
Software Engineering using Formal Methods
Verification with Spin

Wolfgang Ahrendt & Richard Bubel & Wojciech Mostowski

6 September 2011

SEFM: Spin /GU 110906 1 / 34

Spin: Previous Lecture vs. This Lecture

Previous lecture
Spin appeared as a Promela simulator

This lecture
Intro to Spin as a model checker

SEFM: Spin /GU 110906 2 / 34

What Does A Model Checker Do?

Model Checker (MC) is designed to prove the user wrong.

MC does not try to prove correctness properties.
It tries the opposite.

MC tuned to find counter example to correctness property.

Why can an MC also prove correctness properties?

MC’s search for counter examples is exhaustive.

⇒ Finding no counter example proves stated correctness properties.

SEFM: Spin /GU 110906 3 / 34

What Does A Model Checker Do?

Model Checker (MC) is designed to prove the user wrong.

MC does not try to prove correctness properties.
It tries the opposite.

MC tuned to find counter example to correctness property.

Why can an MC also prove correctness properties?

MC’s search for counter examples is exhaustive.

⇒ Finding no counter example proves stated correctness properties.

SEFM: Spin /GU 110906 3 / 34

What Does A Model Checker Do?

Model Checker (MC) is designed to prove the user wrong.

MC does not try to prove correctness properties.
It tries the opposite.

MC tuned to find counter example to correctness property.

Why can an MC also prove correctness properties?

MC’s search for counter examples is exhaustive.

⇒ Finding no counter example proves stated correctness properties.

SEFM: Spin /GU 110906 3 / 34

What Does A Model Checker Do?

Model Checker (MC) is designed to prove the user wrong.

MC does not try to prove correctness properties.
It tries the opposite.

MC tuned to find counter example to correctness property.

Why can an MC also prove correctness properties?

MC’s search for counter examples is exhaustive.

⇒ Finding no counter example proves stated correctness properties.

SEFM: Spin /GU 110906 3 / 34

What does ‘exhaustive search’ mean here?

exhaustive search
=

resolving non-determinism in all possible ways

For model checking Promela code,
two kinds of non-determinism to be resolved:

I explicit, local:
if/do statements

:: guardX -> ...

:: guardY -> ...

I implicit, global:
scheduling of concurrent processes
(see next lecture)

SEFM: Spin /GU 110906 4 / 34

What does ‘exhaustive search’ mean here?

exhaustive search
=

resolving non-determinism in all possible ways

For model checking Promela code,
two kinds of non-determinism to be resolved:

I explicit, local:
if/do statements

:: guardX -> ...

:: guardY -> ...

I implicit, global:
scheduling of concurrent processes
(see next lecture)

SEFM: Spin /GU 110906 4 / 34

What does ‘exhaustive search’ mean here?

exhaustive search
=

resolving non-determinism in all possible ways

For model checking Promela code,
two kinds of non-determinism to be resolved:

I explicit, local:
if/do statements

:: guardX -> ...

:: guardY -> ...

I implicit, global:
scheduling of concurrent processes
(see next lecture)

SEFM: Spin /GU 110906 4 / 34

What does ‘exhaustive search’ mean here?

exhaustive search
=

resolving non-determinism in all possible ways

For model checking Promela code,
two kinds of non-determinism to be resolved:

I explicit, local:
if/do statements

:: guardX -> ...

:: guardY -> ...

I implicit, global:
scheduling of concurrent processes
(see next lecture)

SEFM: Spin /GU 110906 4 / 34

Model Checker for This Course: Spin

Spin: “Simple Promela Interpreter”

The name is a serious understatement!

main functionality of Spin:

I simulating a model (randomly/interactively)

I generating a verifier

verifier generated by Spin is a C program performing

model checking:

I exhaustively checks Promela model against correctness properties

I in case the check is negative:
generates a failing run of the model, to be simulated by Spin

SEFM: Spin /GU 110906 5 / 34

Model Checker for This Course: Spin

Spin: “Simple Promela Interpreter”

The name is a serious understatement!

main functionality of Spin:

I simulating a model (randomly/interactively)

I generating a verifier

verifier generated by Spin is a C program performing

model checking:

I exhaustively checks Promela model against correctness properties

I in case the check is negative:
generates a failing run of the model, to be simulated by Spin

SEFM: Spin /GU 110906 5 / 34

Model Checker for This Course: Spin

Spin: “Simple Promela Interpreter”

The name is a serious understatement!

main functionality of Spin:

I simulating a model (randomly/interactively)

I generating a verifier

verifier generated by Spin is a C program performing

model checking:

I exhaustively checks Promela model against correctness properties

I in case the check is negative:
generates a failing run of the model, to be simulated by Spin

SEFM: Spin /GU 110906 5 / 34

Model Checker for This Course: Spin

Spin: “Simple Promela Interpreter”

The name is a serious understatement!

main functionality of Spin:

I simulating a model (randomly/interactively)

I generating a verifier

verifier generated by Spin is a C program performing

model checking:

I exhaustively checks Promela model against correctness properties

I in case the check is negative:
generates a failing run of the model, to be simulated by Spin

SEFM: Spin /GU 110906 5 / 34

Model Checker for This Course: Spin

Spin: “Simple Promela Interpreter”

The name is a serious understatement!

main functionality of Spin:

I simulating a model (randomly/interactively)

I generating a verifier

verifier generated by Spin is a C program performing

model checking:

I exhaustively checks Promela model against correctness properties

I in case the check is negative:
generates a failing run of the model, to be simulated by Spin

SEFM: Spin /GU 110906 5 / 34

Model Checker for This Course: Spin

Spin: “Simple Promela Interpreter”

The name is a serious understatement!

main functionality of Spin:

I simulating a model (randomly/interactively)

I generating a verifier

verifier generated by Spin is a C program performing

model checking:

I exhaustively checks Promela model against correctness properties

I in case the check is negative:
generates a failing run of the model, to be simulated by Spin

SEFM: Spin /GU 110906 5 / 34

Model Checker for This Course: Spin

Spin: “Simple Promela Interpreter”

The name is a serious understatement!

main functionality of Spin:

I simulating a model (randomly/interactively)

I generating a verifier

verifier generated by Spin is a C program performing

model checking:

I exhaustively checks Promela model against correctness properties

I in case the check is negative:
generates a failing run of the model

, to be simulated by Spin

SEFM: Spin /GU 110906 5 / 34

Model Checker for This Course: Spin

Spin: “Simple Promela Interpreter”

The name is a serious understatement!

main functionality of Spin:

I simulating a model (randomly/interactively/guided)

I generating a verifier

verifier generated by Spin is a C program performing

model checking:

I exhaustively checks Promela model against correctness properties

I in case the check is negative:
generates a failing run of the model, to be simulated by Spin

SEFM: Spin /GU 110906 5 / 34

Spin Workflow: Overview

SPIN

model
name.pml

correctness
properties

correctness
properties

verifier
pan.c

C
compiler

executable
verifier

pan

“errors: 0”

failing
run

name.pml.trail
interactive /random/ guided

simulation

-a

or

ei
th

er

-i
-t

SEFM: Spin /GU 110906 6 / 34

Plain Simulation with Spin

SPIN

model
name.pml

correctness
properties

correctness
properties

verifier
pan.c

C
compiler

executable
verifier

pan

“errors: 0”

failing
run

name.pml.trail
interactive /random/ guided

simulation

-i

SEFM: Spin /GU 110906 7 / 34

Rehearsal: Simulation Demo

I run example, random and interactive
interleave.pml, zero.pml

SEFM: Spin /GU 110906 8 / 34

Model Checking with Spin

SPIN

model
name.pml

correctness
properties

correctness
properties

verifier
pan.c

C
compiler

executable
verifier

pan

“errors: 0”

failing
run

name.pml.trail
interactive /random/ guided

simulation

-a

or

ei
th

er
SEFM: Spin /GU 110906 9 / 34

Meaning of Correctness w.r.t. Properties

Given Promela model M, and correctness properties C1, . . . ,Cn.

I Be RM the set of all possible runs of M.

I For each correctness property Ci ,
RM,Ci

is the set of all runs of M satisfying Ci .
(RM,Ci

⊆ RM)

I M is correct wrt. C1, . . . ,Cn iff RM = (RM,C1 ∩ . . . ∩ RM,Cn).

I If M is not correct, then
each r ∈ (RM \ (RM,C1 ∩ . . . ∩ RM,Cn)) is a counter example.

We know how to write models M.
But how to write Correctness Properties?

SEFM: Spin /GU 110906 10 / 34

Meaning of Correctness w.r.t. Properties

Given Promela model M, and correctness properties C1, . . . ,Cn.

I Be RM the set of all possible runs of M.

I For each correctness property Ci ,
RM,Ci

is the set of all runs of M satisfying Ci .
(RM,Ci

⊆ RM)

I M is correct wrt. C1, . . . ,Cn iff

RM = (RM,C1 ∩ . . . ∩ RM,Cn).

I If M is not correct, then
each r ∈ (RM \ (RM,C1 ∩ . . . ∩ RM,Cn)) is a counter example.

We know how to write models M.
But how to write Correctness Properties?

SEFM: Spin /GU 110906 10 / 34

Meaning of Correctness w.r.t. Properties

Given Promela model M, and correctness properties C1, . . . ,Cn.

I Be RM the set of all possible runs of M.

I For each correctness property Ci ,
RM,Ci

is the set of all runs of M satisfying Ci .
(RM,Ci

⊆ RM)

I M is correct wrt. C1, . . . ,Cn iff RM = (RM,C1 ∩ . . . ∩ RM,Cn).

I If M is not correct, then
each r ∈ (RM \ (RM,C1 ∩ . . . ∩ RM,Cn)) is a counter example.

We know how to write models M.
But how to write Correctness Properties?

