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Abstract. New insights into the general structure of partial product
reduction trees are combined with the notion of clever circuits to give
a novel method of writing simple but flexible and highly parameterised
data-path generators.

1 Introduction

In this work, our original intention was to describe and analyse a number of
different multipliers, and to account for the effects of choices about layout and
wire length. We concentrated on the central component of most multipliers, the
reduction array that converts the partial products into a pair of binary numbers
to be added by a final fast adder. To our surprise, we found a very general way to
describe a large class of reduction arrays. They all have the form of the triangular
array of cells shown in Fig. 3, and varying just two small wiring patterns inside
the cells allows us to cover a range of slow and fast multipliers. This insight
into the structure of reduction trees in general led us to the idea of building an
adaptive reduction array, in which those two small wiring cells are (repeatedly)
instantiated to appropriate wiring patterns during circuit generation, based on
information about delay on the inputs gained by the use of models of the half and
full adder cells and of the wires connecting them. This is a neat application of
the idea of clever circuits [12]. The resulting reduction tree seems to have rather
good performance, at least according to our abstract analyses. Much work will
need to be done to confirm that the adaptive array is indeed superior to standard
arrays. We will need to experiment with different approaches to the layout of
the array. Further, we were able to use clever wiring cells also to take account
of restrictions in the availability of tracks for cross-cell wiring.

We became increasingly interested in methods of writing simple but powerful
circuit generators that look exactly like structured circuit descriptions but that
produce circuits that are adapted to a given context and so are not as regular as
might first appear. We believe that the move to deep sub-micron necessitates new
design methods in which lower level details are exposed early in the design, while,
at the same time, there is a move to design at higher levels of abstraction and
with a greater degree of reuse. Thus, methods of getting low level information up
through levels of abstraction will become increasingly important. The method
of writing generators for adaptive circuits presented here is an approach to this
problem. It is presented via a running example, including the actual code of the
generators. Readers who are not familiar with Haskell or Lava are referred to
the Lava tutorial [4]
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Fig. 1. The structure of a multiplier, as defined in multBin

2 A general multiplier

A binary multiplier consists of a partial product generator, a reduction array
that reduces the partial products to two bits for each bit-weight, and a final
adder that produces the binary result (see Fig. 1). Thus, transcribing from the
picture, the top level of a Lava description of a multiplier is

multBin comps (as,bs) = pl:ss
where
([p1]:[p2,p3]:ps) = prods_by_weight (as,bs)
is redArray comps ps
binaryAdder ([p2,p3]:is)

Ss

Binary numbers are represented by lists, least significant bit first. (In Haskell,
[1 is the empty list, [a,b,c] is a list of length 3, and (a:as) is a list whose
first element is a and the remainder of which is the list as.) The three equations
correspond to the three components of the multiplier, and indicate what their
inputs and outputs are. For example, the partial product generator has as inputs
the two binary numbers to be multiplied, least significant bit first, and produces
a list of lists of bits. The first of these is of weight one and is the singleton
list [p1]. The second is of weight two and contains two bits: [p2,p3]. The
remainder, ps, is a list of lists of increasing weight, and is input to the reduction
tree. This description works only for 3 by 3 bit multiplication and above. The
comps parameter to both the multiplier contains a tuple of the building blocks,
such as full- and half-adders, used to construct the multiplier. We postpone the
decision as to what exactly it should contain.

In this paper, we concentrate entirely on the design of the reduction array. It
is implemented as a linear array (a row) of compress cells, each of which reduces
the partial products at its bit-weight to two.

redArray comps ps = is
where (is,[]) = row (compress comps) ([],ps)
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Fig. 2. (a) A specific fcell (b) A general fcell showing building blocks (c) hcell

Carries flow from left to right through the array, with an empty list of carries
entering on the left and exiting on the right. Here, again, the comps parameter
will later contain a tuple of building blocks. That we use a linear array means
that we are considering the so-called column-compression multipliers. However,
as we shall see, this class of multipliers is large, encompassing a great variety of
well-known structures.

