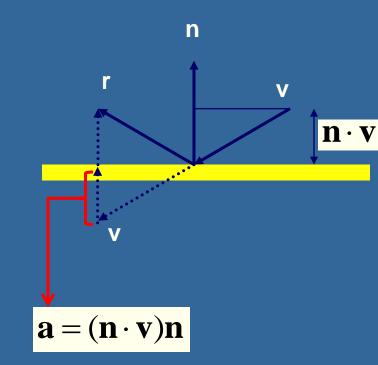
Computing reflection and refraction rays

Slide 2 is important Slides 3-8 are bonus material

Ulf Assarsson © 2007

Reflection vector (recap)

- Reflecting the incoming ray v around n:
- Note that the incoming ray is sometimes called
 –v depending on the direction of the vector.
- r can be computed as v+(2a). I.e.,



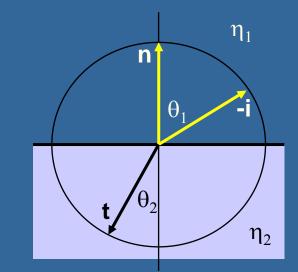
$$\mathbf{r} = \mathbf{v} + 2(\mathbf{n} \cdot \mathbf{v})\mathbf{n}$$

where n is unit vector

Important

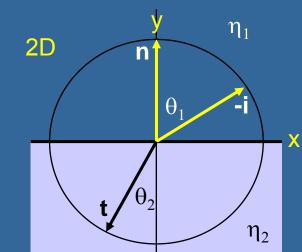
Refraction: Need a transmission direction vector, t

- n, i, t are unit vectors
- $\eta_1 \& \eta_2$ are refraction indices
- Snell's law says that:
 - $\sin(\theta_2)/\sin(\theta_1) = \eta_1/\eta_2 = \eta$, where η is relative refraction index.
- How can we compute the refraction vector **t** ?



- This would be easy in 2D:
 - $t_x = -\sin(\theta_2)$
 - $t_y = -\cos(\theta_2)$

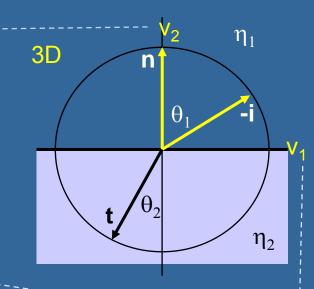
- l.e.,
$$\mathbf{t} = -\sin(\theta_2)\hat{\mathbf{x}} - \cos(\theta_2)\hat{\mathbf{y}}$$



Important

Refraction:

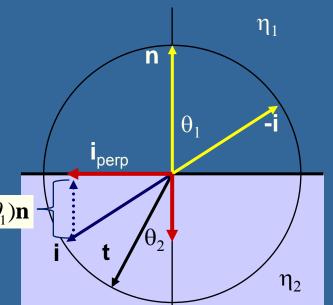
But we are in 3D, not in 2D!
So, the solution will look like: t=-sin(θ₂)ŷ₁-cos(θ₂)ŷ₂



instead of $\mathbf{t} = -\sin(\theta_2)\hat{\mathbf{x}} - \cos(\theta_2)\hat{\mathbf{y}}$

where $v_2 = n$ and v_1 is perpendicular to n and lies in the reflection plane.

• Similar to how we computed the reflection ray, such a vector is $(-\mathbf{i} \cdot \mathbf{n})\mathbf{n} = \cos(\theta_1)\mathbf{n}$ $\mathbf{i}_{perp} = \mathbf{i} + \cos(\theta_1)\mathbf{n}$



Refraction:

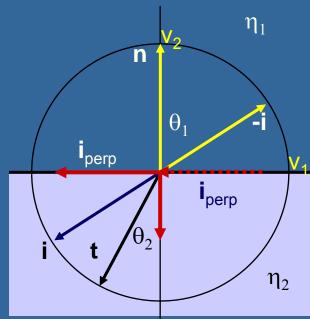
• We also need to normalize the vectors to get unit vectors: $- v_2 = n$, because n already normalised - $\mathbf{v}_1 = \mathbf{i}_{perp} / || \mathbf{i}_{perp} ||$, where $||\mathbf{i}|| = \sqrt{i_x^2 + i_y^2 + i_z^2}$ Snell's law gives: $-\sin(\theta_2) = \eta \sin(\theta_1)$ • We now have everything to compute $\mathbf{t} = -\sin(\theta_2)\hat{\mathbf{v}}_1 - \cos(\theta_2)\hat{\mathbf{v}}_2$

So we could concider us done

• But let us continue simplifying...

Bonus Refraction:

If we are smart, we realize from the trigonometric laws (see figure) that the length of i_{perp} = sin(θ₁)
 I.e., || i_{perp} || = sin(θ₁)

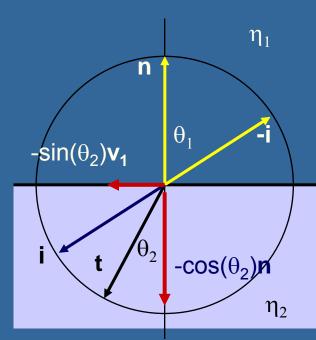


Known as Heckbert's method

• We already know that

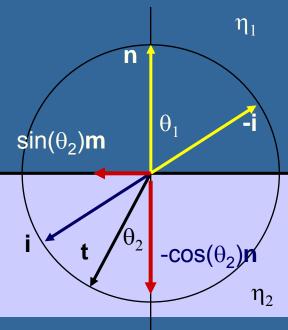
 $\mathbf{t} = -\sin(\theta_2)\hat{\mathbf{v}}_1 - \cos(\theta_2)\hat{\mathbf{v}}_2$

 $\mathbf{v}_{1} = \mathbf{i}_{perp} / || \mathbf{i}_{perp} || = (\mathbf{i} + \cos(\theta_{1})\mathbf{n}) / \sin(\theta_{1})$ $\mathbf{v}_{2} = \mathbf{n} \text{ (assuming that } \mathbf{n} \text{ is normalized)}$ Thus: $\mathbf{t} = -\sin(\theta_{2})(\mathbf{i} + \cos(\theta_{1})\mathbf{n}) / \sin(\theta_{1})$ $- \cos(\theta_{2})\mathbf{n}$



Bonus Refraction:

 $\mathbf{t} = \sin(\theta_2) (\mathbf{i} + \cos(\theta_1) \mathbf{n}) / \sin(\theta_1) \cos(\theta_2)\mathbf{n}$ Use Snell's law: - $\sin(\theta_2)/\sin(\theta_1) = \eta_1/\eta_2 = \eta_1$ • i.e., $\mathbf{t} = \eta \mathbf{i} + (\eta \cos(\theta_1) - \cos(\theta_2)) \mathbf{n}$ $cos(\theta_2)$ is still expensive to compute since: $cos(\theta_2) = cos(arcsin(\eta sin(\theta_1)))$ So we continue simplifying... Simplify: $cos(\theta_2) = sqrt[1 - \eta^2(1 - (cos(\theta_1))^2)]$, since Pythagorean theorem: $\cos(\theta_2)^2 = \mathbf{1}^2 - \sin(\theta_2)^2$ 1. Snell's Law: $sin(\theta_2) = \eta sin(\theta_1)$ 2. $(1) + (2)^2$ gives: $\sin(\theta_2)^2 = \eta^2 (1 - \cos(\theta_1)^2)$ 3. (3) + (1) gives: $1^{2} \cos(\theta_{2})^{2} = \eta^{2} (1 - \cos(\theta_{1})^{2})^{2}$ 4.



Refraction

• Thus:

t = η**i** + (ηcos(θ₁) - sqrt[1 – η²(1-(cos(θ₁))²)])**n** This is fast to compute since $cos(θ_1)=-\mathbf{n}\cdot\mathbf{i}$ which only requires a simple dot product