
 Page 1

TDA361 - Computer graphics

Lab 1 - Basics

Introduction

In this tutorial we will start familiarizing ourselves with OpenGL. To do this, there is a simple OpenGL
application that you will study. Make sure you read all the comments, and understand what each
command does. If anything is unclear, refer to the OpenGL 3.0 specification, where pretty much everything
is described, and in a quite readable way, believe it or not! Even more OpenGL documentation is available
in the OpenGL registry. If this fails to clarify ask one of the lab assistants for help, as you will need to
understand this for later tutorials.

Your Task

 The program we will work with draws a single, white, triangle on
screen. Your first task is to draw a second triangle. This shall be
accomplished by creating a new vertex array object in the initGL()
function and then draw that object in the display() function. The second
triangle must not cover the existing triangle, you are otherwise free to
place both triangles as you please.

Next, you shall add a third triangle to the scene. This time, you shall
not create a new VAO. Instead, simply add position and color data to
the previous VAO.

Assignment: The glBindBuffer command (for example) has an input parameter called target. What
possible targets are there and what is the difference between them? Look in the OpenGL specification
(§2.9 Buffer Objects) and write your answer here:

Did you try to change the colors of any triangle yet? You’ll notice nothing happens as the vertex- and
fragment-shaders are not complete yet. Your third task is to fix this. Take a look at the simple.vert file.
The vertex color is declared as the attribute color in the beginning of this shader, but from then on it is
ignored.

We’ll need to pass the vertex color value on to the fragment shader so declare a second output from the
vertex shader (before main()) like this:

out vec3 outColor;

Then, set this output variable in the main() function:

outColor = color;

http://www.cse.chalmers.se/edu/course/TDA361/glspec30.20080923.pdf
http://www.opengl.org/registry/
http://www.cse.chalmers.se/edu/course/TDA361/glspec30.20080923.pdf

 Page 2

Now, open the fragment shader (simple.frag) and tell it to expect a variable outColor from the vertex
shader:

in vec3 outColor;

And then change this line that currently sets all fragments to be white:

fragmentColor = vec4(1,1,1,1);

to instead use the color passed in from the vertex-shader:

fragmentColor.rgb = outColor;

There! Now make sure your vertex array objects have some fun colors in them and run the program again.
The final solution might look something like this:

To reiterate; the purpose of this tutorial is to understand how the triangles end up on screen. Working in
groups it may be a good idea to interrogate one another, let one explain to the other(s) what each line
does, the person listening should make sure that he or she is satisfied that the answer really explains what
is going on. And again if the OpenGL specification fails to help, ask an assistant!

