
Software Engineering using Formal Methods
Java Modeling Language, Part II

Wolfgang Ahrendt & Richard Bubel & Wojciech Mostowski

28 September 2011

SEFM: Java Modeling Language /GU 110928 1 / 47

JML Expressions 6= JAVA Expressions

boolean JML Expressions (to be completed)

I each side-effect free boolean JAVA expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)

I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I ...
I ...
I ...
I ...

SEFM: Java Modeling Language /GU 110928 2 / 47

JML Expressions 6= JAVA Expressions

boolean JML Expressions (to be completed)

I each side-effect free boolean JAVA expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)
I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I ...
I ...
I ...
I ...

SEFM: Java Modeling Language /GU 110928 2 / 47

Beyond boolean JAVA expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

I all created instances of class BankCard have different cardNumbers

SEFM: Java Modeling Language /GU 110928 3 / 47

Beyond boolean JAVA expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

I all created instances of class BankCard have different cardNumbers

SEFM: Java Modeling Language /GU 110928 3 / 47

Beyond boolean JAVA expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

I all created instances of class BankCard have different cardNumbers

SEFM: Java Modeling Language /GU 110928 3 / 47

Beyond boolean JAVA expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

I all created instances of class BankCard have different cardNumbers

SEFM: Java Modeling Language /GU 110928 3 / 47

First-order Logic in JML Expressions

JML boolean expressions extend JAVA boolean expressions by:

I implication

I equivalence

I quantification

SEFM: Java Modeling Language /GU 110928 4 / 47

First-order Logic in JML Expressions

JML boolean expressions extend JAVA boolean expressions by:

I implication

I equivalence

I quantification

SEFM: Java Modeling Language /GU 110928 4 / 47

boolean JML Expressions

boolean JML expressions are defined recursively:

boolean JML Expressions

I each side-effect free boolean JAVA expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)
I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I (\forall t x; a) (“for all x of type t, a is true”)
I (\exists t x; a) (“there exists x of type t such that a”)

I (\forall t x; a; b) (“for all x of type t fulfilling a, b is true”)
I (\exists t x; a; b) (“there exists an x of type t fulfilling a,

such that b”)

SEFM: Java Modeling Language /GU 110928 5 / 47

boolean JML Expressions

boolean JML expressions are defined recursively:

boolean JML Expressions

I each side-effect free boolean JAVA expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)
I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I (\forall t x; a) (“for all x of type t, a is true”)
I (\exists t x; a) (“there exists x of type t such that a”)
I (\forall t x; a; b) (“for all x of type t fulfilling a, b is true”)
I (\exists t x; a; b) (“there exists an x of type t fulfilling a,

such that b”)

SEFM: Java Modeling Language /GU 110928 5 / 47

JML Quantifiers

in

(\forall t x; a; b)

(\exists t x; a; b)

a called “range predicate”

those forms are redundant:

(\forall t x; a; b)

equivalent to
(\forall t x; a ==> b)

(\exists t x; a; b)

equivalent to
(\exists t x; a && b)

SEFM: Java Modeling Language /GU 110928 6 / 47

JML Quantifiers

in

(\forall t x; a; b)

(\exists t x; a; b)

a called “range predicate”

those forms are redundant:

(\forall t x; a; b)

equivalent to
(\forall t x; a ==> b)

(\exists t x; a; b)

equivalent to
(\exists t x; a && b)

SEFM: Java Modeling Language /GU 110928 6 / 47

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])

SEFM: Java Modeling Language /GU 110928 7 / 47

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])

SEFM: Java Modeling Language /GU 110928 7 / 47

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j;

0<=i && i<j && j<10; arr[i] <= arr[j])

SEFM: Java Modeling Language /GU 110928 7 / 47

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10;

arr[i] <= arr[j])

SEFM: Java Modeling Language /GU 110928 7 / 47

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])

SEFM: Java Modeling Language /GU 110928 7 / 47

Using Quantified JML expressions

How to express:

I an array arr only holds values ≤ 2

(\forall int i; 0 <= i && i < arr.length; arr[i] <= 2)

SEFM: Java Modeling Language /GU 110928 8 / 47

Using Quantified JML expressions

How to express:

I an array arr only holds values ≤ 2

(\forall int i;

0 <= i && i < arr.length; arr[i] <= 2)

SEFM: Java Modeling Language /GU 110928 8 / 47

Using Quantified JML expressions

How to express:

I an array arr only holds values ≤ 2

(\forall int i; 0 <= i && i < arr.length;

arr[i] <= 2)

SEFM: Java Modeling Language /GU 110928 8 / 47

Using Quantified JML expressions

How to express:

I an array arr only holds values ≤ 2

(\forall int i; 0 <= i && i < arr.length; arr[i] <= 2)

SEFM: Java Modeling Language /GU 110928 8 / 47

Using Quantified JML expressions

How to express:

I the variable m holds the maximum entry of array arr

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

is this enough?
arr.length > 0 ==>

(\exists int i; 0 <= i && i < arr.length; m == arr[i])

SEFM: Java Modeling Language /GU 110928 9 / 47

Using Quantified JML expressions

How to express:

I the variable m holds the maximum entry of array arr

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

is this enough?

arr.length > 0 ==>

(\exists int i; 0 <= i && i < arr.length; m == arr[i])

SEFM: Java Modeling Language /GU 110928 9 / 47

Using Quantified JML expressions

How to express:

I the variable m holds the maximum entry of array arr

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

is this enough?

arr.length > 0 ==>

(\exists int i; 0 <= i && i < arr.length; m == arr[i])

SEFM: Java Modeling Language /GU 110928 9 / 47

Using Quantified JML expressions

How to express:

I the variable m holds the maximum entry of array arr

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

is this enough?
arr.length > 0 ==>

(\exists int i; 0 <= i && i < arr.length; m == arr[i])

SEFM: Java Modeling Language /GU 110928 9 / 47

Using Quantified JML expressions

How to express:

I the variable m holds the maximum entry of array arr

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

is this enough?

arr.length > 0 ==>

(\exists int i; 0 <= i && i < arr.length; m == arr[i])

SEFM: Java Modeling Language /GU 110928 9 / 47

Using Quantified JML expressions

How to express:

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

(\forall int i; 0 <= i && i < maxAccountNumber;

accountProxies[i].accountNumber == i)

SEFM: Java Modeling Language /GU 110928 10 / 47

Using Quantified JML expressions

How to express:

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

(\forall int i; 0 <= i && i < maxAccountNumber;

accountProxies[i].accountNumber == i)

SEFM: Java Modeling Language /GU 110928 10 / 47

Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;

\created(p1) && \created(p2);

p1 != p2 ==> p1.cardNumber != p2.cardNumber)

note:

I JML quantifiers range also over non-created objects

I same for quantifiers in KeY!

I in JML, restrict to created objects with \created

I in KeY? (⇒ coming lecture)

SEFM: Java Modeling Language /GU 110928 11 / 47

Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;

\created(p1) && \created(p2);

p1 != p2 ==> p1.cardNumber != p2.cardNumber)

note:

I JML quantifiers range also over non-created objects

I same for quantifiers in KeY!

I in JML, restrict to created objects with \created

I in KeY? (⇒ coming lecture)

SEFM: Java Modeling Language /GU 110928 11 / 47

Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;

\created(p1) && \created(p2);

p1 != p2 ==> p1.cardNumber != p2.cardNumber)

note:

I JML quantifiers range also over non-created objects

I same for quantifiers in KeY!

I in JML, restrict to created objects with \created

I in KeY? (⇒ coming lecture)

SEFM: Java Modeling Language /GU 110928 11 / 47

Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;

\created(p1) && \created(p2);

p1 != p2 ==> p1.cardNumber != p2.cardNumber)

note:

I JML quantifiers range also over non-created objects

I same for quantifiers in KeY!

I in JML, restrict to created objects with \created

I in KeY? (⇒ coming lecture)

SEFM: Java Modeling Language /GU 110928 11 / 47

Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;

\created(p1) && \created(p2);

p1 != p2 ==> p1.cardNumber != p2.cardNumber)

note:

I JML quantifiers range also over non-created objects

I same for quantifiers in KeY!

I in JML, restrict to created objects with \created

I in KeY? (⇒ coming lecture)

SEFM: Java Modeling Language /GU 110928 11 / 47

Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;

\created(p1) && \created(p2);

p1 != p2 ==> p1.cardNumber != p2.cardNumber)

note:

I JML quantifiers range also over non-created objects

I same for quantifiers in KeY!

I in JML, restrict to created objects with \created

I in KeY?

(⇒ coming lecture)

SEFM: Java Modeling Language /GU 110928 11 / 47

Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;

\created(p1) && \created(p2);

p1 != p2 ==> p1.cardNumber != p2.cardNumber)

note:

I JML quantifiers range also over non-created objects

I same for quantifiers in KeY!