SEFM: Spin /GU 110906 10 / 34

Meaning of Correctness w.r.t. Properties

Given Promela model M, and correctness properties C1, . . . ,Cn.

I Be RM the set of all possible runs of M.

I For each correctness property Ci ,
RM,Ci

is the set of all runs of M satisfying Ci .
(RM,Ci

⊆ RM)

I M is correct wrt. C1, . . . ,Cn iff RM = (RM,C1 ∩ . . . ∩ RM,Cn).

I If M is not correct, then
each r ∈ (RM \ (RM,C1 ∩ . . . ∩ RM,Cn)) is a counter example.

We know how to write models M.
But how to write Correctness Properties?

SEFM: Spin /GU 110906 10 / 34

Meaning of Correctness w.r.t. Properties

Given Promela model M, and correctness properties C1, . . . ,Cn.

I Be RM the set of all possible runs of M.

I For each correctness property Ci ,
RM,Ci

is the set of all runs of M satisfying Ci .
(RM,Ci

⊆ RM)

I M is correct wrt. C1, . . . ,Cn iff RM = (RM,C1 ∩ . . . ∩ RM,Cn).

I If M is not correct, then
each r ∈ (RM \ (RM,C1 ∩ . . . ∩ RM,Cn)) is a counter example.

We know how to write models M.

But how to write Correctness Properties?

SEFM: Spin /GU 110906 10 / 34

Meaning of Correctness w.r.t. Properties

Given Promela model M, and correctness properties C1, . . . ,Cn.

I Be RM the set of all possible runs of M.

I For each correctness property Ci ,
RM,Ci

is the set of all runs of M satisfying Ci .
(RM,Ci

⊆ RM)

I M is correct wrt. C1, . . . ,Cn iff RM = (RM,C1 ∩ . . . ∩ RM,Cn).

I If M is not correct, then
each r ∈ (RM \ (RM,C1 ∩ . . . ∩ RM,Cn)) is a counter example.

We know how to write models M.
But how to write Correctness Properties?

SEFM: Spin /GU 110906 10 / 34

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated within, or outside, the model.

stating properties within model , using

I assertion statements
I meta labels

I end labels
I accept labels
I progress labels

stating properties outside model , using

I never claims
I temporal logic formulas

SEFM: Spin /GU 110906 11 / 34

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated within, or outside, the model.

stating properties within model , using

I assertion statements
I meta labels

I end labels
I accept labels
I progress labels

stating properties outside model , using

I never claims
I temporal logic formulas

SEFM: Spin /GU 110906 11 / 34

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated within, or outside, the model.

stating properties within model , using

I assertion statements

I meta labels
I end labels
I accept labels
I progress labels

stating properties outside model , using

I never claims
I temporal logic formulas

SEFM: Spin /GU 110906 11 / 34

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated within, or outside, the model.

stating properties within model , using

I assertion statements
I meta labels

I end labels
I accept labels
I progress labels

stating properties outside model , using

I never claims
I temporal logic formulas

SEFM: Spin /GU 110906 11 / 34

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated within, or outside, the model.

stating properties within model , using

I assertion statements
I meta labels

I end labels
I accept labels
I progress labels

stating properties outside model , using

I never claims
I temporal logic formulas

SEFM: Spin /GU 110906 11 / 34

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated within, or outside, the model.

stating properties within model , using

I assertion statements (today)
I meta labels

I end labels (today)
I accept labels
I progress labels

stating properties outside model , using

I never claims
I temporal logic formulas

SEFM: Spin /GU 110906 11 / 34

Assertion Statements

Definition (Assertion Statements)

Assertion statements in Promela are statements of the form
assert(expr)

were expr is any Promela expression.

Typically, expr is of type bool.

assert(expr) can appear wherever a statement is expected.

...

stmt1;

assert (max == a);

stmt2;

...

...

i f
:: b1 -> stmt3;

assert (x < y)

:: b2 -> stmt4

...

SEFM: Spin /GU 110906 12 / 34

Assertion Statements

Definition (Assertion Statements)

Assertion statements in Promela are statements of the form
assert(expr)

were expr is any Promela expression.

Typically, expr is of type bool.

assert(expr) can appear wherever a statement is expected.

...

stmt1;

assert (max == a);

stmt2;

...

...

i f
:: b1 -> stmt3;

assert (x < y)

:: b2 -> stmt4

...

SEFM: Spin /GU 110906 12 / 34

Assertion Statements

Definition (Assertion Statements)

Assertion statements in Promela are statements of the form
assert(expr)

were expr is any Promela expression.

Typically, expr is of type bool.

assert(expr) can appear wherever a statement is expected.

...

stmt1;

assert (max == a);

stmt2;

...

...

i f
:: b1 -> stmt3;

assert (x < y)

:: b2 -> stmt4

...

SEFM: Spin /GU 110906 12 / 34

Assertion Statements

Definition (Assertion Statements)

Assertion statements in Promela are statements of the form
assert(expr)

were expr is any Promela expression.

