modi�ed semantics� We assume the fairness constraints are given by
a set of CTL formulas C � c�� � � � � cn� We write ECXf and EC �fUg�	 for
example	 to denote temporal operators with fairness constraints C�

Consider the formula ECGf 	 which is true of a state s when there ex�
ists a path beginning at s in which f holds globally �invariantly� and each
formula in C holds in�nitely often� The set of such states Z is the largest
set satisfying the following two conditions


�� All of the states in Z satisfy f 	 and


� for all ck 
 C	 for all s 
 Z	 there is a path of length one or greater
from s to a state satisfying ck such that all states on the path satisfy
f �

It is easy to show that if these conditions hold	 each state in the set is the
beginning of an in�nite path on which f is always true	 and every formula
in C holds in�nitely often� This gives us the characterization

ECGf � �Z�f �
n�

k��

EXE�fU�Z � ck����

The unfair CTL operators on the right side of the equations can be translated
into Mu�Calculus relational terms as described above� Note that in this case	
there is a nested �xed point since EU is an abbreviation for a least �xed
point�

The cases of ECXf and EC �fUg� are a bit simpler� De�ne the set of all
states which are on some fair computation as h � ECG true � Then	

ECX�f� � EX�f � h��

EC �fUg� � E�fU�g � h���
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� Propositional Linear Temporal Logic

The tableau method for testing the satis�ability of propositional linear tem�
poral logic �PTL� formulas �Manna and Wolper	 ����� can be implemented
by translating a PTL formula into a Mu�Calculus formula which is true if
and only if the PTL formula is satis�able� This gives a symbolic procedure
with the advantage that	 in some cases	 a large tableau can be represented
by a relatively small BDD�

Fujita and Fujisawa ������ describe a veri�cation procedure based on lin�
ear temporal logic that uses binary decision diagrams to represent the transi�
tion conditions in automata derived from temporal logic formulas� However	
they represent the states of the automaton explicitly	 so their technique still
su�ers from the state explosion problem�

There are many dialects of PTL depending on the modal connectives
that are de�ned� We choose a small	 standard dialect


�� atomic propositions A �written p	 q	 etc��	


� �f 	 f � g	 Xf 	 and fUg when f and g are PTL formulas�

Our technique can be extended easily to additional or alternative modal
connectives�

As in CTL	Xf means that f holds in the next state and fUg means that
f is true in every state until g holds� To formalize this	 let � 
 �A� f���g��

be a sequence of truth assignments to the atomic propositions	 and let �i
be the ith su�x of � �i�e�	 �i�j� � ��j � i� for all j 
 	�� The semantics of
PTL formulas can be de�ned as follows


� j� p i� �����p� � � when p 
 A�

� j� �f i� � 
j� f�

� j� f � g i� � j� f or � j� g�

� j� Xf i� �� j� f�

� j� fUg i� �i 
 ��i j� g and �j � i 
 �j j� f��

The tableau associated with a PTL formula f is a Kripke structure whose
atomic propositions represent the truth values of the particular formulas
constructed from f � By representing the tableau symbolically	 we can use the
symbolic CTL model checking procedure to determine whether the formula
f is satis�able� A state of the tableau is a Boolean vector �x� With each
formula f 	 we associate a component xf of the state vector� A function 
�f�
associates a relational term in the Mu�Calculus with each PTL formula f �
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This term represents the set of states of the tableau labeled with the formula
f � The function 
 is de�ned recursively over the structure of PTL formulas
as follows



�p� � ��x�xp� if p 
 A�


��f� � �
�f��


�f � g� � 
�f� � 
�g��


�Xf� � ��x�xXf ��


�fUg� � 
�g� �

�
�f�� ��x�xX�fUg���

Notice that for a given formula f 	 the only components of the state vector
used in 
�f� are the atomic propositions and the formulas Xg	 where Xg is
a subformula of f 	 and X�gUh�	 where gUh is a subformula of f � We call
these subformulas the elementary subformulas of f 	 or el�f�� Using only
the elementary formulas in the tableau reduces the number of Boolean state
variables� The elementary subformulas can be de�ned recursively as follows
�where f and g are any PTL formulas�


el�p� � fpg if p 
 A�

el��f� � el�f��

el�f � g� � el�f� � el�g��

el�Xf� � fXfg � el�f��

el�fUg� � fX�fUg�g � el�f� � el�g��

The transition relation R of the tableau is de�ned such that the elementary
formula Xf is true in the current state if and only if f is true in the next
state� Thus	