I in JML, restrict to created objects with \created

I in KeY? (⇒ coming lecture)

SEFM: Java Modeling Language /GU 110928 11 / 47

Example: Specifying LimitedIntegerSet

public class LimitedIntegerSet {

public final int limit;

private int arr[];

private int size = 0;

public LimitedIntegerSet(int limit) {

this.limit = limit;

this.arr = new int[limit];

}

public boolean add(int elem) {/*...*/}

public void remove(int elem) {/*...*/}

public boolean contains(int elem) {/*...*/}

// other methods

}
SEFM: Java Modeling Language /GU 110928 12 / 47

Prerequisites: Adding Specification Modifiers

public class LimitedIntegerSet {

public final int limit;

private /*@ spec_public @*/ int arr[];

private /*@ spec_public @*/ int size = 0;

public LimitedIntegerSet(int limit) {

this.limit = limit;

this.arr = new int[limit];

}

public boolean add(int elem) {/*...*/}

public void remove(int elem) {/*...*/}

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

// other methods

}
SEFM: Java Modeling Language /GU 110928 13 / 47

Specifying contains()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

has no effect on the state, incl. no exceptions

how to specify result value?

SEFM: Java Modeling Language /GU 110928 14 / 47

Specifying contains()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

has no effect on the state, incl. no exceptions

how to specify result value?

SEFM: Java Modeling Language /GU 110928 14 / 47

Specifying contains()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

has no effect on the state, incl. no exceptions

how to specify result value?

SEFM: Java Modeling Language /GU 110928 14 / 47

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result ==

(\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

SEFM: Java Modeling Language /GU 110928 15 / 47

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;

@

0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

SEFM: Java Modeling Language /GU 110928 15 / 47

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;

@ 0 <= i && i < size;

@

arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

SEFM: Java Modeling Language /GU 110928 15 / 47

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

SEFM: Java Modeling Language /GU 110928 15 / 47

Specifying add() (spec-case1) – new element can be added

/*@ public normal_behavior

@ requires size < limit && !contains(elem);

@ ensures \result == true;

@ ensures contains(elem);

@ ensures (\forall int e;

@ e != elem;

@ contains(e) <==> \old(contains(e)));

@ ensures size == \old(size) + 1;

@

@ also

@

@ <spec-case2>

@*/

public boolean add(int elem) {/*...*/}

SEFM: Java Modeling Language /GU 110928 16 / 47

Specifying add() (spec-case2) – new element cannot be added

/*@ public normal_behavior

@

@ <spec-case1>

@

@ also

@

@ public normal_behavior

@ requires (size == limit) || contains(elem);

@ ensures \result == false;

@ ensures (\forall int e;

@ contains(e) <==> \old(contains(e)));

@ ensures size == \old(size);

@*/

public boolean add(int elem) {/*...*/}

SEFM: Java Modeling Language /GU 110928 17 / 47

Specifying remove()

/*@ public normal_behavior

@ ensures !contains(elem);

@ ensures (\forall int e;

@ e != elem;

@ contains(e) <==> \old(contains(e)));

@ ensures \old(contains(elem))

@ ==> size == \old(size) - 1;

@ ensures !\old(contains(elem))

@ ==> size == \old(size);

@*/

public void remove(int elem) {/*...*/}

SEFM: Java Modeling Language /GU 110928 18 / 47

Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on class data, e.g.:

I consistency of redundant data representations (like indexing)

I restrictions for efficiency (like sortedness)

data constraints are global:
all methods must preserve them

SEFM: Java Modeling Language /GU 110928 19 / 47

Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on class data?

, e.g.:

I consistency of redundant data representations (like indexing)

I restrictions for efficiency (like sortedness)

data constraints are global:
all methods must preserve them

SEFM: Java Modeling Language /GU 110928 19 / 47

Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on class data, e.g.:

I consistency of redundant data representations (like indexing)

I restrictions for efficiency (like sortedness)

data constraints are global:
all methods must preserve them

SEFM: Java Modeling Language /GU 110928 19 / 47

Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on class data, e.g.:

I consistency of redundant data representations (like indexing)

I restrictions for efficiency (like sortedness)

data constraints are global:
all methods must preserve them

SEFM: Java Modeling Language /GU 110928 19 / 47

Consider LimitedSortedIntegerSet

public class LimitedSortedIntegerSet {

public final int limit;

private int arr[];

private int size = 0;

public LimitedSortedIntegerSet(int limit) {

this.limit = limit;

this.arr = new int[limit];

}

public boolean add(int elem) {/*...*/}

public void remove(int elem) {/*...*/}

public boolean contains(int elem) {/*...*/}

// other methods

}
SEFM: Java Modeling Language /GU 110928 20 / 47

Consequence of Sortedness for Implementations

method contains

I can employ binary search (logarithmic complexity)

I why is that sufficient?

