Monads

David Sands

Parsing

e So far: how to write

readExpr :: String -> Maybe Expr

» Key idea:

type Parser = String -> Maybe (a, String)

* This lecture: Building Parsers; Parsers as a
new type of “instructions” — i.e. a monad.

The Big Picture

RefactoredParser

Refactor/generalise Alternative approach

+ Few basic bulding Parsing.hs

blocks (datatype

ReadExpr.hs dependent) » Parser as an
P instance of
‘Parser Monad
 “Brute force” “Combinators” ona
parser.
* Big ugly case
expressions. RefactoredReadExpr ReadExprMonadic

* Minimal reuse.

* A few lines of code * A few lines of code

Refactor

Recall some key building blocks

succeed :: a -> Parser a
succeed a = P $ \s -> Just(a,s)

sat :: (Char -> Bool) -»> Parser Char
(>->) :: Parser a -> Parser b -> Parser b
(>*>) :: Parser a -> (a -> Parser b) -> Parser b

Main> parse (digit >*> \a -> sat (==a)) "22xx"
Just ('2', "xxx"

Main> parse (digit >*> \ag -> sat (==a)) "12xx"
Nothing

The Parser Monad

* Using these building blocks we can make
Parser an instance of the class Monad

— We get a language of “Parsing Instructions”

— Another way to write Parsers using do
notation

Monads seen so far:
|O vs Gen

10 A
!

Instructions to build a
value of type A by
Interacting with the
operating system

Run by the ghc runtime
system

Gen A
|

* |nstructions to create a
random value of type A

* Run by the QuickCheck
library functions to
perform random tests

Monads = Instructions

* What is the type of doTwice?

Main> :1 doTwice
doTwice :: Monad a => a b -> a (b,b)

/\
/ \ﬁ /Whatever kind of A
/E result argument

ven the kind of
instructions can vary! produces, we get

Different kinds of \a pair of them

instructions, depending on | |0 means operating
\ who obeys them. _/ system.

Monads and do notation

o be an instance of class Monad you
need (as a minimal definition) two
operations: >>= and return

class Monad m where

(>>=) ::ma ->(a->mb) ->mb
(>>) ::ma->mb ->mb
X >y =X >=_ ->YVy

Default
return :: a ->m a implementations
fail :: String -> m a

fail msg = error msg

Monad

* To be an instance of class Monad you
need two operations: >>= and return

instance Monad Parser where
return = succeed

(>>=) = (")

-- (>->) is equivalent to (>>)

° Why bother? ﬁ-First example of a home-grown monad

Can understand and use do notation

The truth about Do

* Do syntax is just a shorthand:

do actl —— —=

- actl >> act2 actl >>= _ -> act2
do v <- actl | == | 3ct1 >>= \v -> act2

act2

Can you figure out the general case for the translation?

Example

 recall doTwice

doTwice :: Monad m => m a -> m (a,a)
doTwice cmd =
do a <- cmd
b <- cmd
return (a,b)

Main> parse (doTwice number) "9876”
Just (('9,'8’), "76")

Example revisited: Parsing

ExpreSSIOnS (modified to use the new

expr :: Parser Expr version of Parser type.
expr s1 = case parse num s1 of Otherwise as before

Just (a,s2) -> case s2 of
'+':83 -> case parse expr s3 of
Just (b,s4) -> Just (Add a b, s4)
Nothing -> Just (a,s2)
_ -> Just (a,s2)
Nothing -> Nothing

Monadic style abstracts expr :: Parser Expr
away from implementation expr =do a <- num
of the Parser type g
yp = do char’+
b <- expr

return (Add a b)
+++ return a

Parser Combinators

zeroOrMore, oneOrMore :: Parser a -> Parser [a]
zeroOrMore p = oneOrMore p +++ return []
oneOrMore p = do v <- p

Vs <- zeroOrMore p
return(v:vs)

Main> parse (oneOrMore number) 9876+’
Just ("9876”,"+”)

Combinator: a function which
take functions as arguments

and produces a function as a
N result)

Parser Combinators

nat ::

nat

int ::

int

Parser Int -- Parses a non negative integer
do xs <- oneOrMore number
return (read xs)

Parser Int

nat +++

do char '-'
n <- nat
return (-n)