R � ��x� �x�
�

Xg 
 el�f�


�Xg���x�� 
�g���x���

The set S� of initial states of the tableau is the set satisfying f � Thus	
S� � 
�f�� The formula f is satis�able if and only if there is an in�nite
path in the tableau such that

� f is true in the initial state	 and
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� for all subformulas gUh	 if gUh is true in some state	 then eventually
h is true in some later state�

This is equivalent to the CTL formula

ECGtrue

with the set of fairness constraints

C � f�
�gUh� � 
�h� j gUh occurs in fg�

If there is an in�nite path satisfying all of the formulas in C in�nitely often	
then for all subformulas gUh	 it is not the case that gUh holds forever after
some point while h remains false� Hence	 there is a path satisfying f �

The test for satis�ability of a formula f proceeds in the following steps�
The set of elementary formulas of f is computed using its recursive de��
nition� The symbolic �BDD� representations of R and S� are computed	
using the recursive de�nition of 
� The set C of fairness constraint formulas
is constructed� Finally	 the CTL formula ECGtrue is translated into the
Mu�Calculus using the procedure of section ��
� This formula is evaluated
using the symbolic Mu�Calculus model checking procedure of section � to
determine whether the formula f is satis�able�

� Observational Equivalence

In this section	 we describe how to use the Mu�Calculus for expressing strong
equivalence and weak equivalence of �nite transition systems� This makes
it possible to use the BDD�based Mu�Calculus model checking algorithm
described earlier for deciding these equivalences� A �nite transition system
is a ��tuple �S� s������	 where S is a �nite set of states	 s� is the initial
state	 � is a �nite set of actions	 and � � S � � � S is the transition

relation �Milner	 ����� Milner	 ������

��� Strong Equivalence

Let MS and MT be two �nite transition systems on the same set of actions
�� That is	 let MS � �S� s�����S� and MT � �T� t�����T �� The strong
equivalence relation �written ���� is a subset of S � T � The two �nite tran�
sitions systems MS and MT are said to be strongly equivalent if and only
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if s� � t�� The strong equivalence relation is the greatest �xed point of the
function

F 
 
S�T � 
S�T

such that F �R� is the set of all pairs �s� t� for which

� �� �s�	 if �S�s� �� s
�� then �t� such that �T �t� �� t

�� and R�s�� t��	 and

� �� �t�	 if �T �t� �� t
�� then �s� such that �S�s� �� s

�� and R�s�� t���

In order to compute this equivalence using the BDD�based Mu�Calculus
checking algorithm	 it remains only to assemble the appropriate domain
and interpretations	 and to express the above condition in the Mu�Calculus�
Let the domain D be the union of S	 T and � �which are assumed to be
disjoint�� The relational interpretation IR consists of the relations �S and
�T 	 and the individual interpretation ID consists of s� and t�� Let F � be
the Mu�Calculus relational term

�s� t���� s���S�s� �� s���

�t���T �t� �� t
�� �R�s�� t����

� ��� t���T �t� �� t���

�s���S�s� �� s
��� R�s�� t������

Then F ��s� t� is true if and only if �s� t� is an element of F �R�� Thus	 MS

and MT are strongly equivalent if and only if �R�F ���s�� t�� holds� This can
be evaluated with the BDD�based model checking algorithm	 although the
iterative squaring transformation cannot be used�

��� Weak Equivalence

Let � be a distinguished action in the set �	 and let the relation H be the
re�exive transitive closure of �x�y���x� �� y��� That is	 H�s� t� is true if and
only if there is a path from s to t labeled by a sequence of zero or more �
actions� Also	 let �� be such that

���s� �� t� � �x�y�H�s� x����x� �� y� �H�y� t���

The weak observational equivalence relation is the greatest �xed point of
the function