I it assumes sortedness in pre-state

method add

I searches first index with bigger element, inserts just before that

I thereby tries to establish sortedness in post-state

I why is that sufficient?

I it assumes sortedness in pre-state

method remove

I (accordingly)

SEFM: Java Modeling Language /GU 110928 21 / 47

Consequence of Sortedness for Implementations

method contains

I can employ binary search (logarithmic complexity)

I why is that sufficient?

I it assumes sortedness in pre-state

method add

I searches first index with bigger element, inserts just before that

I thereby tries to establish sortedness in post-state

I why is that sufficient?

I it assumes sortedness in pre-state

method remove

I (accordingly)

SEFM: Java Modeling Language /GU 110928 21 / 47

Consequence of Sortedness for Implementations

method contains

I can employ binary search (logarithmic complexity)

I why is that sufficient?

I it assumes sortedness in pre-state

method add

I searches first index with bigger element, inserts just before that

I thereby tries to establish sortedness in post-state

I why is that sufficient?

I it assumes sortedness in pre-state

method remove

I (accordingly)

SEFM: Java Modeling Language /GU 110928 21 / 47

Consequence of Sortedness for Implementations

method contains

I can employ binary search (logarithmic complexity)

I why is that sufficient?

I it assumes sortedness in pre-state

method add

I searches first index with bigger element, inserts just before that

I thereby tries to establish sortedness in post-state

I why is that sufficient?

I it assumes sortedness in pre-state

method remove

I (accordingly)

SEFM: Java Modeling Language /GU 110928 21 / 47

Consequence of Sortedness for Implementations

method contains

I can employ binary search (logarithmic complexity)

I why is that sufficient?

I it assumes sortedness in pre-state

method add

I searches first index with bigger element, inserts just before that

I thereby tries to establish sortedness in post-state

I why is that sufficient?

I it assumes sortedness in pre-state

method remove

I (accordingly)

SEFM: Java Modeling Language /GU 110928 21 / 47

Consequence of Sortedness for Implementations

method contains

I can employ binary search (logarithmic complexity)

I why is that sufficient?

I it assumes sortedness in pre-state

method add

I searches first index with bigger element, inserts just before that

I thereby tries to establish sortedness in post-state

I why is that sufficient?

I it assumes sortedness in pre-state

method remove

I (accordingly)

SEFM: Java Modeling Language /GU 110928 21 / 47

Consequence of Sortedness for Implementations

method contains

I can employ binary search (logarithmic complexity)

I why is that sufficient?

I it assumes sortedness in pre-state

method add

I searches first index with bigger element, inserts just before that

I thereby tries to establish sortedness in post-state

I why is that sufficient?

I it assumes sortedness in pre-state

method remove

I (accordingly)

SEFM: Java Modeling Language /GU 110928 21 / 47

Consequence of Sortedness for Implementations

method contains

I can employ binary search (logarithmic complexity)

I why is that sufficient?

I it assumes sortedness in pre-state

method add

I searches first index with bigger element, inserts just before that

I thereby tries to establish sortedness in post-state

I why is that sufficient?

I it assumes sortedness in pre-state

method remove

I (accordingly)

SEFM: Java Modeling Language /GU 110928 21 / 47

Specifying Sortedness with JML

recall class fields:

public final int limit;

private int arr[];

private int size = 0;

sortedness as JML expression:

(\forall int i; 0 < i && i < size;

arr[i-1] <= arr[i])

(what’s the value of this if size < 2?)

but where in the specification does the red expression go?

SEFM: Java Modeling Language /GU 110928 22 / 47

Specifying Sortedness with JML

recall class fields:

public final int limit;

private int arr[];

private int size = 0;

sortedness as JML expression:

(\forall int i; 0 < i && i < size;

arr[i-1] <= arr[i])

(what’s the value of this if size < 2?)

but where in the specification does the red expression go?

