Software Engineering using Formal Methods Reasoning about Programs with Dynamic Logic

Wolfgang Ahrendt & Richard Bubel & Wojciech Mostowski

4 October 2011

Part I

Where are we?

Where Are We?

```
last week specification of JAVA programs with JML

this week dynamic logic (DL) for resoning about JAVA programs

next week generating DL from JML/JAVA

+ verifying the resulting proof obligations
```

Motivation

Consider the method

```
public doubleContent(int[] a) {
   int i = 0;
   while (i < a.length) {
      a[i] = a[i] * 2;
      i++;
   }
}</pre>
```

We want a logic/calculus allowing to express/prove properties like, e.g.:

If a \neq null then doubleContent terminates normally and afterwards all elements of a are twice the old value

SEFM: DL 1 CHALMERS/GU 101004 4 / 4

Motivation (contd.)

One such logic is dynamic logic (DL). The above statemet in DL would be:

```
\begin{array}{l} \mathbf{a} \neq \mathtt{null} \\ \wedge \mathbf{a} \neq \mathbf{b} \\ \wedge \ \forall \mathtt{int} \ \mathbf{i}; ((0 \leq \mathtt{i} \wedge \mathtt{i} < \mathtt{a.length}) \rightarrow \mathtt{a}[\mathtt{i}] \doteq \mathtt{b}[\mathtt{i}]) \\ \rightarrow \ \langle \mathtt{doubleContent(a)}; \rangle \\ \forall \mathtt{int} \ \mathbf{i}; ((0 \leq \mathtt{i} \wedge \mathtt{i} < \mathtt{a.length}) \rightarrow \mathtt{a}[\mathtt{i}] \doteq 2 * \mathtt{b}[\mathtt{i}]) \end{array}
```

- ▶ DL combines first-order logic (FOL) with programs
- Theory of DL extends theory of FOL
- Necessary to look closer at FOL at first
- Then extend towards DL

SEFM: DL 1 CHALMERS/GU 101004 5 / 4

Today

introducing dynamic logic for JAVA

- recap first-order logic (FOL)
- semantics of FOL
- dynamic logic = extending FOL with
 - dynamic interpretations
 - programs to describe state change

Repetition: First-Order Logic

Typed first-order logic as in 8th lecture:

Signature

A first-order signature Σ consists of

- ▶ a set T_{Σ} of types
- ▶ a set F_{Σ} of function symbols
- ▶ a set P_{Σ} of predicate symbols

Type Declarations

- ightharpoonup au x; 'variable x has type au'
- ▶ $p(\tau_1, ..., \tau_r)$; 'predicate p has argument types $\tau_1, ..., \tau_r$ '
- ▶ τ $f(\tau_1, ..., \tau_r)$; 'function f has argument types $\tau_1, ..., \tau_r$ and result type τ '

Part II

First-Order Semantics

First-Order Semantics

From propositional to first-order semantics

- ▶ In prop. logic, an interpretation of variables with $\{T, F\}$ sufficed
- ▶ In first-order logic we must assign meaning to:
 - function symbols (incl. constants)
 - predicate symbols
- ► Respect typing: int i, List 1 must denote different elements

What we need (to interpret a first-order formula)

- 1. A collection of typed universes of elements
- 2. A mapping from variables to elements
- 3. A mapping from function arguments to function values
- **4.** The set of argument tuples where a predicate is true

First-Order Domains/Universes

1. A collection of typed universes of elements

Definition (Universe/Domain)

A non-empty set \mathcal{D} of elements is a <u>universe</u> or <u>domain</u>. Each element of \mathcal{D} has a fixed type given by $\delta: \mathcal{D} \to \mathcal{T}_{\Sigma}$

- Notation for the domain elements of type $\tau \in T_{\Sigma}$: $\mathcal{D}^{\tau} = \{d \in \mathcal{D} \mid \delta(d) = \tau\}$
- ► Each type $\tau \in T_{\Sigma}$ must 'contain' at least one domain element: $\mathcal{D}^{\tau} \neq \emptyset$

- 3. A mapping from function arguments to function values
- 4. The set of argument tuples where a predicate is true

Definition (First-Order State)

```
Let {\mathcal D} be a domain with typing function \delta
```

Let
$$f$$
 be declared as τ $f(\tau_1, \ldots, \tau_r)$;