Typically, expr is of type bool.

assert(expr) can appear wherever a statement is expected.

...

stmt1;

assert (max == a);

stmt2;

...

...

i f
:: b1 -> stmt3;

assert (x < y)

:: b2 -> stmt4

...

SEFM: Spin /GU 110906 12 / 34

Assertion Statements

Definition (Assertion Statements)

Assertion statements in Promela are statements of the form
assert(expr)

were expr is any Promela expression.

Typically, expr is of type bool.

assert(expr) can appear wherever a statement is expected.

...

stmt1;

assert (max == a);

stmt2;

...

...

i f
:: b1 -> stmt3;

assert (x < y)

:: b2 -> stmt4

...

SEFM: Spin /GU 110906 12 / 34

Meaning of Boolean Assertion Statements

assert(expr)

I has no effect if expr evaluates to true

I triggers an error message if expr evaluates to false

This holds in both, simulation and model checking mode.

Recall:

bool true false is syntactic sugar for
bit 1 0

⇒ general case covers Boolean case

SEFM: Spin /GU 110906 13 / 34

Meaning of General Assertion Statements

assert(expr)

I has no effect if expr evaluates to non-zero value

I triggers an error message if expr evaluates to 0

This holds in both, simulation and model checking mode.

Recall:

bool true false is syntactic sugar for
bit 1 0

⇒ general case covers Boolean case

SEFM: Spin /GU 110906 13 / 34

Meaning of General Assertion Statements

assert(expr)

I has no effect if expr evaluates to non-zero value

I triggers an error message if expr evaluates to 0

This holds in both, simulation and model checking mode.

Recall:

bool true false is syntactic sugar for

bit 1 0

⇒ general case covers Boolean case

SEFM: Spin /GU 110906 13 / 34

Meaning of General Assertion Statements

assert(expr)

I has no effect if expr evaluates to non-zero value

I triggers an error message if expr evaluates to 0

This holds in both, simulation and model checking mode.

Recall:

bool true false is syntactic sugar for
bit 1 0

⇒ general case covers Boolean case

SEFM: Spin /GU 110906 13 / 34

Meaning of General Assertion Statements

assert(expr)

I has no effect if expr evaluates to non-zero value

I triggers an error message if expr evaluates to 0

This holds in both, simulation and model checking mode.

Recall:

bool true false is syntactic sugar for
bit 1 0

⇒ general case covers Boolean case

SEFM: Spin /GU 110906 13 / 34

Instead of using ‘printf’s for Debugging ...

/* after choosing a,b from {1,2,3} */

i f
:: a >= b -> max = a

:: a <= b -> max = b

f i ;
print f ("the maximum of %d and %d is %d\n",

a, b, max)

Command Line Execution

(simulate, inject faults, add assertion, simulate again)

> spin [-i] max.pml

SEFM: Spin /GU 110906 14 / 34

Instead of using ‘printf’s for Debugging ...

/* after choosing a,b from {1,2,3} */

i f
:: a >= b -> max = a

:: a <= b -> max = b

f i ;
print f ("the maximum of %d and %d is %d\n",

a, b, max)

Command Line Execution

(simulate, inject faults, add assertion, simulate again)

> spin [-i] max.pml

SEFM: Spin /GU 110906 14 / 34

... we can employ Assertions

quoting from file max.pml:

/* after choosing a,b from {1,2,3} */

i f
:: a >= b -> max = a

:: a <= b -> max = b

f i ;
assert (max == (a>b -> a : b))

Now, we have a first example with a formulated correctness property.

We can do model checking, for the first time!

(Historic moment in the course.)

SEFM: Spin /GU 110906 15 / 34

... we can employ Assertions

quoting from file max.pml:

/* after choosing a,b from {1,2,3} */

i f
:: a >= b -> max = a

:: a <= b -> max = b

f i ;
assert (max == (a>b -> a : b))

Now, we have a first example with a formulated correctness property.

We can do model checking, for the first time!

(Historic moment in the course.)

SEFM: Spin /GU 110906 15 / 34

... we can employ Assertions

quoting from file max.pml:

/* after choosing a,b from {1,2,3} */

i f
:: a >= b -> max = a

:: a <= b -> max = b

f i ;
assert (max == (a>b -> a : b))

Now, we have a first example with a formulated correctness property.

We can do model checking, for the first time!

(Historic moment in the course.)

SEFM: Spin /GU 110906 15 / 34

... we can employ Assertions

quoting from file max.pml:

/* after choosing a,b from {1,2,3} */

i f
:: a >= b -> max = a

:: a <= b -> max = b

f i ;
assert (max == (a>b -> a : b))

Now, we have a first example with a formulated correctness property.

We can do model checking, for the first time!

(Historic moment in the course.)