SEFM: Java Modeling Language /GU 110928 22 / 47

Specifying Sortedness with JML

recall class fields:

public final int limit;

private int arr[];

private int size = 0;

sortedness as JML expression:

(\forall int i; 0 < i && i < size;

arr[i-1] <= arr[i])

(what’s the value of this if size < 2?)

but where in the specification does the red expression go?

SEFM: Java Modeling Language /GU 110928 22 / 47

Specifying Sortedness with JML

recall class fields:

public final int limit;

private int arr[];

private int size = 0;

sortedness as JML expression:

(\forall int i; 0 < i && i < size;

arr[i-1] <= arr[i])

(what’s the value of this if size < 2?)

but where in the specification does the red expression go?

SEFM: Java Modeling Language /GU 110928 22 / 47

Specifying Sorted contains()

can assume sortedness of pre-state

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ ensures \result == (\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains() is pure
⇒ sortedness of post-state trivially ensured

SEFM: Java Modeling Language /GU 110928 23 / 47

Specifying Sorted contains()

can assume sortedness of pre-state

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ ensures \result == (\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains() is pure
⇒ sortedness of post-state trivially ensured

SEFM: Java Modeling Language /GU 110928 23 / 47

Specifying Sorted contains()

can assume sortedness of pre-state

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ ensures \result == (\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains() is pure
⇒ sortedness of post-state trivially ensured

SEFM: Java Modeling Language /GU 110928 23 / 47

Specifying Sorted remove()

can assume sortedness of pre-state
must ensure sortedness of post-state

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ ensures !contains(elem);

@ ensures (\forall int e;

@ e != elem;

@ contains(e) <==> \old(contains(e)));

@ ensures \old(contains(elem))

@ ==> size == \old(size) - 1;

@ ensures !\old(contains(elem))

@ ==> size == \old(size);

@ ensures (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@*/

public void remove(int elem) {/*...*/}
SEFM: Java Modeling Language /GU 110928 24 / 47

Specifying Sorted add() (spec-case1) – can add

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ requires size < limit && !contains(elem);

@ ensures \result == true;

@ ensures contains(elem);

@ ensures (\forall int e;

@ e != elem;

@ contains(e) <==> \old(contains(e)));

@ ensures size == \old(size) + 1;

@ ensures (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@

@ also <spec-case2>

@*/

public boolean add(int elem) {/*...*/}

SEFM: Java Modeling Language /GU 110928 25 / 47

Specifying Sorted add() (spec-case2) – cannot add

/*@ public normal_behavior

@

@ <spec-case1> also

@

@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ requires (size == limit) || contains(elem);

@ ensures \result == false;

@ ensures (\forall int e;

@ contains(e) <==> \old(contains(e)));

@ ensures size == \old(size);

@ ensures (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@*/

public boolean add(int elem) {/*...*/}

SEFM: Java Modeling Language /GU 110928 26 / 47

Factor out Sortedness

so far: ‘sortedness’ has swamped our specification

we can do better, using

JML Class Invariant

construct for specifying data constraints centrally

1. delete blue and red parts from previous slides

2. add ‘sortedness’ as JML class invariant instead

SEFM: Java Modeling Language /GU 110928 27 / 47

Factor out Sortedness

so far: ‘sortedness’ has swamped our specification

we can do better, using

JML Class Invariant

construct for specifying data constraints centrally

1. delete blue and red parts from previous slides

2. add ‘sortedness’ as JML class invariant instead

SEFM: Java Modeling Language /GU 110928 27 / 47

Factor out Sortedness

so far: ‘sortedness’ has swamped our specification

we can do better, using

JML Class Invariant

construct for specifying data constraints centrally

1. delete blue and red parts from previous slides

2. add ‘sortedness’ as JML class invariant instead

SEFM: Java Modeling Language /GU 110928 27 / 47

JML Class Invariant

public class LimitedSortedIntegerSet {

public final int limit;

/*@ public invariant (\forall int i;

@ 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@*/

private /*@ spec_public @*/ int arr[];

private /*@ spec_public @*/ int size = 0;

// constructor and methods,

// without sortedness in pre/post-conditions

}

SEFM: Java Modeling Language /GU 110928 28 / 47

JML Class Invariant

I JML class invariant can be placed anywhere in class

I (contrast: method contract must be in front of its method)

I custom to place class invariant in front of fields it talks about

SEFM: Java Modeling Language /GU 110928 29 / 47

Instance vs. Static Invariants

instance invariants
can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘this’, like ‘this.size’)
JML syntax: instance invariant

static invariants
cannot refer to instance fields of this object
JML syntax: static invariant

both
can refer to
– static fields
– instance fields via explicit reference, like ‘o.size’

in classes: instance is default (static in interfaces)
if instance or static is omitted ⇒ instance invariant!

