
1 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Fault-Tolerant Systems

� Failure Semantics

� Fault-Tolerant software

� Fault-Tolerant hardware

� Fault-Tolerant data storage

� Pessimistic solution — Stable storage

� Optimistic solution — Replicated data and network partitioning

� Physical Clocks

� MARS algorithm

� The most unreliable environment

� Byzantine Generals Problem

2 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Reliable Systems

� reliability

� The probability that a system will perform in a correct manner

� availability

� The probability that a system will deliver a correct answer at one moment

� calculated from the system reliability and expected repair time after a fault.

� fault-avoidance

� To try and make a perfect system

� fault-tolerance

� To try and cope with errors using redundant parts or measures.

3 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Fault-Tolerance

� A system might (for certain) contain faults.

� Programming error

� Hardware error

� Data error

� When the execution of the system program hits a fault we will have an error.

� Then the wanted output of the program can not be achieved in the normal manner.

� If we have implemented measures to cope with this error we will still get a (almost) correct behavior

of the system. This is called fault-tolerance.

The error has been masked from the system behavior.

� When the system “user” sees the error or if the error leads to an inconsistent state or behavior then we have
a failure.

4 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Fault-Tolerance

methods

� redundancy

� hardware

� software

� data

� operation

� Different ambition

� error detection and recovery

• the errors are visible

� error masking

• the errors are hidden

• gives transparency to the errors

5 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Error Masking

� Hierarchical Error Masking

� exceptions

� message resend

� retries

• try to read from a hard disk a second time

� ..

� Group Error Masking

� group of servers

� the MARS-algorithm

� many copies of the same

• Data File

• Data Block

6 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Model for error classification in Client-Server systems

� We have a

� client

that wants a

� service

which is carried out by a

� server

then the client is

� dependent

on that server.

� A server can in turn be using services from other servers.

This can be described in a

� dependency graph

7 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Dependency Graph

� f uses services from s and d.

� When carrying out f’s service s uses services from u and v.

f

s s

u v

8 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Failure Semantics

� Example (service):

� A crash error is when nothing happens.

� An omission error is when is when one or more responses fails. A crash is a special case of omission

when all ropiness fails.

� A timing error is when is when one or more responses do not arrive in time. An omission error is a

timing error when a response has infinite timing error.

� An arbitrary error is any error, i.e. a wrong value or a timing error.

crash omission arbitrarytiming

9 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Failure Semantics (2)

� When a client uses a server it can cope with different type errors from the server.

� If it can manage a crash at the server it is said to assume the server to have crash failure semantics

� If it can manage an service omission it is said to assume the server to have omission failure semantics

� Failure Semantics are the type of errors that we expect to appear.

� Should another type of error appear it will lead to a service failure since we can not manage it.

10 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Failure Semantics (3)

� The classifying depends on the performed algorithm.

� Example (Distributed Voting): (NB you don’t have to learn this!)

� Omission Fault

A response fail to appear

� Consistent Omission Fault

All responses fail to appear, the same as a crash.

� Timing Fault

The response is not within the expected time interval.

� Consistent Timing Fault

All responses are not within the expected time interval.

� Univalued Timing Fault

All responses have the same Consistent Timing Fault.

11 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

� Value Fault

A response has a wrong value.

� Consistent Value Fault

All responses have wrong values.

� Synchronous Value Fault

All responses have the same Consistent Value Fault.

� Consistent Commission Fault

All responses have Consistent Timing Fault and Consistent Value Fault

� Commission Fault

Responses have arbitrary faults, anything might be wrong in any manner.

• arbitrary fault

• Byzantine fault

12 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

� Example (Distributed Voting)

consistent

omission

consistent
timing

omission
consistent

value

valuetiming
consistent

commission

uni valued
timing

synchronous
value

commission

13 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Choosing failure semantics

� At which level should the errors be treated?

� Which errors are allowed to cause a failure?

� the different costs must be compared

14 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Fault-Tolerant software

design diversity

� N-version Programming

� Recovery Blocks

� Exceptions

15 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

N-version Programming

� Write N different programs that performs the same task and compare each output value:

� If the values are the same use that value

� If the values differ and a majority of the programs has the same value: use that value

� If there is no majority for one value the system fails.

� There must be at least 3 different programs implemented independently

� Different implementing teams (companies)

� Different implementation programs

� Different implementing principles

to avoid the same error to appear in the different programs.

16 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

N-version Programming (cont.)

� With a fail-stop system it is enough with 2 different programs

� when the programs give different values the system will be stopped.

� Example: The Automatic Train Control System, ATC, for Swedish trains.

