

Lab-PM OpenGL

In this exercise we will learn the basics of how to use OpenGL, glu and glut to render 3D.
Recall that OpenGL is a state machine where you enable or disable features and modify the
current state. OpenGL uses stacks to store the current states - for instance projection matrices
and flags. Documentation of OpenGL 1.3, glu1.3 and glut version 3 is available online.

OpenGL – Open Graphics Library. A software interface to graphics hardware.
GLU – The OpenGL Utility Library. Complementary routines to OpenGL. Mainly
mipmapping, matrix manipulation, polygon tessellation, NURBS and error handling.
GLUT- The OpenGL Utility Toolkit. A utility toolkit for writing window system independent
OpenGL programs. Tools for creating windows and menus etcetera.

Documentation can be found online at:
http://www.ce.chalmers.se/staff/uffe/glspec13.pdf
http://www.ce.chalmers.se/staff/uffe/glu1.3.pdf
http://www.ce.chalmers.se/staff/uffe/glut-3.spec.pdf

Set-up
1. Download the lab from

http://www.ce.chalmers.se/undergraduate/D/EDA425/labbar/lab1.zip
2. Extract the zip-file
3. Double-click on the file OpenGL_Lab.dsw to start Microsoft Visual C++.

Note that the code is written in C, and not C++. This is controlled by the
file extension (c vs. cpp).

A Quick introduction to Microsoft Visual C++
We will use Microsoft Developer Studio in these exercises. If you want to use another
compiler, you may do so, but then we probably cannot provide any help regarding compiling
and linking.

Project Browser: This browser shows all the files in the project. Double click a file to open it
for editing. You can use the Window-menu to watch several files simultaneously.
Build Menu: Commands for building (compiling and linking) the project and running the
program. There are also two toolbar buttons for this.
Output Window: This window shows the output of the compiler, linker, and etcetera. It does,
however, not show the output of the program.
For Help on OpenGL commands: Use menu Help->Index. Type for instance glEnable as
keyword.

PART 1 – Some OpenGL basics

1. Startup

Notice the structure of the program.
In main ():

• Set window states such as: size, double buffering, z-buffering
• Give glut the addresses to several callback-functions on events such as:

mouse, keyboard, and redraw.
• Setup initial camera position

motion(): called on mouse movements
mouse(): called on mouse button events
handleKeys(): called for ordinary key events
handleSpecialKeys(): called for special keys like UP_ARROW, LEFT_ARROW etc.

Compile the project OpenGL_Lab (with button F7) and run the program (with button
F5). You should see a large flat gray polygon. Navigate by pressing the left mouse
button and move around.

2. Lighting

Study function display():
• First the color buffer and the z-buffer are cleared by calling

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
• Secondly, we setup the projection matrix and modelview matrix with a call to our

function setCamera().
• Thirdly, we call our function drawFloor() that draws the gray polygon.
• Finally, we swap the front and back buffer with glutSwapBuffers(), which displays

the frame, and then tell glut that we want to start a new frame with
glutPostRedisplay();

Before drawFloor(), insert a call to setupLight(); which turns on lighting. Note that the
material settings in drawFloor() will have effect now. Gouraud shading will be used
because we set glShadeModel(GL_SMOOTH) in main(). Run the program and notice that
the shading of the polygon varies smoothly over the surface. You can try GL_FLAT as
well.

Add one more light source. OpenGL handles up to 8 light sources, which can be point
lights, spotlights or directional lights (see help section for glLightfv)

3. Texturing

We are now going to add a texture to the floor.
First we need to read the texture to memory, which is stored in ppm-format. This is
done with our readPPM() function in main(), since we only want to read it from disc
once. Then the texture must be sent to OpenGL. This is done by setupTexture(), also
called in main (). You can use the program convert.exe (needs magick.dll, X11.dll and
Xext.dll) to convert images to .ppm format.

Study function setupTexture():

glGenTextures(1, &id); - generates one new texture ID number

glBindTexture(GL_TEXTURE_2D,id); - sets this number as active texture
(remember that OpenGL is a state machine)

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
Indicates that the active texture should be repeated, instead of for instance
clamped, for texture coordinates > 1.