SEFM: Java Modeling Language /GU 110928 30 / 47

Instance vs. Static Invariants

instance invariants
can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘this’, like ‘this.size’)
JML syntax: instance invariant

static invariants
cannot refer to instance fields of this object
JML syntax: static invariant

both
can refer to
– static fields
– instance fields via explicit reference, like ‘o.size’

in classes: instance is default (static in interfaces)
if instance or static is omitted ⇒ instance invariant!

SEFM: Java Modeling Language /GU 110928 30 / 47

Instance vs. Static Invariants

instance invariants
can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘this’, like ‘this.size’)
JML syntax: instance invariant

static invariants
cannot refer to instance fields of this object
JML syntax: static invariant

both
can refer to
– static fields
– instance fields via explicit reference, like ‘o.size’

in classes: instance is default (static in interfaces)
if instance or static is omitted ⇒ instance invariant!

SEFM: Java Modeling Language /GU 110928 30 / 47

Instance vs. Static Invariants

instance invariants
can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘this’, like ‘this.size’)
JML syntax: instance invariant

static invariants
cannot refer to instance fields of this object
JML syntax: static invariant

both
can refer to
– static fields
– instance fields via explicit reference, like ‘o.size’

in classes: instance is default (static in interfaces)
if instance or static is omitted ⇒ instance invariant!

SEFM: Java Modeling Language /GU 110928 30 / 47

Static JML Invariant Example

public class BankCard {

/*@ public static invariant

@ (\forall BankCard p1, p2;

@ \created(p1) && \created(p2);

@ p1 != p2 ==> p1.cardNumber != p2.cardNumber)

@*/

private /*@ spec_public @*/ int cardNumber;

// rest of class follows

}

SEFM: Java Modeling Language /GU 110928 31 / 47

Recall Specification of enterPIN()

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

/*@ <spec-case1> also <spec-case2> also <spec-case3>

@*/

public void enterPIN (int pin) { ...

last lecture:
all 3 spec-cases were normal_behavior

SEFM: Java Modeling Language /GU 110928 32 / 47

Recall Specification of enterPIN()

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

/*@ <spec-case1> also <spec-case2> also <spec-case3>

@*/

public void enterPIN (int pin) { ...

last lecture:
all 3 spec-cases were normal_behavior

SEFM: Java Modeling Language /GU 110928 32 / 47

Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if pre-state satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if pre-state satisfies P

keyword signals specifies post-state, depending on thrown exception

keyword signals_only limits types of thrown exception

SEFM: Java Modeling Language /GU 110928 33 / 47

Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if pre-state satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if pre-state satisfies P

keyword signals specifies post-state, depending on thrown exception

keyword signals_only limits types of thrown exception

SEFM: Java Modeling Language /GU 110928 33 / 47

Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if pre-state satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if pre-state satisfies P

keyword signals specifies post-state, depending on thrown exception

keyword signals_only limits types of thrown exception

SEFM: Java Modeling Language /GU 110928 33 / 47

Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if pre-state satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if pre-state satisfies P

keyword signals specifies post-state, depending on thrown exception

keyword signals_only limits types of thrown exception

SEFM: Java Modeling Language /GU 110928 33 / 47

Completing Specification of enterPIN()

/*@ <spec-case1> also <spec-case2> also <spec-case3> also

@

@ public exceptional_behavior

@ requires insertedCard==null;

@ signals_only ATMException;

@ signals (ATMException) !customerAuthenticated;

@*/

public void enterPIN (int pin) { ...

in case insertedCard==null in pre-state

I an exception must be thrown (‘exceptional_behavior’)

I it can only be an ATMException (‘signals_only’)

I method must then ensure !customerAuthenticated in post-state
(‘signals’)

SEFM: Java Modeling Language /GU 110928 34 / 47

Completing Specification of enterPIN()

/*@ <spec-case1> also <spec-case2> also <spec-case3> also

@

@ public exceptional_behavior

@ requires insertedCard==null;

@ signals_only ATMException;

@ signals (ATMException) !customerAuthenticated;

@*/

public void enterPIN (int pin) { ...

