Lab2 - Ray Tracing

If you are doing this exercise in room 5355, the information on this page applies — otherwise
not.

DTEK-students should preferably use their own accounts. Other students can get a temporary
account from me.

Due to problems with the computer system, there are some quick changes:

You will probably work with Visual Studio.Net instead of the older Visual C++.

Easiest way to start Visual C++ is by double-clicking the downloaded RayTracer.dsw file.
Visual Studio.Net will probably start to install.

A window with 3 aternatives should appear (VB, C#, C++). Select Visual C++. There will
probably pop up at least two error messages. Ignore them by selecting appropriate Y ES/NO
answers...

To build — press ctrl + shift + B, or select menu Build->build or Build->rebuild all

Unfortunately, running or debugging probably still does not work from within Visual C++
due to access rights. MEDIC has informed me that this hopefully will be solved before

week 5. To run, compile the program and copy the file from the Debug-directory one step up
to the same directory as the RayTracer.dsw-file. Run from there, by for instance double-
clicking on it. This procedure unfortunately has to be repeated each time you recompile and
want to run the program...

Lab-PM: Lab2 - Ray Tracing

In this exercise we will study ray tracing.

Documentation of the file format (nff —“Neutral File Format”) that we are using for the

scenes, can be found online at:
http://www.acm.org/tog/resources/ SPD/NFF.TXT

Set-up
1. Download the file lab2.zip from this course’ s home page.

http://www.ce.chalmers.se/undergraduate/ D/ED A 425/ abbar/minil abbar.html .
There are two similar versions of the LabPM — one for Word and one as
pdf, in case one of Acroread or Microsoft Word is missing on your
computer.

Unzip lab2.zip.

Double-click on the file Ray Tracer.dsw to start Microsoft Visual C++.
Note that the code iswritten in C, and not C++. Thisis controlled by the
file extension (c vs. cpp).

w N

A Quick introduction to Microsoft Visual C++

We will use Microsoft Developer Studio in these exercises. If you want to use another
compiler, you may do so, but then we probably cannot provide any help regarding compiling
and linking.

Switch between Release Mode and

Compile and run commands Debug Mode

Build _Run

**., OpenGL_Lab - Microsoft Visual C-+ - [main.c]

EIE

Fle Edt view Insert projectf{ Buidrools window Help

=18l x|

B S @ =B ‘: = [mE Eﬂ.|mg}lemlsvem = :ﬁ‘ |[apentl_Lab— =]fwma2Deug e @] By ‘

FhesuBome SR S 1(FHe 0P| [Fe e @B R IR

Project Browser L[#include cnath b>
#include (Stdllb h>

#include "glut

L] Workspace DpenGL_Labi 1 project(s]
E OpenGL_Lab files

#include "linnath.h’
? 8 Souce Hles #include "temturs h'

#include <stdlib.h»>

#ifndef M_PI
3.1415926535897932384¢6

finmath.h
i[5 tertueh

£ (10 Resourcs Files
- (2 Extemal Dependencies

#define M_FI
#endif

struct Texture *floorTexture=HULL:
static int animate=0:

struct Texture *texl=HULL;

int n¥in¥idth;
int n¥inHeight:
void setCamnsral():

int trigSpecialEvent=0;
static void setupTexturs(struct Texture *tx)

glGenTesturas(l, &t nToxturelun),
glBindTexture(GL_TEXTURE_2D, tx-snTextursun) :
alTexParancteri(GL_TEXTURE 2D, GL TEXTURE WRAP_S. GL_REPEAT):
alTexParansteri(GL TEXTURE 2D, GI TEXTURE WRAE_T, GL REPEAT):
alTexParaneteri(GL_TEXTURE 2D, GL_TEXTURE MAG_FILTER,
GL_LINEAR):
glTexParancteri(GL_TEXTURE_2D, GI_TEXTURE_MIN_FILTER,
GL_LINEAR MIPMEP LINEAR): -~ this is nicest available mipmap interpolation
gluBuild2DHipnaps{GL_TEXTURE 2D, 3, tx—mWidth,
tr-smHoight. GL_RGE. GL_UNSIGNED BYTE.
tx->mRGE) ;
1

static void dravOusd(void)

static float a=0.0;
static float b=0.0.