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR_MIPMAP_LINEAR);
Sets the type of mipmap interpolation to be used on magnifying and minifying
the active texture. These are the nicest, but often slowest, available options.

gluBuild2DMipmaps(GL_TEXTURE_2D, 3, texture width, texture height, GL_RGB,
 GL_UNSIGNED_BYTE, texture image data);
Sends the texture image to OpenGL and associates it with the texture id. It
also creates the mip maps. This is a glu helper function instead of calling
glTexImage2D() to specify each individual mip map.

When applying a texture to an object, texturing must be enabled with
glEnable(GL_TEXTURE_2D); Which texture to use is defined by
glBindTexture(GL_TEXTURE_2D, texture id);

In function drawFloor(), remove the comments on glEnable(GL_TEXTURE_2D),
glBindTexture(GL_TEXTURE_2D, texture id) and glDisable(GL_TEXTURE_2D); Note that a
texture coordinate is specified for each vertex, with glTexCoord2f(u,v). Run the program.

4. Geometry
OpenGL handles several primitive types, such as:
GL_POINTS
GL_LINES
GL_LINE_LOOP
GL_LINE_STRIP
GL_TRIANGLES
GL_TRIANGLE_STRIP
GL_TRIANGLE_FAN
GL_QUADS
GL_QUAD_STRIP
GL_POLYGON

We are now going to draw a triangle. Study the function drawStuff(). Between
glBegin(GL_TRIANGLES); and glEnd() insert for instance the following triangle:

 glNormal3f(0.4, 0.4, 0.8);
 glVertex3f(1,1,0);
 glVertex3f(-1,0,1);
 glVertex3f(1,-1,1);
Run the program. You should see a gray triangle. Note that the normal usually should be
normalized to give correct lighting. However, if glBegin(GL_NORMALIZE) is specified (we do
this in setupLight), OpenGL does this for us automatically.

Set another material by adding the following lines above glBegin(GL_TRIANGLES) :
 GLfloat red[4]={0.9,0,0,1}; // Note that these 2 lines must be at the beginning of the function in C
 GLfloat darkred[4]={.1, 0, 0, 1};
 glMaterialfv(GL_FRONT, GL_AMBIENT, darkred);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, red);

Run the program. The triangle should be red.
Add a texture with the following code:

Define globally at the top of file main.c similar to floorTexture:
struct Texture *tex1=NULL; // Define globally at the top of file main.c similar to floorTexture

At bottom of main(), before glutMainLoop(), insert the following calls:
tex1=readPPM("white-marble.ppm");
setupTexture(tex1);

In drawStuff(), insert the following 2 lines before the call to glBegin(GL_TRIANGLES)

 glEnable(GL_TEXTURE_2D);
 glBindTexture(GL_TEXTURE_2D, tex1->mTextureNum);

 We must also specify texture coordinates for each vertex: Add 3 calls
 glTexCoord2f(0,0); glTexCoord2f(0,1);glTexCoord2f(1,1);. The code should look like this:
 glBegin(GL_TRIANGLES);
 glNormal3f(0.4, 0.4, 0.8);
 glTexCoord2f(0,0);
 glVertex3f(1,1,0);
 glTexCoord2f(0,1);
 glVertex3f(-1,0,1);
 glTexCoord2f(1,1);
 glVertex3f(1,-1,1);
 glEnd();

Run the program. Experiment with other material parameters. Instead of (0,1) and
(1,1) as texture coordinates you could try other settings, like (0,3), (3,3).

5. Transparency

The most common way to create transparent objects is by using OpenGL’s blending
function. Add following lines in function drawStuff() somewhere before the call to
glBegin(GL_TRIANGLES);. The first line enables blending. The second specifies how the
blending should be done. With these parameters the destination will receive an
interpolated color value of �*source color + (1- �)*destination color.

 glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

You must also set the alpha value in the current colors to something less than 1. For
instance 0.5 (GLfloat red[4]={0.9,0,0,0.5};).
Note that to get correct transparent behavior, all overlapping transparent
objects/polygons should be rendered in back-to-front order. It is common to first
render all non-transparent objects in any order, and then sort all transparent
objects/polygons and render them last. This transparency calculation does not require
the presence of alpha bitplanes in the framebuffer.