� One program implemented in assembler language

� One program implemented in Pascal

� When output differs the train is emergency braked.

� This method can not be used for an airplane control system.

17 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Recovery Blocks

� Make two different implementations of critical code.

� Use just one of them.

� Include a test for each output that it is within reasonable bounds.

� If not, use the other implementation

18 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Exceptions

� Test output values and use an exception if they are not within bounds.

� Catch exceptions and try to get a result in another way.

19 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Fault-Tolerant hardware

� Use redundant hardware with the same software:

� comparing pairs

use two different hardware units and signal an error when values differs

� triple modular redundancy, TMR

use the majority value from three different hardware units

� check pointing

use tests within programs

� software acceptance test

test that the software has not been corrupted by using a checksum

� multiple units with voting

� multiple units with reconfiguration

� process migration

when a computer fails a process might be moved to another computer.

e.g. TANDEM computers

20 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Fault-Tolerant data storage

� Redundancy:

� multiple copies of data objects

• file level
e.g. LOCUS multiple file copies

• block level
e.g. stable storage

• disk level

⇒ inconsistent data

� we need atomic transactions

21 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Stable Data Storage

� Redundant File System on the Block level - Lampson 1981.

� Instead of calculating the probability of success (which is impossible without reliable input data) we will
instead show the different requirements for success.

� A system consisting of:

� client programs

� data storage units, file servers

� address <f,b> corresponds to byte b on the file f

� communication between client programs and file servers

� data storage units

� read

� write

using messages

22 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Stable Data Storage

� The Stable Data Storage is a layered architecture:

• At the Physical Layer we give a model for the behavior of the units.

• At the “Careful” Layer we use retry to take care of temporary errors.

• At the Stable Layer we use multiple units to take care of more permanent errors.

Physical Layer

“Careful” Layer

Stable Layer

Hard Disk Processor Network

“Careful” Storage Crash - Restart Ack -Resend

Page copies Group Error Masking

Hierarchical Error Masking

23 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

The Physical System

Model

� Events

desired: normal events
error: error events foreseen, detected
disaster: error events not foreseen, undetected

The different algorithms will solve errors but not disasters.

� The physical units are:

� secondary memory (hard disk)

� data communication links

� processors with primary memory

24 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Hard Disks

� A Hard Disk consists of

� a number of addressable pages

� each page has a block of data and its status (good,bad)

� the operations:

• procedure Put(at:Address;data:Dblock);

• function Get(at:Address):
(status:(good,bad);data:Dblock);

� Two different types of event:

� result of Put or Get

� spontaneous events

25 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Effects of the different operations

Get(A)

value of page A in the file Get(A) returns

desired (good,d) (good,d)

desired (bad,d) (bad,...)

error (good,d) (bad,...) ≤ nk times
disaster (good,d) (bad,...) > nk times
disaster (bad,d) (good,...)

disaster (good,d) (good,d’) d≠d’

Put(A,d)

page A becomes

desired (good,d)
error unchanged
error (bad,d)

26 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Spontaneous Events

decay

� Divide the units into pair of pages that are not decay related
i.e. if there is damage to one page in the pair then the other page in the pair should be expected to be OK.

� If there is a spontaneous change (damage) on a page in the pair then there should not be a spontaneous

change on the other page in the pair within a time limit TD.

• Place the two pages in the pair on two different disk units.
- damage to both within the time limit TD will become a disaster
- other damage will be expected errors

� We assume that addresses are not corrupted (otherwise disaster)
according to the undiscovered change above.

Spontaneous Events

error (good,d) → (bad,...) only change within [−TD,TD]
error (bad,d) → (good,d) spontaneous correction
disaster (good,d) → (bad,...) several changes within [−TD , TD]
disaster (s,d) → (s,d’) d≠d’, undiscovered change

27 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Processors

� A processor error will be a crash

≡ reset

� The processor state before the crash is lost

28 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Communication

� messages:

<status:(good,bad);data:Mblock;p:Processor>

� two operations:

• procedure Send(to:Processor;data:Mblock);

• function Receive():
(status:(good,bad);data:Mblock);

29 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Effects of the different operations

� We must allow a arbitrary delay on Receive

Receive()

The message is Receive() returns

desired <good,d,p> (good,d)

desired <bad,..,..> (bad,null)

Send()

call created message

desired Send(to,d) <good,d,to>

30 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Spontaneous Events

� For communication all errors are spontaneous events

Spontaneous Events

error a message disappears
error a message is duplicated
error a message is damaged <good,d,p>→<bad,d’,p>
disaster undiscovered damage <bad,d,p>→<good,d,p>

or <good,d,p>→<good,d’,p>d≠d’
or <good,d,p>→<good,d,p’>p≠p’

31 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

A Stable System

� First we define virtual units with less shortcomings than the physical units:

� careful memory

� Operations:

� CarefulGet

Repeats Get until one page which is good is returned.