SEFM: Spin /GU 110906 15 / 34

Generate Verifier in C

SPIN

model
max.pml

correctness
properties

correctness
properties

verifier
pan.c

-a

Command Line Execution

Generate Verifier in C

> spin -a max.pml

Spin generates Verifier in C, called pan.c

(plus helper files)

SEFM: Spin /GU 110906 16 / 34

Compile To Executable Verifier

verifier
pan.c

C
compiler

executable
verifier

pan

Command Line Execution

compile to executable verifier

> gcc -o pan pan.c

C compiler generates executable verifier pan

pan: historically “protocol analyzer”, now “process analyzer”

SEFM: Spin /GU 110906 17 / 34

Compile To Executable Verifier

verifier
pan.c

C
compiler

executable
verifier

pan

Command Line Execution

compile to executable verifier

> gcc -o pan pan.c

C compiler generates executable verifier pan

pan: historically “protocol analyzer”, now “process analyzer”

SEFM: Spin /GU 110906 17 / 34

Compile To Executable Verifier

verifier
pan.c

C
compiler

executable
verifier

pan

Command Line Execution

compile to executable verifier

> gcc -o pan pan.c

C compiler generates executable verifier pan

pan: historically “protocol analyzer”, now “process analyzer”

SEFM: Spin /GU 110906 17 / 34

Run Verifier (= Model Check)

executable
verifier

pan

“errors: 0”

failing
run

max.pml.trail

either or

Command Line Execution

run verifier pan

> ./pan or > pan

I prints “errors: 0”
I prints “errors: n” (n > 0) ⇒ counter example found!

records failing run in max.pml.trail

SEFM: Spin /GU 110906 18 / 34

Run Verifier (= Model Check)

executable
verifier

pan

“errors: 0”

failing
run

max.pml.trail

either or

Command Line Execution

run verifier pan

> ./pan or > pan

I prints “errors: 0”

I prints “errors: n” (n > 0) ⇒ counter example found!
records failing run in max.pml.trail

SEFM: Spin /GU 110906 18 / 34

Run Verifier (= Model Check)

executable
verifier

pan

“errors: 0”

failing
run

max.pml.trail

either or

Command Line Execution

run verifier pan

> ./pan or > pan

I prints “errors: 0” ⇒ Correctness Property verified!

I prints “errors: n” (n > 0) ⇒ counter example found!
records failing run in max.pml.trail

SEFM: Spin /GU 110906 18 / 34

Run Verifier (= Model Check)

executable
verifier

pan

“errors: 0”

failing
run

max.pml.trail

either or

Command Line Execution

run verifier pan

> ./pan or > pan

I prints “errors: 0”, or
I prints “errors: n” (n > 0)

⇒ counter example found!
records failing run in max.pml.trail

SEFM: Spin /GU 110906 18 / 34

Run Verifier (= Model Check)

executable
verifier

pan

“errors: 0”

failing
run

max.pml.trail

either or

Command Line Execution

run verifier pan

> ./pan or > pan

I prints “errors: 0”, or
I prints “errors: n” (n > 0) ⇒ counter example found!

records failing run in max.pml.trail

SEFM: Spin /GU 110906 18 / 34

Run Verifier (= Model Check)

executable
verifier

pan

“errors: 0”

failing
run

max.pml.trail

either or

Command Line Execution

run verifier pan

> ./pan or > pan

I prints “errors: 0”, or
I prints “errors: n” (n > 0) ⇒ counter example found!

records failing run in max.pml.trail
SEFM: Spin /GU 110906 18 / 34

Guided Simulation

To examine failing run: employ simulation mode, “guided” by trail file.

SPIN

failing
run

max.pml.trail
guided

simulation

-t

Command Line Execution

inject a fault, re-run verification, and then:

> spin -t -p -l max.pml

SEFM: Spin /GU 110906 19 / 34

Output of Guided Simulation

can look like:

Starting P with pid 0

1: proc 0 (P) line 8 "max.pml" (state 1) [a = 1]

P(0):a = 1

2: proc 0 (P) line 14 "max.pml" (state 7) [b = 2]

P(0):b = 2

3: proc 0 (P) line 23 "max.pml" (state 13) [((a<=b))]

3: proc 0 (P) line 23 "max.pml" (state 14) [max = a]

P(0):max = 1

spin: line 25 "max.pml", Error: assertion violated

spin: text of failed assertion:

assert ((max ==(((a>b)) -> (a) : (b))))

assignments in the run
values of variables whenever updated

SEFM: Spin /GU 110906 20 / 34

Output of Guided Simulation

can look like:

Starting P with pid 0

1: proc 0 (P) line 8 "max.pml" (state 1) [a = 1]

P(0):a = 1

2: proc 0 (P) line 14 "max.pml" (state 7) [b = 2]

P(0):b = 2

3: proc 0 (P) line 23 "max.pml" (state 13) [((a<=b))]

3: proc 0 (P) line 23 "max.pml" (state 14) [max = a]

P(0):max = 1

spin: line 25 "max.pml", Error: assertion violated

spin: text of failed assertion:

assert ((max ==(((a>b)) -> (a) : (b))))

assignments in the run

values of variables whenever updated

SEFM: Spin /GU 110906 20 / 34

Output of Guided Simulation

can look like:

Starting P with pid 0

1: proc 0 (P) line 8 "max.pml" (state 1) [a = 1]

P(0):a = 1

2: proc 0 (P) line 14 "max.pml" (state 7) [b = 2]

P(0):b = 2

3: proc 0 (P) line 23 "max.pml" (state 13) [((a<=b))]

3: proc 0 (P) line 23 "max.pml" (state 14) [max = a]

P(0):max = 1

spin: line 25 "max.pml", Error: assertion violated

spin: text of failed assertion:

assert ((max ==(((a>b)) -> (a) : (b))))

assignments in the run
values of variables whenever updated

SEFM: Spin /GU 110906 20 / 34

What did we do so far?

following whole cycle (most primitive example, assertions only)

SPIN

model
name.pml

correctness
properties

correctness
properties

verifier
pan.c

C
compiler

executable
verifier

pan

“errors: 0”

failing
run

name.pml.trail
interactive /random/ guided

simulation

-p -l -g ...

-a

or

ei
th

er

-i
-t

SEFM: Spin /GU 110906 21 / 34

What did we do so far?

following whole cycle (most primitive example, assertions only)

SPIN

model
name.pml

correctness
properties

correctness
properties

verifier
pan.c

C
compiler

executable
verifier

pan

“errors: 0”

failing
run

name.pml.trail
interactive /random/ guided

simulation
-p -l -g ...

-a

or

ei
th

er

-i
-t

SEFM: Spin /GU 110906 21 / 34

Further Examples: Integer Division

int dividend = 15;

int divisor = 4;

int quotient , remainder;

quotient = 0;

remainder = dividend;

do
:: remainder > divisor ->

quotient ++;

remainder = remainder - divisor

:: e l se ->

break
od;
print f ("%d divided by %d = %d, remainder = %d\n",

dividend , divisor , quotient , remainder)

simulate, put assertions, verify, change values, ...

SEFM: Spin /GU 110906 22 / 34

Further Examples: Integer Division

int dividend = 15;

int divisor = 4;

int quotient , remainder;

quotient = 0;

remainder = dividend;

do
:: remainder > divisor ->

quotient ++;

remainder = remainder - divisor

:: e l se ->

break
od;
print f ("%d divided by %d = %d, remainder = %d\n",

dividend , divisor , quotient , remainder)

simulate, put assertions, verify, change values, ...

SEFM: Spin /GU 110906 22 / 34

Further Examples: Greatest Common Divisor

int x = 15, y = 20;

int a, b;

a = x; b = y;

do
:: a > b -> a = a - b

:: b > a -> b = b - a

:: a == b -> break
od;
print f ("The GCD of %d and %d = %d\n", x, y, a)

full functional verification not possible here (why?)

still, assertions can perform sanity check

⇒ typical for model checking

SEFM: Spin /GU 110906 23 / 34

Further Examples: Greatest Common Divisor

int x = 15, y = 20;

int a, b;

a = x; b = y;

do
:: a > b -> a = a - b

:: b > a -> b = b - a

:: a == b -> break
od;
print f ("The GCD of %d and %d = %d\n", x, y, a)

full functional verification not possible here (why?)

still, assertions can perform sanity check

⇒ typical for model checking

SEFM: Spin /GU 110906 23 / 34

Further Examples: Greatest Common Divisor

int x = 15, y = 20;

int a, b;

a = x; b = y;

do
:: a > b -> a = a - b

:: b > a -> b = b - a

:: a == b -> break
od;
print f ("The GCD of %d and %d = %d\n", x, y, a)

full functional verification not possible here (why?)

still, assertions can perform sanity check

⇒ typical for model checking

SEFM: Spin /GU 110906 23 / 34

Further Examples: Greatest Common Divisor

int x = 15, y = 20;

int a, b;

a = x; b = y;

do
:: a > b -> a = a - b

:: b > a -> b = b - a

:: a == b -> break
od;
print f ("The GCD of %d and %d = %d\n", x, y, a)

full functional verification not possible here (why?)

still, assertions can perform sanity check

⇒ typical for model checking

SEFM: Spin /GU 110906 23 / 34

Typical Command Lines

typical command line sequences:

random simulation
spin name.pml

interactive simulation
spin -i name.pml

model checking
spin -a name.pml

gcc -o pan pan.c

./pan

and in case of error

spin -t -p -l -g name.pml

SEFM: Spin /GU 110906 24 / 34

Typical Command Lines

typical command line sequences:

random simulation
spin name.pml

interactive simulation
spin -i name.pml

model checking
spin -a name.pml

gcc -o pan pan.c

./pan

and in case of error

spin -t -p -l -g name.pml

SEFM: Spin /GU 110906 24 / 34

Typical Command Lines

typical command line sequences:

random simulation
spin name.pml

interactive simulation
spin -i name.pml

model checking
spin -a name.pml

gcc -o pan pan.c

./pan

and in case of error

spin -t -p -l -g name.pml

SEFM: Spin /GU 110906 24 / 34

Typical Command Lines

typical command line sequences:

random simulation
spin name.pml

interactive simulation
spin -i name.pml

model checking
spin -a name.pml

gcc -o pan pan.c

./pan

and in case of error

spin -t -p -l -g name.pml

SEFM: Spin /GU 110906 24 / 34

Spin Reference Card

Ben-Ari produced Spin Reference Card, summarizing

I typical command line sequences
I options for

I Spin
I gcc
I pan

I Promela
I datatypes
I operators
I statements
I guarded commands
I processes
I channels

