
Computer Science and Engineering Distributes Systems CTH HT11

Chalmers and Göteborg University TDA596

Göteborg GU-INN240

SAA

Resource allocation using Logical Clocks

The resource allocation algorithm using Logical Clocks given by Lamport should be implemented
within the Netsim program. 

General 

When first giving a public void trigg() to a node it should do a request. When doing a trigg() 

again at the same node it should do a release. Then a request again and so on. The clock value as well 

as the three first requests in the queue should be shown as VisibleString objects by thy node.

When a node puts a request it should also call setWaken(); on the node interface. This will change 

the color of the node on the screen. 

When a node is allowed to use the resource it should call setActive(); on the node interface.

When a node releases the resource it should call setIdle(); on the node interface.

The messages should have a tag with sender, timestamp and type of message.

For each event a node should write to public void writeLogg(String row); on the node interface 

in order to trace the events. Then the real physical order of events can be viewed by selecting view -

> system log on the menu bar.

N.B. The Logical Clock algorithm requires a network that is fully connected, i.e. from any node there 

is a connection to any other node. The network should also be safe and FIFO.

Algorithm conditions

- The algorithm uses

• Distributed Request Queue (empty at start)

• Logical Clock

- each process administers:

• a local copy of the Request Queue 

• a local copy of the Logical Clock

• a table containing the latest received timestamp from each of the other processes in the 
system 
(TS-table) 

- When placing a request at process Pi, it is associated with the current local logical clock value 

Ci in Pi.

- all messages between two processes is delivered in the same order as they were sent and no 

message will disappear (FIFO).

This will be the case when using a communication protocol such as TCP/IP. 



-2-

The algorithm events

- Pi REQUEST:

• <Ti;Pi;REQUEST> is sent to all other processes, Ti is the timestamp taken from Ci 

• <Ti;Pi;REQUEST> is also put in Pi’s local copy of the Request Queue sorted according to 
"→T"

• Pi increments its local Logical Clock value

- Pj receives REQUEST <Ti;Pi;REQUEST>:

• Pj adjusts its local copy of the Logical Clock according to the Logical Clock definition

• <Ti;Pi;REQUEST> is put in Pj’s local copy of the Request Queue sorted according to "→T"

• Pj updates its TS-table

• Pj increments its local Logical Clock value

• Pj sends an acknowledgement <Tj;Pj;ACK> to Pi

• Pj increments its local Logical Clock value

- Pi receives an acknowledgement <Tj;Pj;ACK> from Pj:

• Pi adjusts its local copy of the Logical Clock according to the Logical Clock definition.

• Pi updates its TS-table with Tj from Pj

• Pi increments its local Logical Clock value

- Pi is allowed access to the resource when: 

• <Ti;Pi;REQUEST> is number one in the (local) Request Queue 

• Ti →T Tj for all Tj in the (local) TS-table

- Pi want to RELEASE:

• <Ti
’;Pi;RELEASE> is sent to all other processes, Ti

’ is the timestamp taken from actual Ci

• <Ti;Pi;REQUEST> is erased from the (local) Request Queue

• Pi increments its local Logical Clock value

- Pj receives <Ti
’;Pi;RELEASE>:

• Pj adjusts its local copy of the Logical Clock according to the Logical Clock definition.

• <Ti;Pi;REQUEST> is erased from the (local) Request Queue

• Pj updates its TS-table with Ti
’ from Pi

• Pj increments its local Logical Clock value