At most nk times.

� CarefulPut

Repeats Put and then Get to check the result until Get returns good and with same value as Put was

supposed to write.

At most nk times.

� careful memory will mask occasional errors on a disk unit and transmission errors.

32 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

function CarefulGet(at:address):(Status,Dblock);

begin

for i := 1 to nk do
begin

(status,data) := Get(at);

if status = good then return (status,data)
end;

return(status,data);

end;

procedure CarefulPut(at:Address;data:Dblock);
begin

status := bad;

i := 0;

while (status = bad) and (i < nk) do

begin

Put(at,data);

(status,d) := Get(at);

if d <> data then status := bad;

 i := i+1;

end;

end;

33 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Stable Storage

Consists of stable pages.

� Stable Page:

� one data block

(without status)

� one ordered pair of Careful-pages that are not decay related.

(every word in the definition is significant!)

� Operations:

� StablePut

� StableGet

� Cleanup

� The value of a Stable Page will be:

� the value of the first page in the pair if its status is good

� otherwise the value of the second page in the pair without taking its status in account.

34 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Stable Storage (cont.)

function StableGet(at:Address) : Dblock

begin

(ok,data) := CarefulGet(at copy 1);

if not ok

then (ok,data) := CarefulGet(at copy 2);

return(data)

end;

procedure StablePut(at:Address;data:Dblock);

begin

CarefulPut(at copy 1, data);

CarefulPut(at copy 2, data);

end;

35 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Cleanup

procedure Cleanup;

begin

for all pages do

begin

(ok1,d1) := CarefulGet(at copy 1);

(ok2,d2) := CarefulGet(at copy 2);

if (ok1,d1) = (ok2,d2) then skip

else if ok1 and not ok2 then

CarefulPut(at copy 2,d1)

else if not ok1 and ok2 then

CarefulPut(at copy 1,d2)

else if ok1 and ok2 then

CarefulPut(at copy 2,d1)

else skip /katastrof/;

end;

end;

� Cleanup is performed:

• at system start

• after each crash

• at least every TD seconds

36 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Reliable Communication

� Is achieved according to normal computer communication methods.:

� computer communication protocol

37 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Failure Semantics

hard disk: omission Careful_Get

crash Stable_Get

38 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Network Partitioning

� replicated data

� consistent copies

repeater

repeater

optical fibre

39 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Partitioning Graph

Definition: Partitioning graph G(f) for data unit f is a directed non-cyclic graph.

Each node gives the names of the units that belongs to the partition.

+ marks that the data f has been updated one or more times within the given partition.

40 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Partitioning Graph example

+CD

conflict

ABCD

+ABC D

+AB C

ABCD

1

2

4 5

3

6

7

File F with copies A, B, C, D
on different severs

41 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Explanation of the Partitioning Graph

The Partitioning Graph for a file F describes which copies that are kept for the file and how the network
might be divided into different partitions and if there is performed an update of the file within the partition.
A + indicates that there has been at least one update within the partition.

• In our example we start with all copies in the same partition (1). This means that they can
communicate with each other and that subsequently the files copies are equal.

• Then the network is divided into two partitions, 2 and 3. Copies A, B and C are in partition 2 and
they perform an update which than is based on the file value in partition 1. Copies A, B and C will
have the new value.
Copy D is in partition 3 and keeps the value from 1.

• Then the network is divided again. A and B are in partition 4 while C is in partition 5.
In partition 4 there is an update based on the value in partition 2. A and B gets the new value while
C keeps the value from partition 2.

• Then part of the network is repaired so C and D gets connected in partition 6.
Then D has the old value from partition1 while C has the value from partition 2.
Since C’s value is a newer value based on the value D has there is no real conflict,
It is just to replace D’s old value with C’s new value and then they have the same value.

• Then the + for partition 6 indicates that an update. It is based on the value in partition 2.

• Then the network is completely repaired so all copy servers can communicate.
Then they will have two conflicting values, both based on value in partition 2.

42 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

The main problem is to even avoid such conflicts to happen, pessimistic methods, or detect when they have
happened.

43 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Data Consistency (1)

� Pessimistic methods
disallow concurrent updating/reading

� primary copy

� token

� voting

might give performance/availability problems.

