

Higher-Order Functions

Koen Lindström Claessen

What is a “Higher Order”
Function?

A function which takes another function as a parameter.

Examples

map even [1, 2, 3, 4, 5] = [False, True, False, True, False]

filter even [1, 2, 3, 4, 5] = [2, 4]

even :: Int -> Bool
even n = n`mod` 2 == 0

What is the Type of filter?

filter even [1, 2, 3, 4, 5] = [2, 4]

even :: Int -> Bool

filter :: (Int -> Bool) -> [Int] -> [Int]

filter :: (a -> Bool) -> [a] -> [a]

A function type can be
the type of an argument.

Quiz: What is the Type of map?

Example

map even [1, 2, 3, 4, 5] = [False, True, False, True, False]

map also has a polymorphic type -- can you write it down?

Quiz: What is the Type of map?

Example

map even [1, 2, 3, 4, 5] = [False, True, False, True, False]

map :: (a -> b) -> [a] -> [b]

Any function of
one argument

Any list of
arguments

List of
results

Quiz: What is the Definition of map?

Example

map even [1, 2, 3, 4, 5] = [False, True, False, True, False]

map :: (a -> b) -> [a] -> [b]

map = ?

Quiz: What is the Definition of map?

Example

map even [1, 2, 3, 4, 5] = [False, True, False, True, False]

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

Is this “Just Another Feature”?

NO!!!
•Higher-order functions are the “heart and soul” of
functional programming!

•A higher-order function can do much more than a “first
order” one, because a part of its behaviour can be controlled
by the caller.

•We can replace many similar functions by one higher-
order function, parameterised on the differences.

Avoid
copy-and-paste
programming

Case Study: Summing a List

sum [] = 0
sum (x:xs) = x + sum xs

General Idea

Combine the elements of a list using an operator.

Specific to Summing

The operator is +, the base case returns 0.

Case Study: Summing a List

sum [] = 0
sum (x:xs) = x + sum xs

Replace 0 and + by parameters -- + by a function.

foldr op z [] = z
foldr op z (x:xs) = x `op` foldr op z xs

Case Study: Summing a List

New Definition of sum

or just…

Just as `fun` lets a function be used as an operator,

so (op) lets an operator be used as a function.

sum xs = foldr plus 0 xs

 where plus x y = x+y

sum xs = foldr (+) 0 xs

Applications

Combining the elements of a list is a common operation.

Now, instead of writing a recursive function, we can just use
foldr!

product xs = foldr (*) 1 xs
and xs = foldr (&&) True xs
concat xs = foldr (++) [] xs
maximum (x:xs) = foldr max x xs

An Intuition About foldr

foldr op z [] = z
foldr op z (x:xs) = x `op` foldr op z xs

Example

foldr op z (a:(b:(c:[]))) = a `op` foldr op z (b:(c:[]))

 = a `op` (b `op` foldr op z (c:[]))

 = a `op` (b `op` (c `op` foldr op z []))

 = a `op` (b `op` (c `op` z))

The operator “:” is replaced by `op`, [] is replaced by z.

Quiz

What is

foldr (:) [] xs

Quiz

What is

foldr (:) [] xs

Replaces “:” by “:”, and [] by [] -- no change!

The result is equal to xs.

Quiz

What is

foldr (:) ys xs

Quiz

What is

foldr (:) ys xs

foldr (:) ys (a:(b:(c:[])))

 = a:(b:(c:ys))

The result is xs++ys! xs++ys = foldr (:) ys xs

Quiz

What is

foldr snoc [] xs

where snoc y ys = ys++[y]

Quiz

What is

foldr snoc [] xs

where snoc y ys = ys++[y]

foldr snoc [] (a:(b:(c:[])))

 = a `snoc` (b `snoc` (c `snoc` []))

 = (([] ++ [c]) ++ [b] ++ [a]

The result is reverse xs!
reverse xs = foldr snoc [] xs
 where snoc y ys = ys++[y]

λ-expressions

reverse xs = foldr snoc [] xs
 where snoc y ys = ys++[y]

It’s a nuisance to need to define snoc, which we only use
once! A λ-expression lets us define it where it is used.

reverse xs = foldr (λy ys -> ys++[y]) [] xs

On the keyboard:

reverse xs = foldr (\y ys -> ys++[y]) [] xs

Defining unlines

unlines [“abc”, “def”, “ghi”] = “abc\ndef\nghi\n”

unlines [xs,ys,zs] = xs ++ “\n” ++ (ys ++ “\n” ++ (zs ++ “\n” ++ []))

unlines xss = foldr (λxs ys -> xs++“\n”++ys) [] xss

Just the same as

unlines xss = foldr join [] xss

 where join xs ys = xs ++ “\n” ++ ys

Another Useful Pattern

Example: takeLine “abc\ndef” = “abc”

used to define lines.

takeLine [] = []
takeLine (x:xs) | x/=´\n´ = x:takeLine xs

 | otherwise = []

General Idea
Take elements from a list while a condition is satisfied.