It remains to design the compress cell. It takes a pair of inputs, consisting
of a list of carries on the left, and a list of partial products at the top. It should
produce two bits at the bottom, and on the right a list of carries to be passed to
the next column, which has weight one higher. All of the input bits to compress
have the same weight. It must produce two bits of the same weight, and any
necessary carries.

If we had a building block that reduced the number of product bits by one,
with a carry-in and a carry-out, we would be well on the way. An example of
such a fcell (in this case with six inputs at the top and five outputs at the
bottom) is shown in Fig. 2(a). It is a kind of generalised full-adder, made from a
full-adder and some wiring. Fig. 2(a) shows a specific instance, but we can make
a general fcell by parameterising the component not only on the full adder but
also on the wiring, as shown in Fig. 2(b).

The wiring component iC, for insert Carry, determines how the carry input,
which comes from the left, is placed among the n + 1 outputs of the iC block.
If it is placed in the leftmost position, then that part of the cell looks like the
particular cell shown in Figure 2(a). But there are many other choices, as we shall
see later. Similarly, there are many choices for how the insert Sum component,
i8S, can look. In experimenting with wire-aware design, we have found that it
makes sense to include all of the wiring as explicit components. One should think
of tiling the plane, not only when building regular arrays of cells, but even inside
the cells. So, we add two further components. s3 divides n + 3 wires into 3 that
are passed to the full-adder and n that cross it. cc is the wiring by means of which
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Fig. 3. The reduction array for 6 by 6 bit multiplication

those values cross the cell. fcell is defined using layout-oriented combinators,
following the pattern shown in Figure 2(b).

A column of fcells is exactly what we want for compress in the special
case where the number of carries is exactly two less than the number of partial
product bits. Then, the fcells, reduce the partial products to two, one bit at
a time. If this difference in length is greater than 2, we can rescue the situation
by topping a recursive call of compress with a generalised half-adder cell that
does not have a carry-in, using the combinator |-. The half-adder cell is called
hcell, and is illustrated in Fig. 2(c). The hcell reduces the length difference
by one, and can be thought of as handing the remaining problem to the smaller
recursive call below it (see also the columns on the left in Fig. 3). It uses the
same iS, iC and cc cells as the full-adder, and needs an s2 cell that passes two
of its inputs to the half-adder. (For a more precise analysis, it would be better
to have different building blocks for the half- and full-adder, but we choose to
reuse building blocks for simplicity.)

On the other hand, if the length difference is less than two, removing the
topmost carry input and placing it among the partial products, using the insert
Carry wiring that we have already seen adds two to the length difference. The
wcell selects this piece of wiring from the tuple of building blocks. The recursive
call that is placed below wcell again takes care of solving the remaining problem.

wcell (hAdd,fAdd,iS,iC,cc,s2,s83) = iC

compress comps (as,bs)

| (diff > 2) = (compress comps |- hcell comps) (as,bs)
| (diff == 2) = column (fcell comps) (as,bs)
| (diff < 2) = (compress comps -| wcell comps) (as,bs)

where diff = length bs - length as



Fig. 3 shows a row of compress components, applied to partial products of the
shape produced by the partial product generator. The instances of compress on
the left have a length difference of three (between the number of partial product
inputs and the number of carry inputs), and so consist of a column of fcells
below a hcell. (Unmarked cells in the diagram are fcells; those marked h are
hcells, and those marked w are wcells.) Then, there is one instance where the
difference is one, so it is wcell above a recursive call in which the difference
is 3, that is is a column of fcells topped by hcell. Finally, there are several
instances of compress where the difference is zero, and these are columns of
fcell topped by wcell. This triangular shape contains the minimum hardware
(in terms of half- and full-adder cells) needed to perform the reduction of partial
products. To multiply two n-bit binary numbers, one needs (n — 1)(n — 2) half-
or full-adder cells in the reduction array, n — 1 of them half-adders.