44 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Voting

ABCDE

P0

ABC

P1

DE

P2

C

P4

AB

P3

ABC

P5

ABCDE

P6

45 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Data Consistency (2)

� Optimistic methods

� allow updates without locking

� solve conflicts when partitions are merged

reconciliation

� Roll Back

• cheap updates

• expensive reconciliation

� detection of conflicts:

• Detects all possible conflicts without false alarms.

• Version Vectors = Vector Clocks

46 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Version Vectors

� Version Vector for a file:

� a sequence of n pairs

n number of copies of the file

pair i: (Si : vi) in the sequence indicates the number of updates that have been made at the node Si

keeping a copy of the file

� Each copy of the file keeps a corresponding Version Vector.

⇒ Version Vectors are the same as Vector Clocks

� When updating a file;

• Each update has a responsible node which has one of the file copies.
The update is performed based on this file copy and the new version gets a Version Vector that is
the old copy’s Version Vector with the nodes own value interconnected by 1.
Then all reachable copies of the file get the new version of the file together with the new Version
Vector.

• Multiple updates within one partition is not allowed, there can only be conflicts between updates
in different partitions.

47 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Version Vectors - Conflict Detection

� When two partitions, with version vectors Vi and Vj, are merged the following might hold:

� Vi = Vj in all positions:

then no change has been made in any of the partitions. No action has to be taken.

� Vi < Vj according to the vector clock definition:

then there has been at least one change in partition with vector Vj. The copies in the other partition

should then be replaced with the latter version and they will also get its version vector.

� Vi // Vj according to the vector clock definition:

then there has been at least one change in both partitions. This means that we have a conflict that must

be solved to get a resulting version in the new partition.

The new version will get the version vector where each position has the maximum value from the two

old version vectors. Then one is added for the node that solved the conflict (calculated the new

version), it actually does an update to the file.

• Generally this conflict solving must be done manually. No algorithm can understand the content
of a general file.

• For a special file such as a directory the conflict can be solved automatically if for instance the two
updates have been the creation of two files with different names.

48 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Version Vectors — Example with no conflicts

ABDE

4

+ABCDE

1

C

5

DE

3

+ABDE

6

ABCDE

7

+ABC

2

partition Version Vector

1 <A:1, B:0, C:0, D:0, E:0> A executes the update
2 <A:1, B:1, C:0, D:0, E:0> B executes the update
3 <A:1, B:0, C:0, D:0, E:0> no update, same as 1
4 <A:1, B:1, C:0, D:0, E:0> D,E gets same as 2
5 <A:1, B:1, C:0, D:0, E:0> no update, same as 2
6 <A:2, B:1, C:0, D:0, E:0> A executes the update
7 <A:2, B:1, C:0, D:0, E:0> C gets same as 6

49 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

1. In the first partition there is one update performed by A.

All copies get the new value and the corresponding version vector will become

<A:1, B:0, C:0, D:0, E:0> which is stored with all copies.

2. In this partition an update is performed by B. Copies A, B and C will be changed and get the
version vector <A:1, B:1, C:0, D:0, E:0>.

3. In this partition there is no updates and the copies D and E will keep their values.

4. When merging copies A and B with D and E their version vectors are compared.
It shows that the version vectors for D and E are strictly dominated by the version vectors of
A and B. Thus D and E have older copies that not conflict with copies A and B. The older
copies are changed to the new version and then also get the corresponding version vector.
The version vector will become <A:1, B:1, C:0, D:0, E:0> for all copies.

5. In this partition there is no update.

6. In this partition an update is performed by A. Copies A, B, D and E will be changed and get
the version vector <A:2, B:1, C:0, D:0, E:0>.

7. When C is merged with the others it has an older value. It gets the new value and version vector
from the others.

50 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Version Vectors — Example with conflicts

+ABCDE

1

+C

5

+DE

3

ABDE

4

+ABDE

6

ABCDE

7

+ABC

2

partition Version Vector

1 <A:1, B:0, C:0, D:0, E:0> A executes the update
2 <A:1, B:1, C:0, D:0, E:0> B executes the update
3 <A:1, B:0, C:0, D:1, E:0> D executes the update
4 <A:1, B:2, C:0, D:1, E:0> B resolves the conflict
5 <A:1, B:1, C:1, D:0, E:0> C executes the update
6 <A:2, B:2, C:0, D:1, E:0> A executes the update
7 <A:2, B:2, C:1, D:1, E:1> E resolves the conflict

51 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

1. In the first partition there is one update performed by A.

All copies get the new value and the corresponding version vector will become

<A:1, B:0, C:0, D:0, E:0> which is stored with all copies.