I temporal logic syntax

⇒ available from course page (see ‘Links, Papers, and Software’)

SEFM: Spin /GU 110906 25 / 34

Spin Reference Card

Ben-Ari produced Spin Reference Card, summarizing

I typical command line sequences
I options for

I Spin
I gcc
I pan

I Promela
I datatypes
I operators
I statements
I guarded commands
I processes
I channels

I temporal logic syntax

⇒ available from course page (see ‘Links, Papers, and Software’)

SEFM: Spin /GU 110906 25 / 34

Why Spin?

I Spin targets software, instead of hardware verification
(“Software Engineering using Formal Methods”)

I 2001 ACM Software Systems Award (other winning software systems
include: Unix, TCP/IP, WWW, Tcl/Tk, Java)

I used for safety critical applications

I distributed freely as research tool, well-documented, actively
maintained, large user-base in academia and in industry

I annual Spin user workshops series held since 1995

I based on standard theory of ω-automata and linear temporal logic

SEFM: Spin /GU 110906 26 / 34

Why Spin? (Cont’d)

I Promela and Spin are rather simple to use

I good to understand a few systems really well, rather than many
systems poorly

I availability of good course book (Ben-Ari)

I availability of front end jSpin (also Ben-Ari)

SEFM: Spin /GU 110906 27 / 34

What is jSpin?

I graphical user interface for Spin

I developed for pedagogical purposes

I written in Java

I simple user interface

I Spin options automatically supplied

I fully configurable

I supports graphics output of transition system

I makes back-end calls transparent

SEFM: Spin /GU 110906 28 / 34

What is jSpin?

I graphical user interface for Spin

I developed for pedagogical purposes

I written in Java

I simple user interface

I Spin options automatically supplied

I fully configurable

I supports graphics output of transition system

I makes back-end calls transparent

SEFM: Spin /GU 110906 28 / 34

jSpin Demo

Command Line Execution

calling jSpin

> java -jar /usr/local/jSpin/jSpin.jar

(with path adjusted to your setting)

or use shell script:

> jspin

play around with similar examples ...

SEFM: Spin /GU 110906 29 / 34

jSpin Demo

Command Line Execution

calling jSpin

> java -jar /usr/local/jSpin/jSpin.jar

(with path adjusted to your setting)

or use shell script:

> jspin

play around with similar examples ...

SEFM: Spin /GU 110906 29 / 34

Catching A Different Type of Error

quoting from file max2.pml:

/* after choosing a,b from {1,2,3} */

i f
:: a >= b -> max = a;

:: b <= a -> max = b;

f i ;
print f ("the maximum of %d and %d is %d\n",

a, b, max)

simulate a few times
⇒ crazy “timeout” message sometimes

generate and execute pan
⇒ reports “errors: 1”

SEFM: Spin /GU 110906 30 / 34

Catching A Different Type of Error

quoting from file max2.pml:

/* after choosing a,b from {1,2,3} */

i f
:: a >= b -> max = a;

:: b <= a -> max = b;

f i ;
print f ("the maximum of %d and %d is %d\n",

a, b, max)

simulate a few times

⇒ crazy “timeout” message sometimes

generate and execute pan
⇒ reports “errors: 1”

SEFM: Spin /GU 110906 30 / 34

Catching A Different Type of Error

quoting from file max2.pml:

/* after choosing a,b from {1,2,3} */

i f
:: a >= b -> max = a;

:: b <= a -> max = b;

f i ;
print f ("the maximum of %d and %d is %d\n",

a, b, max)

simulate a few times
⇒ crazy “timeout” message sometimes

generate and execute pan
⇒ reports “errors: 1”

SEFM: Spin /GU 110906 30 / 34

Catching A Different Type of Error

quoting from file max2.pml:

/* after choosing a,b from {1,2,3} */

i f
:: a >= b -> max = a;

:: b <= a -> max = b;

f i ;
print f ("the maximum of %d and %d is %d\n",

a, b, max)

simulate a few times
⇒ crazy “timeout” message sometimes

generate and execute pan

⇒ reports “errors: 1”

SEFM: Spin /GU 110906 30 / 34

Catching A Different Type of Error

quoting from file max2.pml:

/* after choosing a,b from {1,2,3} */

i f
:: a >= b -> max = a;

:: b <= a -> max = b;

f i ;
print f ("the maximum of %d and %d is %d\n",

a, b, max)

simulate a few times
⇒ crazy “timeout” message sometimes

generate and execute pan
⇒ reports “errors: 1”

SEFM: Spin /GU 110906 30 / 34

Catching A Different Type of Error

quoting from file max2.pml:

/* after choosing a,b from {1,2,3} */

i f
:: a >= b -> max = a;

:: b <= a -> max = b;

f i ;
print f ("the maximum of %d and %d is %d\n",

a, b, max)

simulate a few times
⇒ crazy “timeout” message sometimes

generate and execute pan
⇒ reports “errors: 1”

????