A row of compress cells can adapt itself to the shape of its inputs, as the
definition of compress causes the right number of full or half-adders to be placed
in each column. So such a row can function as a multi-operand adder, or function
correctly with different encodings of the inputs. For the particular case of the
reduction tree for a standard multiplier, there is no need to define a special
triangular connection pattern to achieve the desired triangular shape. Such a
specialised connection pattern would have lacked the flexibility of this approach.

A reduction array defined by the function redArray is also very general in
another sense. By varying iS and iC wiring cells in the tuple of building blocks
called comps, a great variety of different multipliers can be constructed, ranging
from simple slow arrays to fast logarithmic Dadda-like trees. This surprisingly
simple but general description of reduction arrays is, as far as we know, new.
We had not expected to find such regularity even among the so-called irregular
multipliers.

3 Making specific reduction arrays

A reduction array built using the function redArray is characterised by the tuple
of building blocks: (hAdd,fAdd,iS,iC,cc,s2,s3) that is the comps parameter
(see Figs. 2 and 3). For now, we fix cc to be the identity function, and s2 and
s3 to be the functions sep2 = splitAt 2 and sep3 = splitAt 3 that split the
list without performing any permutation. What we will vary between multipliers
are the iS and iC wiring cells. Their role is to insert a single bit into a list of
bits, to give a new list whose length is one longer than that of the original input
list. The full-adder or half-adder that consumes some of the resulting list always
works from the beginning, that is from the left in Fig. 2. So by choosing where
to place the single bit, we also choose where in the array it will be processed.

3.1 A simple reduction array

If we place the single bit at the beginning of the list for both the sum and
the carry case, the choice shown in Fig. 2(a), we make a reduction array that



consumes carries and sums as soon as possible. A carry-out is consumed by the
next rightmost cell, and a sum output is consumed by the next cell down in the
column. This is the reduction array that forms the basis of the standard linear
array multiplier. It has only nearest neighbour connections between the full and
half adder cells [6].

3.2 The Regular Reduction Tree multiplier

Postponing sums, by choosing iS to be toEnd, the function that places a value at
the end of a list, but consuming carries immediately as before gives the Regular
Reduction Tree multiplier proposed by Eriksson et al. [7].

3.3 A Dadda multiplier

A better choice, though, is to postpone both sums and carries, using the toEnd
wiring function for both iS and iC. This gives a Dadda-like multiplier with
both good performance and pleasing regularity. It is very similar to the modified
Dadda multiplier proposed by Eriksson [6], but adds a simple strategy for layout.

3.4 A variety of arrays

If carries are consumed not in the current cell but in the cell below, and if sums
are consumed as soon as possible, we get a variant on the carry-save array, called
CCSA [6]. Similarly, other choices of the wiring cells give different arrays. We
could easily describe yet more reduction arrays if we divided the triangular shape
into two, roughly down the middle, and used different versions of the wiring cells
in each half. Instead, we turn our attention to the problem of estimating gate
and wire delays in data-paths like the reduction arrays.

4 Calculating gate delays

The description of the array is parameterised on the tuple of building blocks.
This allows us to calculate gate delays simply by simulating a circuit made from
versions of those cells that, instead of operating on bits, operate on integers
representing delays. The non-standard cells model the delay behaviour of the
real cells. For example, the delay-model of the half-adder is

halfAddI (as, bs, ac, bc) [al,a2] = [s,cout]
where
s = max (as+al) (bs+a2)
cout = max (ac+al) (bc+a2)

It has four parameters representing the delay between each input and the sum
and each input and the carry. The delay version of the full-adder is similar. Here,
max and + are overloaded functions that work on both Haskell integers and the
integers that flow in circuits; as a result, halfAddI is also overloaded.



A standard approach to the analysis of partial product reduction trees is to
count delays in terms of zor gate delay equivalents [11]. For the half-adder, this
would give cross-cell delays of (1,1,0.5,0.5), for instance. Since we will simulate
circuits carrying delay values, we are restricted to integer delays, and so must
multiply all of these numbers by 10. Thus, we define half- and full-adder delay
estimation circuits as

hI as
fI as

halfAddI (10,10,5,5) as
fullAddI (20,20,10,10,10,10) as

Main> fI [0,5,5]
[25,15]

hT and £TI are again overloaded to work both at the Haskell level and the circuit
level. This overloading will prove useful later, when these delay-modelling cells
will be used first at the circuit level, that is during simulation, and then at the
Haskell level, that is during generation. This is a standard and simple delay
model, giving worst-case delays without taking account of false paths. For the
moment, it is sufficient for our purposes, though in future work we will want to
look at more complex delay estimation.