float col=(cos{aj+l.0)<2.0;

float col2=(cos(hi+l.03-2.0:

glDisable(GL_LIGHTING); /% no lighting =/

7% drav o quadrilateral vith a color at each wertex =~
glBegin(GL_QUADS)

glColordf (0.0, 1-col2, col2):

alVertex3f(-1.0,-1.0,1.0);

alColordi(col. 0.0, col),

glVerte=3f(1.0.-1.0.1.0);

qlCi:lor3f(|:DlZ, col, 1-col2y;

B33 Classiiew | =] Fieiew Ll

no matoching symbolic information fomnd

no matching symbolic information found

no matching symbolic information found
no matching symbolic infornation found

OUtPUt =[Toaded 'C ~WINNT~Gystem3z~ntdll dil’
\4 Losded 'C.\WINNT“system3Z‘winmm dll'
cded 'CiNWINNTsystenm32\USER32,DLL'
Toaded 'C:“WINNT“systen32“KERNEL3Z DLL'
Loaded 'C:“WINNT“system32\GDI32 DIL'. no matching symbolic information found
Loaded 'C.“WINNT“systen32ADVAPI3Z.DLL', no natching synbolic information found
Loaded 'CINNT systen32vrpered dil” no matching symbolic infozmation found
Ty R Ty

PR s

1
4r Ebug Find in Files 1 & Find in Fnesz) Ramult /||4| |

Lo,

Ready

Project Browser: This browser shows all the files in the project. Double click a file to open it
for editing. You can use the Window-menu to watch several files simultaneously.

Build Menu: Commands for building (compiling and linking) the project and running the
program. There are also two toolbar buttons for this.

Output Window: This window shows the output of the compiler, linker, and etcetera. It does,
however, not show the output of the program.

For Help on OpenGL commands: Use menu Help->Index. Type for instance glEnable as
keyword.

Switching between Release Mode and Debug Mode. Release mode optimizes the code, and
thus makes the ray tracer faster.

Ray Tracing

1. Startup

Notice the structure of the program.

To display the scene in awindow, we use OpenGL and GLUT.

The related functions, which reside in file main.c, are: main(),display(), and reshape().
In main(), the sceneis read from an input file with the command:

ReadScene(& mScene, argv[1]);

argv[1] contains the file name. In this case the file “ballsl.nff”. In Visual C++, the command
line arguments are set by the menu option: Project->Settings-> “tab Debug” -> “Program
Arguments’.

The ray tracing functionsin file main.c are:

1.

void trace(int level, float weight, Ray3f ray, Vecaf color);
Traces one ray through the scene and returns the color at the hit point.

void tracePixel Pos(float i,float j, Vec3f xstep, Vec3f ystep, Vec3f
vecToLowerLeftCorner, Ray3f ray, Vec4f color)

Similar to the above function, but this one takes the pixel coordinates (i,j) as
input and callstrace().

int Shadow(Ray3f shadowRay)
Determines if the shadow ray hits any object. Returnstrue, if any object is intersected.

void shade(int level, float weight, Vec3f P, Vec3f N, Vec3f |, Materia mtrl, VecAf
color)

Computes the shading at point P. P = surface point, N = surface normal, | =
incident ray (swedish: infallande strdle), mtrl = surface material parameters,
color = returned color at P.

void screen(void)
Traces aray through each pixel of the screen and creates an image stored in
"mPixels’.

The ray tracing functionsin file intersect.c are:

1.