Let
$$p$$
 be declared as $p(\tau_1, \ldots, \tau_r)$;

Let
$$\mathcal{I}(f)$$
 be a function $\mathcal{I}(f): \mathcal{D}^{\tau_1} \times \cdots \times \mathcal{D}^{\tau_r} \to \mathcal{D}^{\tau}$

Let
$$\mathcal{I}(p)$$
 be a relation $\mathcal{I}(p) \subseteq \mathcal{D}^{\tau_1} \times \cdots \times \mathcal{D}^{\tau_r}$

Then
$$S = (\mathcal{D}, \delta, \mathcal{I})$$
 is a first-order state

First-Order States Cont'd

Example

Signature: int i; int j; int f(int); Object obj; <(int,int);
$$\mathcal{D} = \{17,\,2,\,o\}$$

$$\mathcal{I}(i) = 17$$

 $\mathcal{I}(j) = 17$
 $\mathcal{I}(\mathtt{obj}) = o$

$\mathcal{D}^{ ext{int}}$	$\mathcal{I}(f)$
2	2
17	2

$\mathcal{D}^{ ext{int}} imes \mathcal{D}^{ ext{int}}$	in $\mathcal{I}(<)$?
(2,2)	F
(2,17)	T
(17, 2)	F
(17, 17)	F

One of uncountably many possible first-order states!

Semantics of Reserved Signature Symbols

Definition

Reserved predicate symbol for equality: =

Interpretation is fixed as $\mathcal{I}(\dot{=}) = \{(d,d) \mid d \in \mathcal{D}\}$

Exercise: write down the predicate table for example domain

Signature Symbols vs. Domain Elements

- ▶ Domain elements different from the terms representing them
- First-order formulas and terms have no access to domain

Example

```
Signature: Object obj1, obj2; Domain: \mathcal{D} = \{o\}
```

In this state, necessarily $\mathcal{I}(\texttt{obj1}) = \mathcal{I}(\texttt{obj2}) = o$

Variable Assignments

2. A mapping from variables to domain elements

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements It respects the variable type, i.e., if x has type τ then $\beta(x) \in \mathcal{D}^{\tau}$

SEFM: DL 1 CHALMERS/GU 101004 15 / 47

Semantic Evaluation of Terms

Given a first-order state S and a variable assignment β it is possible to evaluate first-order terms under S and β

Definition (Valuation of Terms)

 $val_{\mathcal{S},\beta}$: Term $\to \mathcal{D}$ such that $val_{\mathcal{S},\beta}(t) \in \mathcal{D}^{\tau}$ for $t \in \mathsf{Term}_{\tau}$:

- \triangleright $val_{S,\beta}(x) = \beta(x)$
- \triangleright $val_{S,\beta}(f(t_1,\ldots,t_r)) = \mathcal{I}(f)(val_{S,\beta}(t_1),\ldots,val_{S,\beta}(t_r))$

SEFM: DL 1 CHALMERS/GU 101004 16 / 47

Semantic Evaluation of Terms Cont'd

Example

Signature: int i; int j; int f(int); $\mathcal{D} = \{17, 2, o\}$ Variables: Object obj; int x;

$$\begin{array}{l} \mathcal{I}(\mathtt{i}) = 17 \\ \mathcal{I}(\mathtt{j}) = 17 \end{array}$$

$\mathcal{D}^{ ext{int}}$	$\mathcal{I}(\mathtt{f})$
2	17
17	2

Var	β
obj	0
х	17

- val_{S,β}(f(f(i))) ?
- val_{S,β}(f(f(x))) ?
- val_{S,β}(obj) ?

Preparing for Semantic Evaluation of Formulas

Definition (Modified Variable Assignment)

Let y be variable of type τ , β variable assignment, $d \in \mathcal{D}^{\tau}$:

$$\beta_y^d(x) := \begin{cases} \beta(x) & x \neq y \\ d & x = y \end{cases}$$

Semantic Evaluation of Formulas

Definition (Valuation of Formulas)