To make a delay estimation version of a reduction array, we simply replace
the half- and full-adder in its component tuple by hI and £I. We leave the wiring
cells alone; they are polymorphic and so can operate on either bits or integers
as required. To find the gate delay leading to each output, we feed zeros into
the resulting circuit, and simulate. The function ppzs n produces a list of lists
of zeros of the shape expected by the array.

dDadG n = simulate (redArray (hI,fI,toEnd,toEnd,id,sep2,sep3)) (ppzs n)

Main> dDadG 16
[[o0,10]1,[5,20]1,[20,30], [30,40]1, [40,50], [50,50], [50,60],[60,70],[70,70],
[70,70]1,[70,80],[70,80],[80,901,[90,90],[90,90],[90,90],[90,90],[90,90],
[80,901, [80,80], [70,80], [70,80]1,[70,70]1,[60,70],[60,60],[50,60],[50,50],
[40,20], [0,20]]

The Dadda array has a maximum delay of 9 xor-gate delays at size 16 by 16. By
comparison, the linear array (from section 3.1) of the same size has a maximum
delay of 41 xor-gate delays. The next step is to take account of wire delays.

5 Taking account of wire delays

The wires whose delays are of interest to us are those that cross the cells, that
is they correspond to the cc parameter in the tuple of functional and wiring
components (see Fig. 2). So, in our delay calculation, we can just replace this
parameter, which was the identity function before, with a function that adds
a fixed value d to the incoming delay. The gate delay models are hI and fI,
as before. However, this is not quite right. When we check the various delay
profiles using this approach, we find that all of the array topologies incur long
wire delays. Why is this? It is because our triangular shaped array takes all of



the input partial products at the top, and allows them to flow down to the cell
that processes them. So, for example, in the linear array, there is a long wire
carrying a partial product bit right from the top of the array to the bottom. But
the delay on these partial product carrying wires is not of interest to us in the
current analysis (though we would want to count these delays if we implemented
the array in exactly this form). The standard approach to comparing reduction
arrays in the literature is to ignore the problem of getting each partial product
bit to the cell that processes it. In real arrays, the partial product production
is typically mixed with the reduction array, and the problem of distributing the
multiplier inputs to the right positions is handled separately. We would like, at
a later date, to tackle the analysis of such a mixed partial product production
and reduction array, including all wire delays. Here, though, we will analyse just
the reduction array, and will count delays only in the inter-cell wires, that is the
sum and carry wires that run across cells from top to bottom.

To achieve this, we tag each wire that might contribute delays in the simu-
lation with a Boolean, indicating whether it is a partial product or is an output
from a full- or half-adder. The partial product inputs are tagged with True.
Those wires do not contribute to the delay, while wires tagged with False do.

wireIB d (m,b) = if b then (m,b) else (m+d,b)

cross d = map (wireIB d)

So now, in the tuple used in delay simulation, we can replace the cc wiring cell by
cross d. As a result, the half- and full-adder cells must also change, to be able to
accommodate the new Boolean tags. For instance, to make the hybrid full-adder
circuit, £IB, we combine £I with an abstract half-adder, £B, that takes Booleans
as input and outputs [False, False], indicating that the corresponding wires
do not carry partial product bits. The two full-adder variants operate completely
independently, one working on delay values, and the other on Boolean tags.

fIB as = (fI // fB) as

Main> fIB [(0,True), (5,True), (5,True)]
[(25,False), (15,False)]