2.

int Inter sect(Ray3f ray, Scene* mScene, Geometry** outObject, Vec3f P, Vec3f N,
Material** mitrl)

Master intersection function that calls the other below. Returns 1 if an object is
intersected. OutObject = the intersected object, P = the intersection point, N =
the normal of the intersected object at the intersection point, mtrl = the material
for the intersected object.

void Spher el nter sect(Ray3f ray, Sphere* sphere, int* bHit, float* t, Vec3f P, Vec3f
N, Material** mtrl)

Computes the closest intersection point between a sphere and a ray

ray= the ray to be tested, sphere = the sphere to be tested, bHit = (returned)
non-zero if the ray intersects the sphere, t= (returned) distance from the ray

origin to the closest intersection point, P= (returned) the closest intersection
point at the sphere, N= (returned) the surface normal at point P, mtrl=
(returned) material parameters at point P

3. void Cylinder|nter sect(Ray3f ray, Cylinder* cyl, int* bHit, float* t, Vec3f P, Vec3f
N, Material** mtrl)
Thisoneisto befilled in by you in the last exercise, if thereistime.

4. void Polygonlnter sect(Ray3f ray, Poly* pPoly, int* bHit, float* t, Vec3f P, Vec3f N,
Material** mitrl)
Computes the intersection between aray and a polygon, with parameters as for
Spherelntersect().

Study the file types.h. Notice the type definitions of struct Geometry, Scene,
Material, Cylinder, Sphere, Poly, Light, LightList .

Study file linmath.h. This file contains definitions for several vector functions, like dot
products, cross products, add, sub, scale, normalizing, and set.

Compile the project OpenGL_Lab (with button F7) and run the program (with button
F5). You should see an orange polygon and some spheres on a blue background.

1. Exercises
The image looks a bit weird, and we will start by fixing that. because depth sorting is
not done, and shadows are not computed.

1. First, wewill correct the depth sorting. Currently, the ray tracer only searches for the
first intersection between the rays and the objects. Correct this by modifying function
int Inter sect(Ray3f ray, Scene* mScene, Geometry** outObject, Vec3f P, Vec3f N,
Materia** mtrl) in file intersect.c. The function should search all objects and return the
one closest to the ray origin.

2. We should now add shadows to the image. Fill in the function Shadow(Ray3f
shadowRay). The function should return 1 if any object is intersected. Otherwise it
should return 0. Note, that thisis very easy if you use one of the above functions.

3. Add specularity to the shading. In function shade(), only ambient and diffuse shading
is computed. Add specular shading at the line “// Compute specular contribution here”.
It should be near line 74 in file main.c. Hint: you may use the simplified specular
shading described at page 77 in Real-Time Rendering. The shininessis defined by the
material parameter mtrl.phong_pow, which usually has a value between 1 and 128.
OpenGL limits the value to 128, but this ray tracer does not. The parameter
mtrl.phong_pow is aready scaled with afactor 4, so if you do not use the simplified
shading, you should divide the value with 4. Usable functions could be V3DOT,
V3NORMALIZE, V3SUB, and pow(). You can define a vector of 3 floats with the
type Vec3f.

4. Enjoy the enhanced ray tracer with the input file balls2.nff. The input file can be
changed with the menu option: Project->Settings-> “tab Debug” -> “Program Arguments”.
The image will probably take about one minute to render.

5. To know that your updated raytracer is correct, the produced image for balls2.nff, with
the highlights, should look exactly asin the figure below.

6.

If there istime, extend the ray tracer to handle cylinders. Fill in function
Cylinderintersect(), in file intersect.c, to compute the intersection between aray and a
cylinder. The intersection point P, the normal N of the cylinder at the intersection
point, and the distance t from the ray origin to P should be computed. The material
mtr| of the cylinder should also be returned. *bHit should be 1 if thereisan
intersection, and O otherwise.

Test the intersection routine with the file cylinder1.nff. When everything seems to
work, use file cylinder2.nff instead.

If you have time and a fast computer, test the ray tracer with the file balls5.nff. Make
sure that Release Mode is on (see page two). Otherwise it may take hours to render the
image.

GOOD LUCK