 $val_{\mathcal{S},\beta}(\phi)$ for $\phi \in For$

- $ightharpoonup val_{\mathcal{S},eta}(p(t_1,\ldots,t_r)) = T \quad ext{ iff } \quad (val_{\mathcal{S},eta}(t_1),\ldots,val_{\mathcal{S},eta}(t_r)) \in \mathcal{I}(p)$
- $ightharpoonup val_{\mathcal{S},\beta}(\phi \wedge \psi) = T$ iff $val_{\mathcal{S},\beta}(\phi) = T$ and $val_{\mathcal{S},\beta}(\psi) = T$
- ...as in propositional logic
- $ightharpoonup val_{\mathcal{S},\beta}(orall \, au \, x; \, \phi) = T \quad ext{iff} \quad val_{\mathcal{S},\beta^d_\sigma}(\phi) = T \quad ext{for all} \, \, d \in \mathcal{D}^{ au}$
- $ightharpoonup val_{\mathcal{S},eta}(\exists \ au \ x; \ \phi) = T \quad \text{iff} \quad val_{\mathcal{S},eta d}(\phi) = T \quad \text{for at least one } d \in \mathcal{D}^{ au}$

SEFM: DL 1 CHALMERS/GU 101004 19 / 47

Semantic Evaluation of Formulas Cont'd

Example

Signature: int j; int f(int); Object obj; <(int,int);
$$\mathcal{D} = \{17, 2, o\}$$

$$\mathcal{I}(\mathsf{obj}) = o$$

$$\begin{array}{c|c}
\mathcal{I}(\mathsf{obj}) = o \\
\hline
\mathcal$$

 $\mathcal{I}(j) = 17$

$\mathcal{D}^{\textbf{int}} \times \mathcal{D}^{\textbf{int}}$	in $\mathcal{I}(<)$?
(2,2)	F
(2,17)	T
(17, 2)	F
(17, 17)	F

- ▶ $val_{S,\beta}(f(j) < j)$?
- ▶ $val_{S,\beta}(\exists \text{ int } x; f(x) \doteq x)$?
- ▶ $val_{S,\beta}(\forall \text{ Object } o1; \forall \text{ Object } o2; o1 \doteq o2)$?

Semantic Notions

Definition (Satisfiability, Truth, Validity)

$$\mathit{val}_{\mathcal{S},\beta}(\phi) = T$$
 $(\mathcal{S},\beta \text{ satisfies } \phi)$
 $\mathcal{S} \models \phi$ iff for all $\beta : \mathit{val}_{\mathcal{S},\beta}(\phi) = T$ $(\phi \text{ is true in } \mathcal{S})$
 $\models \phi$ iff for all $\mathcal{S} : \mathcal{S} \models \phi$ $(\phi \text{ is valid})$

Closed formulas that are satisfiable are also true

Example

- ▶ f(j) < j is true in S
- ▶ $\exists \text{ int } x$; $i \doteq x$ is valid
- ▶ $\exists \text{ int } x$; $\neg(x \doteq x)$ is not satisfiable

Part III

Towards Dynamic Logic

Type Hierarchy

First, we refine the type system of FOL:

Definition (Type Hierarchy)

- ▶ T_{Σ} is set of types
- Given subtype relation '\(\subseteq'\), with top element 'any'
- $\tau \sqsubseteq any$ for all $\tau \in T_{\Sigma}$

Example (A Minimal Type Hierarchy)

$$\mathcal{T} = \{any\}$$

All signature symbols have same type any.

Example (Type Hierarchy for Java)

(see next slide)

Modelling Java in FOL: Fixing a Type Hierarchy

Each class in API and target program is a type, with appropriate subtyping.

Modelling Attributes in FOL

Modeling instance attributes

	Person
int int	age id
	<pre>setAge(int newAge) getId()</pre>

- domain of all Person objects: D^{Person}
- lacktriangle each $o \in D^{\mathsf{Person}}$ has associated age value
- $ightharpoonup \mathcal{I}(age)$ is function from Person to int
- for each class C with attribute τ a: FSym declares function τ a(C);

Attribute Access

Signature FSym:
$$int age(Person)$$
; Person p;

Typed FOL
$$age(p) > = 0$$

Navigation expressions in KeY look exactly as in JAVA/JML

Dynamic View

Only static properties expressable in typed FOL, e.g.,

- Values of attributes in a certain range
- ▶ Property (invariant) of a subclass implies property of a superclass
- **...**

Considers only one state at a time.

Goal: Express functional properties of a program, e.g.

If method setAge is called on an object o of type Person and the method argument newAge is positive then afterwards attribute age has same value as newAge.