The hybrid half-adder, hIB, is constructed similarly. The sep2 and sep3 wiring
cells are polymorphic, and so do not need to change, even though the types
of values that flow along their wires are now different. To study the gate and
wire delay behaviour of a particular array, we construct a component tuple with
hIB in the half-adder position, £IB in the full-adder position, and cross d as
the cross-cell wiring. The necessary Boolean tags are inserted and removed by
the functions markTrue and unmark, while getmax returns the largest delay. For
larger sizes, the effects of wire delay become significant. For 53 bit multiplication,
the maximum delays for the Dadda reduction array range from 15 xor-gates for
zero cross-cell wire delay to 32 for a wire delay of 4.

maxDel f n = simulate (markTrue ->- f ->- unmark ->- getmax) (ppzs n)

mDad d = maxDel (redArray(hIB, fIB, toEnd, toEnd, cross d, sep2, sep3))



Main> [(i,mDad i 53) | i <- [0..4]]
[(0,150),(1,189),(2,230),(3,275), (4,320)]

It would be interesting to develop further analyses to help in understand-
ing the different delay behaviours of the multipliers, as well as to repeat these
calculations with different settings of the cell and wire delays, for various sizes,
and perhaps in a more symbolic way. Here, we continue our series of multi-
plier descriptions by considering a multiplier in which the wiring depends, in a
systematic way, on the estimated delay in the cells and the wires.

6 A cleverer multiplier

In simpler circuit descriptions, it is usual to use a Haskell integer variable to
control the size of the generated circuit. Clever circuits is a more sophisticated
programming idiom in which Haskell values that are more closely tied to the
circuit structure are used to guide circuit generation [12]. In the previous section,
we used this idea to build a circuit to perform delay calculations. The Boolean
tags were what we call shadow values — Haskell-level values that were used to
guide the generation of the delay-estimation circuit. The shadow values could
be seen as controlling the production of a net-list containing wire-modelling
components that add d to their inputs as well as fI and hI components. This
ensured that only certain wires of the original circuit contributed to the delay
estimation.

Here, we apply the same idea one step earlier, during the initial circuit gen-
eration. In this case, though, we use clever circuits to control the generation of
wiring rather than of components. We have shown how multipliers can be pa-
rameterised on the iS and iC cells, and we made various decisions about their
design, always choosing a fixed piece of wiring for each of these cells, for each
array. But why not make these cells react to the delays on their inputs during
circuit generation, and configure themselves accordingly, resulting in possibly
different choices throughout the multiplier? This appealing idea is similar to
that used in the TDM multiplier, and in related work [11,13,1]. Here, we show
how well it fits into our general reduction array description, giving an adaptive
array that can depend not only on gate delays (as in the TDM), but also on
delays in the wires crossing cells.

The first step is to make a cell that becomes either the identity on two bits,
or a crossing (or swap), depending on the values on its shadow inputs. If the
predicate p holds of x and y, the swap is performed; otherwise the output is the
same as the input.

cswap p ((a,x),(b,y)) = if (p x y) then ((b,y),(a,x)) else ((a,x),(b,y))

Now, during circuit generation, if cswap receives, on its shadow inputs, two
values for which p holds, then it becomes a crossing, otherwise it is the identity.
And once the circuit has been generated, all record of the shadow values that
influenced its shape have disappeared.



The clever wiring cells should (like iC and iS) have a pair of inputs, consisting
of a single value and a list. We assume that the list of inputs is in increasing
order of delay. Then, we want to insert the single value into the correct position
in the list, so that the resulting list is also in increasing order of delay, and so
presents the wires with the least delay for use by the next half- or full-adder. We
do this using a row of cswap components, and then sticking the second output
of the row onto the end of the first, using append right (apr):

cInsert = row (cswap p) ->- apr
where p (gl,bl) (g2,b2) = gl > (g2::Int)

This is similar to the row of comparators that is the insertion component of
insertion sort. The predicate p compares the integer delay values. Depending on
the delays of the input wires, various wirings can be formed, ranging from the
simplest apl, in which no swaps are made, to toEnd, in which all the possible
swaps are made, placing the single input at the end of the list. The important
point is that the wiring adapts to its position in the array, based on the delay
information that it receives during circuit generation. We replace iS and iC by
cInsert.