G 
 
S�T � 
S�T �

such that G�R� is the set of all pairs �s� t� for which







� �s� ��	 if ��

S�s� �� s
�� then �t� such that ��

T �t� �� t
�� and R�s�� t��	 and

� �t� ��	 if ��

T �t� �� t
�� then �s� such that ��

S�s� �� s
�� and R�s�� t���

From this point	 the translation of weak equivalence into the Mu�Calculus
is completely analogous to the translation for strong equivalence�

� ��Automata

Finally	 we discuss symbolic Mu�Calculus based algorithms for deciding lan�
guage containment between �nite 	�automata� We consider B uchi automata
in detail	 and also discuss a general method that is applicable to a large class
of 	�automata�

A �nite B uchi automaton is an ordered ��tuple �S� s������B�	 where
S is a �nite set of states� s� 
 S is the initial state� � is a �nite alphabet�

� � S � �� S is the transition relation� and B � S is the acceptance set�
The automaton is deterministic if for all s 
 S and � 
 �	 there exists
exactly one t 
 S such that ��s� �� t� holds� An in�nite sequence of states
t�� t�� t�� � � � 
 S� is a path of a B uchi automaton if there exists an in�nite
sequence ��� ��� ��� � � � 
 �� such that

hti� �i� ti��i 
 �

for all i � �� A sequence ��� ��� ��� � � � is accepted by a B uchi automaton
if the corresponding path t�� t�� t�� � � � goes through a one or more elements
of B in�nitely often� The set of sequences accepted by an automaton M is
called the language of M and denoted L�M��

To determine whether the language of a B uchi automaton M is con�
tained in the language of a B uchi automaton M � �with the same alphabet�	
we de�ne a Kripke structureM �� representing the product ofM andM �	 and
write a formula in CTL which is true of M �� if and only if every sequence ac�
cepted byM is also accepted byM �� This formula can be translated into the
Mu�Calculus and evaluated using the symbolic model checking algorithm�

Let M �� be a Kripke structure �A� S � S�� L� R� S��

��	 where

� A � fp� p�g is the set of atomic propositions	

� S��

� � fhs�� s
�

�ig	

� hs� s�i j� p i� s 
 B	
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� hs� s�i j� p� i� s� 
 B�	

� hs� s�iRht� t�i i� �� 
 � such that hs� �� ti 
 � and hs�� �� t�i 
 ���

Recall that in Section � we showed how to encode Kripke structures sym�
bolically� The transition relation of the Kripke structure M �� is

R � �s� s�� t� t�������s� �� t� ����s�� �� t�����

The atomic proposition p can identi�ed with the Mu�Calculus relational
term �s� s��B�s�� that represents that set of states that satisfy p� Similarly	
p� is identi�ed with the relational term �s� s��B��s���� The set of initial states
is

S ��

� � �s� s���s � s�� � �s� � s�����

In �Clarke et al�	 �����	 it is shown that	 if M � is deterministic	 then
L�M� � L�M �� if and only if

M �� j� A�GFp� GFp���

Note that the formula above is not a CTL formula since there are path
operators that are not immediately preceded by path quanti�ers� However	
it is equivalent toAGAFp� under the fairness constraint !in�nitely often p"�
Thus	 L�M� � L�M �� holds if and only if the formula ACGACFp

� holds	
where C � fpg� Using the results of section ��
	 and the above de�nitions for
R	 S��

� 	 p and p�	 this formula can be translated into a Mu�Calculus formula
that can be evaluated using the Mu�Calculus model checking algorithm of
section ��

Another possible approach to the language containment problem makes
use of the iterative squaring technique for computing transitive closures�
Let T � be the set of all pairs of states of the Kripke structure such that the
second state can be reached from the �rst without passing through B�� This
is the transitive closure of

T � �s� s�� t� t��R�s� s�� t� t�� � �B��s�� � �B ��t����

Using iterative squaring	

T � � �Q��s� s�� t� t��T �s� s�� t� t��� �u� u��Q�s� s�� u� u�� �Q�u� u�� t� t������

The language of M is contained in the language of M � i� there is no path
to a state hs� s�i in B such that hs� s�i is on a cycle not passing through
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B �� That is	 L�M� � L�M �� if and only if �EF�s� s��T��s� s�� s� s���� The
operator EF can also be evaluated using iterative squaring� This technique
reduces the number of iterations to the log of the diameter of the transition
relation R� Using the technique based on CTL model checking with fairness
constraints	 the number of iterations may be as high as the square of the
diameter	 because of the nested �xed point operators� However	 in many
cases the BDDs needed to construct the transitive closure are impractically
large� As a result	 if the diameter of the state space is small	 the nested
�xed point method may be preferable�

While deterministic B uchi automata cannot express the complete class
of 	�regular languages	 algorithms for language containment for more ex�
pressive types of deterministic 	�automata �e�g�� Muller automata� can be
derived in a similar fashion from results in �Clarke et al�	 ������ These
algorithms require a more expressive class of fairness constraints than we
have considered here� Mu�Calculus based algorithms for this class of fair�
ness constraints exist	 and can be derived either from the PTL satis�ability
algorithm	 or from results of Emerson and Lei �������

�� Empirical Results

Using BDDs for testing Boolean satis�ability is only e�cient in a heuristic
sense� The satis�ability problem is	 of course	 NP�complete� the only claim
that is made for BDDs is that they perform well for certain useful classes of
Boolean functions� Likewise	 using BDDs for representing relations in Mu�
Calculus model checking is only of heuristic value	 and does not improve the
asymptotic complexity of model checking� Therefore	 in order to evaluate the
method	 we need empirical results showing the performance of the method
on some problems of practical interest�

Here we brie�y present some performance results for CTLmodel checking
on a class of simple synchronous pipelines	 which include data path as well
as control circuitry� The number of states in these systems is far too large
to apply traditional model checking techniques	 but we have obtained very
encouraging results using the BDD method�

The circuits we have used as examples are pipeline circuit that perform
three�address logical and arithmetic operations on a register �le� The com�
plete state of the register �le and pipe registers are modeled� The pipelines
have three stages
 the operands are read from the register �le	 then an ALU
�Arithmetic Logic Unit� operation is performed	 then the result is written
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Figure �
 Block diagram of simple pipeline design

back to the register �le� The ALU has a register bypass path	 which allows
the result of an ALU operation to be used immediately as an operand on
the next clock cycle	 as is typical in RISC instruction pipelines� The inputs
to the circuits are an instruction code	 containing the register addresses of
the source and destination operands	 and a STALL signal	 which indicates
that no instruction is available� When this occurs	 a !no�operation" is prop�
agated through the pipe� A functional block diagram of a typical pipeline
is given in �gure ��

Since vectors of Boolean values are used to represent binary numbers in
these designs	 it is useful to introduce some notation for vectors of proposi�
tions in logical formulas� First	 we extend the standard logical and modal
operators to vectors of propositions in a component�wise manner� For ex�
ample	 �
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The latency in the example pipelines is three clock cycles� For this
reason	 the speci�cation of the pipeline cannot be given in a straightforward
manner using simply pre�conditions and post�conditions on operations� We
can	 however	 use temporal operators and the above notation to specify the
behavior of the pipeline	 taking into account the pipe latency� When we
specify a register transfer level operation for the pipeline	 it is understood
that the results of the operation will not a�ect the register �le until three
clocks cycles in the future	 and that the inputs to the operation correspond
to the state of the register �le two clock cycles in the future� The state of
the register �le n clock cycles in the future can be expressed as Xn

R� A
register transfer speci�cation such as Rc � Ra � Rb means that register
c receives the exclusive�or of registers a and b� Taking into account the
pipe latency	 this register transfer level speci�cation can be expressed as a
temporal formula in the following way


�X�
R�c � �X�

R�a � �X�
R�b�

where a	 b and c are each bit��elds in the operation code� As similar formu�
las can be derived for other register transfer level expressions	 we will write
register transfer expressions in our speci�cations	 with the understanding
that they are to be interpreted as abbreviations for temporal logic formulas
in the above way� Since Xnp is a path formula and not a state formula	
it cannot be evaluated directly by the CTL model checker �which can only
evaluate state formulas�� We can show	 however	 that the state of the regis�
ter �le R two or three clock cycles in the future is uniquely determined by
the current state of the system� We can show this by automatically checking
the CTL formulas