Observation

Need a logic that allows us to

- relate different program states, i.e., before and after execution, within a formula
- program variables/attributes represented by constant/function symbols that depend on program state

Dynamic Logic meets the above requirements.

Dynamic Logic

(JAVA) Dynamic Logic

Typed FOL

- ▶ + programs p
- $ightharpoonup + \text{modalities } \langle p \rangle \phi$, $[p] \phi$ (p program, ϕ DL formula)
- ▶ + ... (later)

An Example

$$i > 5 \rightarrow [i = i + 10;]i > 15$$

Meaning?

If program variable i is greater than 5, then after executing i = i + 10; i is greater than 15.

SEFM: DL 1 CHALMERS/GU 101004 28 / 47

Type Hierarchy

Dynamic Logic = Typed FOL + ...

Type hierarchy

 $T_{\Sigma} = \{ \text{int, boolean, } any \}$ with int, boolean incomparable, both are subtypes of any

int and boolean are the only types for today. Classes, interfaces etc. in tomorrows lecture.

SEFM: DL 1 CHALMERS/GU 101004 29 / 47

Program Variables

Dynamic Logic = Typed $FOL + \dots$

$$i > 5 \rightarrow [i = i + 10;]i > 15$$

Program variable i refers to different values before and after execution of a program.

- ▶ Program variables like i are state-dependent constant symbols.
- ▶ Value of state dependent symbols changeable by program.

Three words one meaning: state-dependent, non-rigid, flexible

Rigid versus Flexible Symbols

Signature of program logic defined as in FOL, but: In addition there are program variables, attributes (tomorrow!), etc.

Rigid versus Flexible

- Rigid symbols, same interpretation in all program states
 - ► First-order variables (aka logical variables)
 - ▶ Built-in functions and predicates such as 0,1,...,+,*,...,<,...
- Non-rigid (or flexible) symbols, interpretation depends on state Capture side effects on state during program execution
 - Functions modeling program variables and attributes are flexible

Any term containing at least one flexible symbol is also flexible

Signature of Dynamic Logic

Definition (Dynamic Logic Signature)

```
\begin{split} \Sigma &= (\mathsf{PSym}_r, \, \mathsf{FSym}_r, \, \mathsf{FSym}_{nr}, \, \alpha), \quad \mathsf{FSym}_r \cap \mathsf{FSym}_{nr} = \emptyset \\ \text{Rigid Predicate Symbols} & \mathsf{PSym} = \{>, >=, \ldots\} \\ \text{Rigid Function Symbols} & \mathsf{FSym}_r = \{+, -, *, 0, 1, \ldots\} \\ \text{Non-rigid Function Symbols} & \mathsf{FSym}_{nr} = \{i, j, k, \ldots\} \end{split}
```

Standard typing: boolean TRUE; <(int,int); etc.

Non-rigid constant/function symbols FSym_{nr} used to model

- program variables (constants) and
- attributes (unary non-rigid functions)

Dynamic Logic Signature - KeY input file

```
\sorts {
 // only additional sorts (int, boolean, any predefined)
\functions {
// only additional rigid functions
// (arithmetic functions like +,- etc. predefined)
\predicates { /* same as for functions */ }
\programVariables { // non-rigid functions
  int i, j;
  boolean b;
```

Empty sections can be left out.

SEFM: DL 1 CHALMERS/GU 101004 33 / 47

Variables

Definition (First-Order/Logical Variables)

Typed logical variables (rigid), declared locally in quantifiers as T x;

Program Variables

Non-rigid constants int i; boolean p; used as program variables

SEFM: DL 1 CHALMERS/GU 101004 34 / 47

Terms

- ► First-order terms defined as in FOL
- First-order terms may contain rigid and non-rigid symbols

Example

```
Signature for FSym_{nr}: int j; boolean p Quantified variables: int x; boolean b;
```

- ▶ j and j + x are flexible terms of type int
- ▶ p is a flexible term of type boolean
- \triangleright x + x is a rigid term of type int
- ▶ j + b and j + p are not well-typed

SEFM: DL 1 CHALMERS/GU 101004 35 / 47

Dynamic Logic Programs

```
Dynamic Logic = Typed FOL + programs . . . Programs here: any legal sequence of JAVA statements.
```

Example

```
Signature for FSym<sub>nr</sub>: int r; int i; int n;
Signature for FSym<sub>r</sub>: int 0; int +(int,int); int -(int,int);
Signature for PSym<sub>r</sub>: <(int,int);

i=0;
r=0;
while (i<n) {
   i=i+1;
   r=r+i;
}
r=r+r-n;</pre>
```

Which value does the program compute in r?