What remains to be done is to make shadow versions of all of the other com-
ponents, and to combine them with their concrete counterparts. These shadow
versions must work on Haskell-level (integer, Boolean) pairs. We have, however,
already constructed hIB and £IB cells that work on such pairs; we simply reuse
them here (exploiting the fact that hI can also work on Haskell integers).

adapt (hAdd, fAdd, cc) (d,pds)
= mmark pds ->- redArray (hAdd // hIB,
fAdd // fIB,
cInsert, clInsert,
cc // cross d,
sep2, sep3) ->- unmark

adapt defines the adaptive reduction array. It is just a call of the redArray
function with a suitable tuple of building blocks. The mmark pds function sets
up the shadow values correctly, based on the input delay profile pds, and unmark
removes the shadow values on the outputs. Thus, adapt is parameterised not only
on the half-adder, full-adder and the cross-cell wiring, but also on the delay d
in that wiring and on the delay profile of the incoming partial products, pds.
The latter two parameters influence the formation of the circuit, that is they
control exactly what wiring pattern each instance of cInsert becomes in the
final circuit. Each sublist of pds is assumed to be in delay sorted order (and this
could, if necessary, be achieved by further use of clever wiring).

If, during generation, we choose the cross-cell wire delay to be zero, and the
input delay profile to be all zeros, we get a basic TDM-style multiplier [11].
Measuring both gate and wire delays, with a cross-cell delay of 2, for 16 by 16
bit multiplication, the TDM array has a maximum delay of 116 units (where 10
units is one xor-gate delay). If the same wire delay is used during the generation
of the array, the maximum delay reduces to 100. We call the resulting array wire-
adaptive. For comparison, the modified Dadda array has a maximum gate and



wire delay of 122 units for this size. For 64 bit multiplication, the delays for the
wire-adaptive, TDM and Dadda arrays are 234, 258 and 266 respectively, while
the corresponding figures for 80 bits are 270, 300 and 302. So it makes sense
to take account of wire delay while generating reduction arrays. Making use of
the input delay profile during circuit generation further improves the resulting
array.

7 Taking account of constraints on available tracks

In real circuits, there are typically constraints on the number of tracks available
for cross-cell wiring. Here, again, we are concerned only with the sum and carry
wires, and we do not consider the problem of routing the partial product wires
to the correct positions. The circuits that we have seen so far took no account of
constraints on wiring tracks. Here, we demonstrate the versatility of our approach
to writing array generators by incorporating such a constraint.

In each cell, we would like to limit the number of sum and carry wires that
can cross the cell to be a maximum of ¢r, the number of available tracks. This
can be done by using clever wiring in new versions of the s2 and s3 wiring cells
(see Fig. 2). Let us consider the case of s3. When the number of sum or carry
wires crossing the cell below it is in danger of becoming too large, fcon tr moves
one or two such wires leftwards, as necessary, so that they are consumed by the
cell, instead of crossing it. The function move (m,n) p ensures that there are at
least n elements satisfying p in the first output list, which should be of length m.
The new version of s2 is hcon tr, which is similar to fcon tr.

fcon tr as
| (1 < tr+1l) = move (3,0) p as

| (1 == tr+1) = move (3,1) p as
| (1 == tr+2) = move (3,2) p as
where

1 = length (filter p as)
p (c,(i,b)) = not b

adaptCis the same as adapt, apart from the addition of the tr parameter and the
replacement of sep2 and sep3 by the two adaptive wiring cells, hcon tr and
fcon tr, in the tuple of building blocks. The result is a remarkably powerful
reduction array generator. Varying the available number of tracks gives us even
more variety in the arrays produced, and allows us to trade off delay against
wiring resources. The function mAdCon takes as parameters the number of cross-
cell tracks, the wire delay to use during generation and simulation, and the size
of the two numbers being multiplied; it returns the maximum delay on an output
in the reduction tree, for zero input delay. For 18 bits, and ignoring wire delays,
having zero tracks gives a linear array with 42 xor-gate delays, and the delay
decreases as more tracks are made available, reaching the minimum 9 gate delays
for 7 or more tracks.