in case insertedCard==null in pre-state

I an exception must be thrown (‘exceptional_behavior’)

I it can only be an ATMException (‘signals_only’)

I method must then ensure !customerAuthenticated in post-state
(‘signals’)

SEFM: Java Modeling Language /GU 110928 34 / 47

signals_only Clause: General Case

an exceptional specification case can have one clause of the form

signals_only E1,...,En;

where E1,...,En are exception types

Meaning:

if an exception is thrown, it is of type E1 or ... or En

SEFM: Java Modeling Language /GU 110928 35 / 47

signals_only Clause: General Case

an exceptional specification case can have one clause of the form

signals_only E1,...,En;

where E1,...,En are exception types

Meaning:

if an exception is thrown, it is of type E1 or ... or En

SEFM: Java Modeling Language /GU 110928 35 / 47

signals Clause: General Case

an exceptional specification case can have several clauses of the form

signals (E) b;

where E is exception type, b is boolean expression

Meaning:

if an exception of type E is thrown, b holds in post condition

SEFM: Java Modeling Language /GU 110928 36 / 47

signals Clause: General Case

an exceptional specification case can have several clauses of the form

signals (E) b;

where E is exception type, b is boolean expression

Meaning:

if an exception of type E is thrown, b holds in post condition

SEFM: Java Modeling Language /GU 110928 36 / 47

Allowing Non-Termination

by default, both:

I normal_behavior

I exceptional_behavior

specification cases enforce termination

in each specification case, non-termination can be permitted via the
clause

diverges true;

Meaning:

given the precondition of the specification case holds in pre-state,
the method may or may not terminate

SEFM: Java Modeling Language /GU 110928 37 / 47

Allowing Non-Termination

by default, both:

I normal_behavior

I exceptional_behavior

specification cases enforce termination

in each specification case, non-termination can be permitted via the
clause

diverges true;

Meaning:

given the precondition of the specification case holds in pre-state,
the method may or may not terminate

SEFM: Java Modeling Language /GU 110928 37 / 47

Allowing Non-Termination

by default, both:

I normal_behavior

I exceptional_behavior

specification cases enforce termination

in each specification case, non-termination can be permitted via the
clause

diverges true;

Meaning:

given the precondition of the specification case holds in pre-state,
the method may or may not terminate

SEFM: Java Modeling Language /GU 110928 37 / 47

Further Modifiers: non_null and nullable

JML extends the JAVA modifiers by further modifiers:

I class fields

I method parameters

I method return types

can be declared as

I nullable: may or may not be null

I non_null: must not be null

SEFM: Java Modeling Language /GU 110928 38 / 47

non_null: Examples

private /*@ spec_public non_null @*/ String name;

implicit invariant
‘public invariant name != null;’
added to class

public void insertCard(/*@ non_null @*/ BankCard card) {..

implicit precondition
‘requires card != null;’
added to each specification case of insertCard

public /*@ non_null @*/ String toString()

implicit postcondition
‘ensures \result != null;’
added to each specification case of toString

SEFM: Java Modeling Language /GU 110928 39 / 47

non_null is default in JML!

⇒ same effect even without explicit ‘non null’s

private /*@ spec_public @*/ String name;

implicit invariant
‘public invariant name != null;’
added to class

public void insertCard(BankCard card) {..

implicit precondition
‘requires card != null;’
added to each specification case of insertCard

public String toString()

implicit postcondition
‘ensures \result != null;’
added to each specification case of toString

SEFM: Java Modeling Language /GU 110928 40 / 47

nullable: Examples

To prevent such pre/post-conditions and invariants: ‘nullable’

private /*@ spec_public nullable @*/ String name;

no implicit invariant added

public void insertCard(/*@ nullable @*/ BankCard card) {..

no implicit precondition added

public /*@ nullable @*/ String toString()

no implicit postcondition added to specification cases of toString

SEFM: Java Modeling Language /GU 110928 41 / 47

LinkedList: non_null or nullable?

public class LinkedList {

private Object elem;

private LinkedList next;

....

In JML this means:

I all elements in the list are non_null

I the list is cyclic, or infinite!

SEFM: Java Modeling Language /GU 110928 42 / 47

LinkedList: non_null or nullable?

public class LinkedList {

private Object elem;

private LinkedList next;

....

In JML this means:

I all elements in the list are non_null

I the list is cyclic, or infinite!

SEFM: Java Modeling Language /GU 110928 42 / 47

LinkedList: non_null or nullable?

public class LinkedList {

private Object elem;

private LinkedList next;

....