Specific to takeLine
The condition is that the element is not ´\n´.

Generalising takeLine

takeWhile p [] = []
takeWhile p (x:xs) | p x = x : takeWhile p xs

 | otherwise = []

New Definition

takeLine xs = takeWhile (λx -> x/=´\n´) xs

or takeLine xs = takeWhile (/=´\n´) xs

takeLine [] = []
takeLine (x:xs) | x/=´\n´ = x : takeLine xs

 | otherwise = []

Notation: Sections

As a shorthand, an operator with one argument stands for a
function of the other…

•map (+1) [1,2,3] = [2,3,4]

•filter (<0) [1,-2,3] = [-2]

•takeWhile (0<) [1,-2,3] = [1]

Note that expressions like (*2+1) are not allowed.

Write λx -> x*2+1 instead.

(a+) b = a+b
(+a) b = b+a

Defining lines

We use

•takeWhile p xs -- returns the longest prefix of xs whose
elements satisfy p.

•dropWhile p xs -- returns the rest of the list.

lines [] = []
lines xs = takeWhile (/=´\n´) xs :

 lines (drop 1 (dropWhile (/=´\n´) xs))

General idea Break a list into segments whose
elements share some property.

Specific to lines The property is: are not newlines.

Quiz: Properties of takeWhile and
dropWhile

takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]

prop_TakeWhile_DropWhile p xs =
 takeWhile p xs ++ dropWhile p xs == (xs :: [Int])

Can you think of a property that connects
takeWhile and dropWhile?

Hint: Think of a property that connects take and drop

Use import
Text.Show.Functions

Generalising lines

segments p [] = []
segments p xs = takeWhile p xs :

segments p (drop 1 (dropWhile p xs))

Example

segments (>=0) [1,2,3,-1,4,-2,-3,5]

= [[1,2,3], [4], [], [5]]

lines xs = segments (/=´\n´) xs

segments is
not a standard

function.

Quiz: Comma-Separated Lists

Many Windows programs store data in files as “comma
separated lists”, for example

1,2,hello,4

Define commaSep :: String -> [String]

so that commaSep “1,2,hello,4” = [“1”, “2”, “hello”, “4”]

Quiz: Comma-Separated Lists

Many Windows programs store data in files as “comma
separated lists”, for example

1,2,hello,4

Define commaSep :: String -> [String]

so that commaSep “1,2,hello,4” = [“1”, “2”, “hello”, “4”]

commaSep xs = segments (/=´,´) xs

Defining words

We can almost define words using segments -- but

segments (not . isSpace) “a b” = [“a”, “”, “b”]

which is not what we want -- there should be no empty words.

words xs = filter (/=“”) (segments (not . isSpace) xs)

Function composition
(f . g) x = f (g x)

Partial Applications

Haskell has a trick which lets us write down many functions
easily. Consider this valid definition:

sum = foldr (+) 0

Foldr was defined with
3 arguments. It’s being

called with 2.
What’s going on?

Partial Applications

sum = foldr (+) 0

Evaluate sum [1,2,3]

= {replacing sum by its definition}

foldr (+) 0 [1,2,3]

= {by the behaviour of foldr}

1 + (2 + (3 + 0))

= 6

Now foldr has the
right number of

arguments!

Partial Applications

Any function may be called with fewer arguments than it
was defined with.

The result is a function of the remaining arguments.

If f ::Int -> Bool -> Int -> Bool

then f 3 :: Bool -> Int -> Bool

f 3 True :: Int -> Bool

f 3 True 4 :: Bool

Bracketing Function Calls and
Types

We say function application “brackets to the left”

function types “bracket to the right”

If f ::Int -> (Bool -> (Int -> Bool))

then f 3 :: Bool -> (Int -> Bool)

(f 3) True :: Int -> Bool

((f 3) True) 4 :: Bool

Functions really
take only one
argument, and

return a function
expecting more

as a result.

Designing with Higher-Order
Functions

•Break the problem down into a series of small steps, each of
which can be programmed using an existing higher-order
function.

•Gradually “massage” the input closer to the desired output.

•Compose together all the massaging functions to get the
result.