mAdCon tr di d2 n = maxDel (adaptC tr (hIB,fIB,cross d2) (dil,pps O n)) n

Main> [(i,mAdCon i 0 O 18) | i <- [0..8]]
[(0,420),(1,235),(2,155),(3,125),(4,110), (5,100), (6,100), (7,90), (8,90)]



Finer delay modelling, for example the use of calls to external analysis tools,
would give better multiplier performance. Here, we assumed that delay increases
linearly with wire length. We will investigate a model in which delay is propor-
tional to the square of the length. This would be easy to incorporate. We will
also consider the automatic generation of buffers on long wires.

8 Related work

The most widely used partial product reduction tree is the Wallace tree [15].
It can be thought of as being made from horizontal blocks that are carry-save
adders, rather than from vertical compress blocks as here. However, the Dadda
tree [5], particularly in the modified form shown here, gives comparable perfor-
mance in both delay and power [6].

Luk and Vuillemin presented, analysed and implemented a family of fast
recursively-defined multiplication algorithms [8]. One of these is a linear array
of bit-convolver circuits, where the bit-convolver has the same function as our
compress cells. The bit-convolvers were recursively defined as binary trees, and
laid out with the root in the middle and the two smaller trees above and below
it (as is standard in adder trees). This corresponds, also, to implementing the
entire multiplier as a rectangular array with two half-sized recursive calls sand-
wiching the final adder. The corresponding implementation compared well with
Wallace trees for smaller sizes. The emphasis in the work of Luk and Vuillemin is
also on the generation of multipliers from readable descriptions containing some
geometric information. The importance of parameterised generators is stressed,
and formal verification (of fixed size circuits) is also considered. This work is an
important inspiration for ours. An adaptive tree should be faster than a static
binary one, but it may be that we need to lay out the tree with the root in the
middle. This needs to be investigated in future work.

The original TDM multiplier generation method considers gate delay in
choosing how to wire up a partial product reduction array to minimise max-
imum gate delay [11]. When our adaptive array works with the standard gate
delay model and zero input and wire delay, it is mimicking exactly the original
TDM method, and achieves identical gate delays. The original TDM uses what
the authors call a 3-greedy algorithm; the three fastest wires are chosen for con-
nection to the next full-adder. Like our adaptive array, the basic TDM method
can be adapted to take account of the input delay profile. Later work showed
that the 3-greedy method produces near-optimal results for maximum delay,
but that a more sophisticated 2-greedy method produces better delay profiles
because it allows a more global optimisation [13]. The analysis and the new gen-
eration algorithms are elegant, but the resulting method uses expensive search,
which neither the basic TDM nor our approach requires. We are interested in
seeing how far we can get with symbolic evaluation, which requires no search
and so scales up well.

The TDM method and its more sophisticated successors do not currently
take account of wire delay and the authors mention that this is a natural next



step. The methods do not either take account of constraints on tracks. They
could, presumably, be adapted to do so. Al-Twaijry et al present a partial prod-
uct reduction tree generator that aims to take account of both wire delay and
constraints on available tracks [1]. This work seems close to ours. The big differ-
ence is in the method of writing the generators. Ours are short, and retain the
structure of the array, with parameterisation coming from local changes inside
the cells, whereas the standard approach is to write C code that generates the
required net-list. We are hopeful that our generators will be more amenable to
formal verification.

Our approach can be seen as deciding on the placement of the hcells, fcells
and wcellsin advance, and then making a multiplier with the required properties
by forming the wiring inside those cells during generation, making use of context
information such as input delay and constraints on tracks. Thus, it is important
to keep that placement when producing the final circuit. Some approaches aim,
instead, to produce unplaced net-lists that will give short wires when given to
a synthesis tool that does the placement [14]. Both our approach and the TDM
methods use half- and full-adders as the building blocks. The work of Um and
Kim uses entire carry-save adders as building blocks, arguing that this gives
more regular interconnections. A final adjustment phase aims to get some of the
advantages of using a finer granularity. Our approach is very different because
we aim to give the writer of the generator control over placement, and thus over
degree of regularity. We are not restricted to the triangular placement described
here, and intend to experiment with other layouts.