In JML this means:

I all elements in the list are non_null

I the list is cyclic, or infinite!

SEFM: Java Modeling Language /GU 110928 42 / 47

LinkedList: non_null or nullable?

Repair:

public class LinkedList {

private Object elem;

private /*@ nullable @*/ LinkedList next;

....

⇒ Now, the list is allowed to end somewhere!

SEFM: Java Modeling Language /GU 110928 43 / 47

Final Remarks on non_null and nullable

non_null as default in JML only since a few years.

⇒ Older JML tutorial or articles may not use the non_null by default
semantics.

Pitfall!

/*@ non null @*/ Object[] a;

is not the same as:

/*@ nullable @*/ Object[] a; //@ invariant a != null;

because the first one also implicitly adds

(\forall int i; i >= 0 && i < a.length; a[i] != null)

I.e. extends non null also to the elements of the array!

SEFM: Java Modeling Language /GU 110928 44 / 47

Final Remarks on non_null and nullable

non_null as default in JML only since a few years.

⇒ Older JML tutorial or articles may not use the non_null by default
semantics.

Pitfall!

/*@ non null @*/ Object[] a;

is not the same as:

/*@ nullable @*/ Object[] a; //@ invariant a != null;

because the first one also implicitly adds

(\forall int i; i >= 0 && i < a.length; a[i] != null)

I.e. extends non null also to the elements of the array!

SEFM: Java Modeling Language /GU 110928 44 / 47

Final Remarks on non_null and nullable

non_null as default in JML only since a few years.

⇒ Older JML tutorial or articles may not use the non_null by default
semantics.

Pitfall!

/*@ non null @*/ Object[] a;

is not the same as:

/*@ nullable @*/ Object[] a; //@ invariant a != null;

because the first one also implicitly adds

(\forall int i; i >= 0 && i < a.length; a[i] != null)

I.e. extends non null also to the elements of the array!

SEFM: Java Modeling Language /GU 110928 44 / 47

Final Remarks on non_null and nullable

non_null as default in JML only since a few years.

⇒ Older JML tutorial or articles may not use the non_null by default
semantics.

Pitfall!

/*@ non null @*/ Object[] a;

is not the same as:

/*@ nullable @*/ Object[] a; //@ invariant a != null;

because the first one also implicitly adds

(\forall int i; i >= 0 && i < a.length; a[i] != null)

I.e. extends non null also to the elements of the array!

SEFM: Java Modeling Language /GU 110928 44 / 47

JML and Inheritance

All JML contracts, i.e.

I specification cases

I class invariants

are inherited down from superclasses to subclasses.

A class has to fulfill all contracts of its superclasses.

in addition, the subclass may add further specification cases,
starting with also:

/*@ also

@

@ <subclass-specific-spec-cases>

@*/

public void method () { ...

SEFM: Java Modeling Language /GU 110928 45 / 47

Tools

Many tools support JML (see http://www.jmlspecs.org).

On the course website you find a link how to install a JML checker for
eclipse that works with newer JAVA versions.

SEFM: Java Modeling Language /GU 110928 46 / 47

http://www.jmlspecs.org

Literature for this Lecture

essential reading:

in KeY Book A. Roth and Peter H. Schmitt: Formal Specification.
Chapter 5 only sections 5.1, 5.3, In: B. Beckert, R. Hähnle, and
P. Schmitt, editors. Verification of Object-Oriented Software: The
KeY Approach, vol 4334 of LNCS. Springer, 2006.
(e-version via Chalmers Library)

further reading, all available at
http://www.eecs.ucf.edu/~leavens/JML/documentation.shtml:

JML Reference Manual Gary T. Leavens, Erik Poll, Curtis Clifton,
Yoonsik Cheon, Clyde Ruby, David Cok, Peter Müller, and
Joseph Kiniry.
JML Reference Manual

JML Tutorial Gary T. Leavens, Yoonsik Cheon.
Design by Contract with JML

JML Overview Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
JML: A Notation for Detailed Design

SEFM: Java Modeling Language /GU 110928 47 / 47

http://www.eecs.ucf.edu/~leavens/JML/documentation.shtml

	JML Expressions
	First-Order in Specifications
	Result Values
	Data Constraints
	JML Invariants
	Exceptional Method Behavior
	Allowing Non-Termination
	JML Modifiers II
	Inheritance
	Tools
	Literature