Example: Counting Words

Input

A string representing a text containing many words. For
example

“hello clouds hello sky”

Output

A string listing the words in order, along with how many
times each word occurred.

“clouds: 1\nhello: 2\nsky: 1”
clouds: 1
hello: 2
sky: 1

Step 1: Breaking Input into
Words

“hello clouds\nhello sky”

[“hello”, “clouds”, “hello”, “sky”]

words

Step 2: Sorting the Words

[“clouds”, “hello”, “hello”, “sky”]

sort

[“hello”, “clouds”, “hello”, “sky”]

Digression: The groupBy
Function

groupBy :: (a -> a -> Bool) -> [a] -> [[a]]

groupBy p xs -- breaks xs into segments [x1,x2…], such
 that p x1 xi is True for each xi in the

 segment.

groupBy (<) [3,2,4,1,5] = [[3], [2,4], [1,5]]

groupBy (==) “hello” = [“h”, “e”, “ll”, “o”]

Step 3: Grouping Equal Words

[[“clouds”], [“hello”, “hello”], [“sky”]]

groupBy (==)

[“clouds”, “hello”, “hello”, “sky”]

Step 4: Counting Each Group

[(“clouds”,1), (“hello”, 2), (“sky”,1)]

map (λws -> (head ws, length ws))

[[“clouds”], [“hello”, “hello”], [“sky”]]

Step 5: Formatting Each Group

[“clouds: 1”, “hello: 2”, “sky: 1”]

map (λ(w,n) -> w++”: “++show n)

[(“clouds”,1), (“hello”, 2), (“sky”,1)]

Step 6: Combining the Lines

“clouds: 1\nhello: 2\nsky: 1\n”

unlines

[“clouds: 1”, “hello: 2”, “sky: 1”]

clouds: 1
hello: 2
sky: 1

The Complete Definition

countWords :: String -> String

countWords = unlines

 . map (λ(w,n) -> w++”:”++show n)

 . map (λws -> (head ws, length ws))

 . groupBy (==)

 . sort

 . words very common
coding pattern

Quiz: A property of Map

prop_MapMap :: (Int -> Int) -> (Int -> Int) -> [Int] -> Bool
prop_MapMap f g xs =
 map f (map g xs) == map (f . g) xs

map :: (a -> b) -> [a] -> [b]

Can you think of a property that merges two
consecutive uses of map?

map f (map g xs) == ??

The Optimized Definition

countWords :: String -> String

countWords = unlines

 . map (λws -> head ws ++ “:” ++ show (length ws))

 . groupBy (==)

 . sort

 . words

List Comprehensions

• List comprehensions are a different notation
for map and filter

• [x * 2 | x <- xs]
– map (*2) xs

• [x | x <- xs, x >= 3]
– filter (>= 3) xs

• [x `div` 2 | x <- xs, even x]
– map (`div` 2) (filter even xs)

List Comprehensions (2)

• More complicated list comprehensions also
involve concat

• Example: [x + y | x <- xs, y <- ys]
– Quiz: How to define using map and concat?

 concat (map (\x -> map (x+) ys) xs)

concatMap

• concat (map f xs) is a very common
expression
– concatMap :: (a -> [b]) -> [a] -> [b]

• Quiz: How to define filter with concatMap?

 filter p = concatMap (\x -> if p x then [x] else [])

Where Do Higher-Order
Functions Come From?

•We observe that a similar pattern recurs several times, and
define a function to avoid repeating it.

•Higher-order functions let us abstract patterns that are not
exactly the same, e.g. Use + in one place and * in another.

•Basic idea: name common code patterns, so we can use them
without repeating them.

Must I Learn All the Standard
Functions?

Yes and No…

•No, because they are just defined in Haskell. You can reinvent
any you find you need.

•Yes, because they capture very frequent patterns; learning
them lets you solve many problems with great ease.

”Stand on the shoulders of giants!”

Lessons

Higher-order functions take functions as parameters, making
them flexible and useful in very many situations.

By writing higher-order functions to capture common patterns,
we can reduce the work of programming dramatically.

λ-expressions, partial applications, and sections help us create
functions to pass as parameters, without a separate definition.

Haskell provides many useful higher-order functions; break
problems into small parts, each of which can be solved by an
existing function.

Reading

•Chapter 9 covers higher-order functions on lists, in a little
more detail than this lecture.

•Sections 10.1 to 10.4 cover function composition, partial
application, and λ-expressions.

•Sections 10.5, 10.6, and 10.7 cover examples not in the
lecture -- useful to read, but not essential.

•Section 10.8 covers a larger example in the same style as
countOccurrences.

•Section 10.9 is outside the scope of this course.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