2. In this partition an update is performed by B. Copies A, B and C will be changed and get the
version vector <A:1, B:1, C:0, D:0, E:0>.

3. In this partition an update is performed by D. Copies D and E will be changed and get the
version vector <A:1, B:0, C:0, D:1, E:0>.

4. When merging copies A and B with D and E their version vectors are compared.
It shows that there is a conflict. The conflict is solved by B. The version vector for the new
copies will have the maximum value in each position from vectors 2 and 3. Then the value for
B is incremented since B resolves the conflict.
The version vector will become <A:1, B:2, C:0, D:1, E:0> for A,B,D and E copies.

5. In this partition there is an update by C based on the copy from partition 2. The version vector
will become <A:1, B:1, C:1, D:0, E:0> which is stored with the C copy.

6. In this partition an update is performed by A based on the copy from partition 4.
The version vector will become <A:2, B:2, C:0, D:1, E:0> for A,B,D and E copies.

7. When C is merged with the others there is a conflict again. After solved by E the version vector
for the new copy will be <A:2, B:2, C:1, D:1, E:1> which is stored with all copies.

52 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Version Vectors

� Version Vectors introduces high availability in case of network part since we are allowed to do updates
even if we don’t have access to all copies (one is enough!)

� Good if we know that there is a low risk for simultaneously updates for the same file.

� If there still would be simultaneously updates we are in trouble,

but it will be detected.

53 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Physical Clocks revisited

� Fault-tolerant version of the physical clock setting algorithm.

� Send messages with physical clock value timestamp to each neighbor.

� When receiving a message set the clock according to clock algorithm but:

• Exclude the lowest and the highest value

• MARS algorithm

� When a clock fails it will be too fast or too slow (or possibly within the right limit but then it would not be
a problem!).

� The algorithm excludes theses wrong values.

54 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

MARS algorithm

� Before calculating the mean value, the highest and the lowest value are excluded.
This means that if at most one clock stops functioning that value will not be included.
In the example the C3 clock stops after time t1. This will not affect the calculated value that will become
the same as the C2 value.

aiming value

Clock value

time

accurate clock value

C1

C2

C3

t1 t2 t3

55 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Byzantine Generals

� Coping with the most difficult types of faults

e.g. “disloyalty” when performing mutual decisions

� Byzantine faults

commission faults

arbitrary faults

� The Byzantine Generals Problem:

� A general send its orders to its n-1 lieutenants

(i) All loyal lieutenants should follow the same order.

(ii) If the general is loyal, then all loyal lieutenants should follow his order.

56 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Byzantine Generals

� To fulfill the requirement we must try to find the disloyal officer.

� By comparing each other orders we might be able to follow an order according to the requirement by

using a majority vote.

� How many officers do we need?

� We try 3.

57 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Byzantine Generals — three officers

L2L1

G

attackattack
he said attack

he said attack

Loyal officers

58 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Byzantine Generals — three officers

L2L1

G

attackattack
he said attack

he said retreat

L2 disloyal

59 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Byzantine Generals — three officers

L2L1

G

retreatattack
he said attack

he said retreat

The general disloyal

60 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Byzantine Generals — three officers

� We find that the officers can not follow the requirements!

� L1 doesn’t know which order to follow.

� We try 4 officers instead.

61 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Byzantine Generals — four officers

L2L1

G

attack

he said attack

L3

attack attack

he said attack

he said attack

he said attack

he said attack

he said attack

Loyal officers

62 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Byzantine Generals — four officers

L2L1

G

attack

he said attack

L3

attack attack

he said attack

he said attack

he said retreat

he said retreat

he said attack

L3 disloyal

63 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Byzantine Generals — four officers

L2L1

G

attack

he said attack

L3

attack retreat

he said attack

he said attack

he said retreat

he said retreat

he said attack

The general disloyal

64 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Byzantine Generals — four officers

� Now the loyal officers will choose the same order and thus fulfill the requirements.

65 (65) - DISTRIBUTED SYSTEMS Fault-Tolerant Systems - Sven Arne Andreasson - Computer Science and Engineering

Byzantine Generals — Computer Applications

� Byzantine faults

Requirements:

• At most m of 3∗m+1 nodes fail

� Voting

� The process giving its vote is the General.

� For each voting round each process then takes turn as General.

� Used in the Space Shuttle control system:

• 4 computers running the same program compares their results.

• Will protect the shuttle from errors due to data change due to cosmic rays if there is only damage
in one of the computers.

� The Space Shuttle also has a fifth computer with the control program written in another language.

• This can be shifted to manually if there are doubts about the other program.

• There can then be no shift back to the first program!

• N-version programming with N = 2.