AG��EX��R 	 �AX��R�

and
AG��EX��R 	 �AX��R��

Thus	 we can substitute the state formula �EX��R for the path formula
X�R	 since the two are equivalent� Likewise	 we can substitute �EX��R for
X�R�


�



Using the above temporal interpretation for register transfer level speci�
�cations	 we write the speci�cation for our simplest pipeline �which has only
an exclusive�or instruction� as follows


AG��STALL� �Rc � Ra �Rb�� ���

and
AG�c��c 
� c

� � STALL� �Rc� � Rc����

Recall that the register assignments are abbreviations for CTL formulas�
The latter formula speci�es that non�destination registers do not change	
and that if a stall occurs	 no registers change�

Figure � graphs the performance we obtained when checking formula �
on a variety of pipelines of this type� The graphs show the total execution
time and the size of the BDD needed to represent the transition relation� In
all cases the register �le had four registers� The number of bits per register
varied from � to �
� We considered two ALU operations
 exclusive�or and
addition� In two cases the ALU performed just one of these operations� In
the third case	 the ALU performed both operations� The veri�er operated
directly on CTL formulas	 which reduces the overhead that would result
from �rst translating CTL formulas to Mu�Calculus formulas�

A pipeline with �
 bits has approximately ��� � ���	 reachable states	
which puts it far outside the range of model checkers like the one reported
by Browne et al� ������� An ��bit exclusive�or pipeline required a BDD
with �
	��� nodes to represent the transition relation	 and approximately


 minutes to verify on a Sun �#��� The execution times in the graph are
for a single processor of an Encore Multimax	 which is approximately half
as fast as a Sun �� The most interesting result is that the number of nodes
in the transition relation BDD is asymptotically linear in the number of bits
per register� As a result	 the veri�cation time is polynomial in the number
of bits� The BDD variables were ordered so that all variables in a given bit
position were grouped together� A �xed number of signals	 consisting of the
control bits and the ALU carry bit pass from one group to the next� It is
this property of the system that results in the linear growth of the transition
relation as represented by a BDD�

It is also interesting to note that adding an exclusive�or operation to
the addition pipeline roughly doubles the number of nodes in the transition
relation� In general	 the transition relation increases in size linearly with the
number of instructions �Burch et al�	 ����a�� In addition	 if the ALU were
able to perform a multiply operation	 a barrel shift	 or some other complex
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 Performance of BDDmodel checking algorithm on simple pipelines
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operation which has more than a constant amount of information passing
from one bit position to the next	 then the size of the BDD representation
would quickly become unmanageable�

�� Conclusions

We have shown	 that by choosing a suitable encoding of the model domain	
and using a compact representation for relations	 the complexity of various
graph�based veri�cation algorithms can be greatly reduced in practice �if
not in the worst case�� Along the way	 we have shown how several of these
algorithms can be concisely expressed in a form of the Mu�Calculus	 and
how these expressions can be used to derive e�cient BDD�based veri�cation
algorithms� In the circuit examples we studied	 the regular structure of
the data path logic was captured by the BDD representation	 resulting in
a space complexity which was linear in the number of circuit components
rather than exponential�

The current state of this research	 however	 leaves open several important
and interesting questions� First	 more work is needed in order to charac�
terize the models for which the BDD Mu�Calculus checker is e�cient� It
is known	 for example	 that combinational multiplier circuits do not have
e�cient BDD representations �Bryant	 ������ On the other hand	 the model
checking algorithm is easily adapted to use other representations	 if such are
found to be compact for a useful class of relations� The problem of �nd�
ing more e�cient structures for representing Boolean formulas has attracted
much attention of late� any results obtained in this area would be immedi�
ately applicable to Mu�Calculus model checking	 and hence to the various
veri�cation methodologies treated in this paper�

The second open question is whether the techniques described here could
be pro�tably extended to other common graph algorithms whose results can
be expressed as relations	 such as minimum spanning trees	 graph isomor�
phism	 etc� For example	 if E�u� v� is the edge relation of a directed graph	
then the equivalence relation

�u� v�E��u� v�� E��v� u��

is true of two vertices if and only if they are in the same strongly connected
component	 where E� is a relational term representing the re�exive transi�
tive closure of E� Practical algorithms that could handle very large graphs

��



�compared to current computer storage limitations� would certainly be of
interest�
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