6. Reflections with environment mapping

To fake reflections, environment mapping can be used. Add following lines in
function drawStuff() somewhere before the call to glBegin(GL_TRIANGLES);.

 glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
 glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
 glEnable(GL_TEXTURE_GEN_S);
 glEnable(GL_TEXTURE_GEN_T);

Run the program. The textured triangle will probably now look like it reflects clouds
in a sky. Remove the transparency to see the effect more clearly. Note that if we did
not store the current OpenGL enable states with glPushAttrib(GL_ENABLE_BIT); we
would have to call glDisable(GL_TEXTURE_GEN_S); and glDisable(GL_TEXTURE_GEN_T);
to switch off environment mapping before exiting the drawStuff() function.

PART 2 – Animations and Events

1. Animating objects

1. Create a function that draws a teapot. Call the function from within display() so that
the teapot gets redrawn each frame. For some reason the teapot is defined with
clockwise ordering for front facing polygons, which differs from the more usual
counterclockwise ordering for front facing polygons (Quake also uses clockwise
ordering). To get facing right, we can use glFrontFace(GL_CW) to instruct OpenGL to
use clockwise ordering instead.

 glFrontFace(GL_CW); // set clockwise ordering
 glutSolidTeapot(1);
 glFrontFace(GL_CCW); // reset to counterclockwise ordering

2. Set a different material of the teapot.

3. Animate the teapot by affecting the modelview matrix. Preferably, you should save
the old modelview matrix with glPushMatrix() and glPopMatrix(), and at least save the
current state of enabled features with glPushAttrib(GL_ENABLE_BIT) and glPopAttrib().
Use glTranslatef(x,y,z), glRotatef(angle, axis_x, axis_y, axis_z), and glScalef(sizex, sizey, sizez).
glRotatef(angle, axis_x, axis_y, axis_z) takes an angle in radians and the axis to rotate
around.

(Hint: To make the teapot look like it bounces you could use a sinus function like:
float yoffset = 0.5*sin(((float) (time%45)/45.0)*3.14); and call glTranslatef(0,yoffset,0), where
time is incremented once each frame.)

4. We are now going to use glut’s input callbacks to control the start and stop of the
animations. Add a global Boolean variable that indicates whether or not animation is
‘on’ or ‘off’. Toggle the Boolean in our function handleKeys(). handleKeys() is set in
main() as the callback function for keyboard events with the call to
glutKeyboardFunc(handleKeys). The variable should be toggled when a key of your choice
is pressed. Modify the code so that animation is done only when the Boolean is true.

If you have time: add a texture to the teapot and animate the texture. Animate the color
of the teapot.

2. Animating camera

Study function setCamera(). Animate the camera by affecting viewpos, viewat, and/or
viewup each frame when animation is on.

3. Mouse Events
Study function mouse(). This function is set as the callback function when mouse
buttons are pressed or released. The callback is set in main() with the
glutMouseFunc(mouse)-command. Also take a look at the motion() function. This
function is called every time the mouse is moved. The callback is set in main() with
glutMotionFunc (motion).

Now, make something happen each time one of the mouse buttons are pressed. You
could for instance make an object appear or make the teapot spin around.

Good Luck!

APPENDIX A: GOODS
Some useful things about OpenGL:

glPushAttrib(GL_ENABLE_BIT);
Pushes the current state of enabled and disabled functions onto the stack. Often used to
save current state before calling a function that might affect the state. Note that there
are several more bits that can be stored than just GL_ENABLE_BIT. See help on
glPushAttrib().

glPopAttrib();
Pops the state.

glMatrixMode(GL_MODELVIEW);
Sets current matrix mode to the model view matrix. All following calls to
glPushMatrix(), glLoadMatrix, glTranslate(), glRotate(), glScale and so on will affect
the current model view matrix. Other arguments are GL_PROJECTION and
GL_TEXTURE.

 glPushMatrix();
Pushes the current matrix onto the stack.

 glPopMatrix();
Pops the current matrix of the stack.