To our knowledge, the best approach to the design of reduction trees under
constraints on tracks is based on the over-turned stairs (OS) trees [10]. The
OS trees are a sequence of increasingly sophisticated recursive constructions of
delay-efficient trees of carry-save adders that are designed to minimise cross-cell
tracks. Although the method of counting cross-cell tracks is not identical to ours
(since we consider a carry-in that is not used by the current cell to cross the
cell), we believe that our simple constrained reduction trees have longer delay
than the reported results (which give only gate delays) for higher order OS trees
for larger sizes. We will consider ways to improve our algorithm, and will do a
more detailed comparison.

9 Discussion

We have given a short parameterised structural description of a partial product
reduction tree made from hcells, fcells and wcells (see Figs. 2 and 3). We
then showed how a great variety of multipliers can be obtained by varying the
building blocks (iS, iC etc.) of those cells, while retaining the same overall
structure. First, we made standard arrays, including a modified version of the
Dadda tree. Because of the surprising regularity of the Dadda array, a colleague,
Henrik Eriksson, was able to lay it out with ease in a manual design flow. The
measured results for delay and power consumption are promising and a paper is
in preparation. It is usual to dismiss both Dadda and Wallace trees as difficult



to lay out. We have shown that a Dadda tree can be made regular. In Lava, we
performed a simple delay estimation on the various arrays by using non-standard
interpretation. We replaced circuit components, including wires, by non-standard
versions that estimated their delay, and then performed simulation.

The next step was to use the same kind of delay modelling during circuit
generation. The idea of clever circuits, that is circuits that can adapt to context
information, was combined with the delay modelling to control the production
of wiring cells. This allowed us to produce fast arrays that can adapt to gate and
wire delay, and to the delay profile of their inputs. Next, we showed that further
use of clever wiring allowed the generator to adapt to constraints on wiring re-
sources. A very high degree of parameterisation is achieved by local changes in
the cells. This was made possible by the initial insights into the general structure
of reduction arrays. The result is a powerful circuit generator that looks exactly
like a structural description of a simple multiplier, and so is very small. We
consider this to be a very promising approach to the writing of data-path gener-
ators. The combination of clever circuits with the connection pattern approach
that we have long used in Lava seems to give a sudden increase in expressive
power. Here, we used clever wiring to get parameterisation, but in other appli-
cations, we will need to control the choice of components, or even of recursive
decompositions. The latter arises, for example, in the generation of parallel pre-
fix circuits, where different recursive decompositions give different area, delay
and fanout tradeoffs. We are currently investigating ways to choose recursion
patterns dynamically during circuit generation, partly because we plan to use
these methods to make the fast adder that is needed to complete a multiplier
design. Such an adder must adapt to the delay profile of the reduction tree that
feeds it.

We would like to verify the generators once and for all, for all sizes and
parameters. Our hope is to be able to verify a generator as though it were a
circuit description, exploiting the fact that the generator is structured as a circuit
(and is short and simple). To do this, we expect to build on the seminal work
by Hunt and his co-workers on the use and verification of circuit generators [3]
and on recent work on the verification of parameterised circuits [2]. We will
probably have to develop verification techniques that are specialised to our style
of writing circuit generators. We are interested in investigating the use of a
first order theorem prover to automatically prove the base case and step of the
necessary inductive proofs.

The ideas presented here could be used to implement module generators that
provide designers with access to a library of highly flexible adaptive data-paths,
without demanding that the designer construct the modules himself. This would
allow the incorporation of these ideas into more standard design flows. This
vision is compatible with the timing-driven module-based design flow that was
outlined recently by Mo and Brayton [9].

Our next step will be to implement and analyse a fast adaptive multiplier in
our Wired system, in which geometry is considered, and the exact placement of
each wire is accounted for.
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