SEFM: Spin /GU 110906 30 / 34

Catching A Different Type of Error

quoting from file max2.pml:

/* after choosing a,b from {1,2,3} */

i f
:: a >= b -> max = a;

:: b <= a -> max = b;

f i ;
print f ("the maximum of %d and %d is %d\n",

a, b, max)

simulate a few times
⇒ crazy “timeout” message sometimes

generate and execute pan
⇒ reports “errors: 1”

Note: no assert in max2.pml.

SEFM: Spin /GU 110906 30 / 34

Catching A Different Type of Error

Further inspection of pan output:

...

pan: invalid end state (at depth 1)

pan: wrote max2.pml.trail

...

SEFM: Spin /GU 110906 31 / 34

Legal and Illegal Blocking

A process may legally block, as long as some other process can proceed.

Blocking for letting others proceed is useful, and typical,
for concurrent and distributed models (i.p. protocols).

But

it’s an error if a process blocks while no other process can proceed

⇒ “Deadlock”

in max2.pml, there exists a run where no process can take over.

SEFM: Spin /GU 110906 32 / 34

Legal and Illegal Blocking

A process may legally block, as long as some other process can proceed.

Blocking for letting others proceed is useful, and typical,
for concurrent and distributed models (i.p. protocols).

But

it’s an error if a process blocks while no other process can proceed

⇒ “Deadlock”

in max2.pml, there exists a run where no process can take over.

SEFM: Spin /GU 110906 32 / 34

Legal and Illegal Blocking

A process may legally block, as long as some other process can proceed.

Blocking for letting others proceed is useful, and typical,
for concurrent and distributed models (i.p. protocols).

But

it’s an error if a process blocks while no other process can proceed

⇒ “Deadlock”

in max2.pml, there exists a run where no process can take over.

SEFM: Spin /GU 110906 32 / 34

Legal and Illegal Blocking

A process may legally block, as long as some other process can proceed.

Blocking for letting others proceed is useful, and typical,
for concurrent and distributed models (i.p. protocols).

But

it’s an error if a process blocks while no other process can proceed

⇒ “Deadlock”

in max2.pml, there exists a run where no process can take over.

SEFM: Spin /GU 110906 32 / 34

Legal and Illegal Blocking

A process may legally block, as long as some other process can proceed.

Blocking for letting others proceed is useful, and typical,
for concurrent and distributed models (i.p. protocols).

But

it’s an error if a process blocks while no other process can proceed

⇒ “Deadlock”

in max2.pml, there exists a run where no process can take over.

SEFM: Spin /GU 110906 32 / 34

Valid End States

Definition (Valid End State)

An end state of a run is valid iff the location counter of each processes is
at an end location.

Definition (End Location)

End locations of a process P are:

I P’s textual end

I each location marked with an end label: “endxxx:”

End labels not useful in max2.pml, but elsewhere, they are.
Example: end.pml

SEFM: Spin /GU 110906 33 / 34

Valid End States

Definition (Valid End State)

An end state of a run is valid iff the location counter of each processes is
at an end location.

Definition (End Location)

End locations of a process P are:

I P’s textual end

I each location marked with an end label: “endxxx:”

End labels not useful in max2.pml, but elsewhere, they are.
Example: end.pml

SEFM: Spin /GU 110906 33 / 34

Valid End States

Definition (Valid End State)

An end state of a run is valid iff the location counter of each processes is
at an end location.

Definition (End Location)

End locations of a process P are:

I P’s textual end

I each location marked with an end label: “endxxx:”

End labels not useful in max2.pml, but elsewhere, they are.
Example: end.pml

SEFM: Spin /GU 110906 33 / 34

Valid End States

Definition (Valid End State)

An end state of a run is valid iff the location counter of each processes is
at an end location.

Definition (End Location)

End locations of a process P are:

I P’s textual end

I each location marked with an end label: “endxxx:”

End labels not useful in max2.pml, but elsewhere, they are.
Example: end.pml

SEFM: Spin /GU 110906 33 / 34

Literature for this Lecture

Ben-Ari Chapter 2, Sections 4.7.1, 4.7.2

SEFM: Spin /GU 110906 34 / 34

	Model Checking
	Spin Overview
	Simulation with Spin
	Model Checking with Spin
	Correctness Properties
	Assertions
	Guided Simulation
	Further Verification Examples
	Why Spin?
	jSpin
	Invalid End States
	Valid End States
	Literature