Chain
(Old definition

chainpopf=P $\s1-> {(modified to work with
case parse p s1 of the new type)
Just (a,s2) -> case s2 of
c:s3 | c == op -> case chain p op f s3 of
Just (b,s4) -> Just (fa b, s4)
Nothing -> Just (a,s2)
-> Just (a,s2)

Nothing -> Nothing

/

chainpopf=dov<-p

vs <- zeroOrMore (char op >> p)

return (foldr1 f (v:vs)) Prelude.foldr1 :

fold operation for
lists with at least
one element (no

"nil” case)

~

)

Factor

factor :: Parser Expr
factor (°(’:s) =
case expr s of
Just (a, ’)’:s1) -> Just (a, sl1)
-> Nothing

factor s = num s

factor :: Parser Expr
factor = num +++
do char ’(’
e <- expr
char ?)’
return e

Summary

* We can use higher-order functions to build
Parsers from other more basic Parsers.

 Parsers can be viewed as an instance of
Monad

« We can build our own Monads!

— A lot of "plumbing” is nicely hidden away

— The implementation of the Monad is not
visible and can thus be changed or extended

10 t Gen t Parser t

* Instructions * Instructions for | | Instructions
for interacting building for parsing
with operating random values
system + Run by parse

* Runby GHC ||. Run by to parse a
runtime quickCheck string and
system to generate Maybe
produce value || random values || produce a
of type t of type t value of type t

Three Monads

Code

» Parsing.hs

— module containing the parser monad and
simple parser combinators.

 ReadExprMonadic.hs
— A reworking of Read

See course home page

Maybe another Monad

 Maybe is a very simple monad

instance Monad Maybe where

Just x >>=k = k x
Nothing >>= _ = Nothing
return = Just
fail s = Nothing

Although simple it can be useful...

Example:
Suspicious Car Lookup

Suppose we have some lookup tables
relating to car registration numbers,
personal numbers (personnummer) and
possible vehicle offences
— The info is organised in tables”
* A car is associated with a personal number

« A personal number is associated with a name
* (Some) names are associated with offences.

— Suppose a car is “suspicious” if its owner has
committed a vehicle offence.

Example:
Suspicious Car Lookup

type CarReg = String
type PersonNummer = String
type Name = String

data Offence = Speeding | DrunkDriving | CarTheft
deriving Show

carRegister :: [(CarReg,PersonNummer)]
carRegister = [("JBD 007","750408-0909"), ...]

nameRegister :: [(PersonNummer,Name)]
nameRegister = [("750408-0909", "Dave"), ...]

crimeRegister :: [(Name,CarCrime)]
crimeRegister = [("Dave",Speeding), ...]

Example:
Suspicious Car Lookup

With the help of
lookup :: Eq a => a -> [(a,b)] -> Maybe b
we can return the detalils of suspicious car owners

suspiciousCar ::
CarReg -> Maybe (Name, PersonNummer, Offence)
suspiciousCar car =
case lookup car carRegister of
Nothing -> Nothing
Just p -> case lookup p nameRegister of
Nothing -> Nothing
Just n -> case lookup n crimeRegister of
Nothing -> Nothing
Just ¢ -> Just (n,p,c)

Example:
Suspicious Car Lookup

Using the fact that Maybe is a member of class Monad
we can avoid the spaghetti and write:

suspiciousCar ::

CarReg -> Maybe (Name, PersonNummer, Offence)
suspiciousCar car = do

p <- lookup car carRegister

n <- lookup p nameRegister

c <- lookup n crimeRegister

return (p,n,c)

Example:
Suspicious Car Lookup

Unrolling one layer of the do syntactic sugar:

suspiciousCar car

lookup car carRegister >>= \p -> do
n <- lookup p nameRegister
c <- lookup n crimeRegister
return (p,n,c)

 lookup car carRegister gives Nothing
then the definition of >>= ensures that the whole
result is Nothing

* return iIs Just

Summary

* We can use higher-order functions to build
Parsers from other more basic Parsers.

 Parsers can be viewed as an instance of
Monad

« We can build our own Monads!

— A lot of "plumbing” is nicely hidden away

— The implementation of the Monad is not
visible and can thus be changed or extended