Relating Program States: Modalities

DL extends FOL with two additional (mix-fix) operators:

- $ightharpoonup \langle p \rangle \phi$ (diamond)
- $\triangleright [p]\phi \text{ (box)}$

with p a program, ϕ another DL formula

Intuitive Meaning

- $\langle \mathbf{p} \rangle \phi$: \mathbf{p} terminates and formula ϕ holds in final state (total correctness)
- ▶ $[p]\phi$: If p terminates then formula ϕ holds in final state (partial correctness)

Attention: JAVA programs are deterministic, i.e., if a JAVA program terminates then exactly one state is reached from a given initial state.

Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables. Give the meaning in natural language:

- i = old_i → (i = i + 1;)i > old_i
 If i = i + 1; is executed in a state where i and old_i have the same value, then the program terminates and in its final state the value of i is greater than the value of old_i.
- 3. $\forall x$. $(\langle p \rangle i \doteq x \leftrightarrow \langle q \rangle i \doteq x)$ p and q are equivalent concerning termination and the final value of i.

SEFM: DL 1 CHALMERS/GU 101004 38 / 47

Dynamic Logic - KeY input file

```
— KeY –
\programVariables { // Declares global program variables
       int i, j;
       int old_i, old_j;
\problem { // The problem to verify is stated here.
       i = old_i \rightarrow \langle \{ i = i + 1; \} \rangle i > old_i
                                                     — KeY —
```

Visibility: Program variables declared

- global can be accessed anywhere in the formula.
- ▶ inside modality like $pre \rightarrow \langle \text{int j; p} \rangle post$ only visible in p and post and only if declaration on top level.

Dynamic Logic Formulas

Definition (Dynamic Logic Formulas (DL Formulas))

- ► Each FOL formula is a DL formula
- ▶ If p is a program and ϕ a DL formula then $\left\{ \begin{pmatrix} \mathsf{p} \rangle \phi \\ [\mathsf{p}] \phi \end{pmatrix} \right\}$ is a DL formula
- ▶ DL formulas closed under FOL quantifiers and connectives

- ▶ Program variables are flexible constants: never bound in quantifiers
- Program variables need not be declared or initialized in program
- ▶ Programs contain no logical variables
- Modalities can be arbitrarily nested

Dynamic Logic Formulas Cont'd

Example (Well-formed? If yes, under which signature?)

- ▶ \forall int y; (($\langle x = 1; \rangle x \doteq y$) \leftrightarrow ($\langle x = 1*1; \rangle x \doteq y$)) Well-formed if FSym_{nr} contains int x;
- ▶ ∃ int x; [x = 1;](x = 1)
 Not well-formed, because logical variable occurs in program
- ∀x = 1; \(([while (true) {}] false)
 Well-formed if FSym_{nr} contains int x;
 program formulas can be nested

Dynamic Logic Semantics: States

First-order state can be considered as program state

- ► Interpretation of non-rigid symbols can vary from state to state (eg, program variables, attribute values)
- Interpretation of rigid symbols is the same in all states (eg, built-in functions and predicates)

Program states as first-order states

From now, consider program state s as first-order state $(\mathcal{D}, \delta, \mathcal{I})$

- ▶ Only interpretation \mathcal{I} of non-rigid symbols in FSym_{nr} can change \Rightarrow only record values of $f \in \mathsf{FSym}_{nr}$
- Set of all states s is States

Kripke Structure

Definition (Kripke Structure)

Kripke structure or Labelled transition system $K = (States, \rho)$

- ▶ State (=first-order model) $s = (\mathcal{D}, \delta, \mathcal{I}) \in States$
- ▶ Transition relation ρ : Program \rightarrow (States \rightarrow States)

$$\rho(p)(s1) = s2$$
 iff.

program p executed in state s1 terminates and its final state is s2, otherwise undefined.

- ightharpoonup
 ho is the semantics of programs \in Program
- ▶ $\rho(p)(s)$ can be undefined (' \rightharpoonup '): p may not terminate when started in s
- Our programs are deterministic (unlike PROMELA): $\rho(p)$ is a function (at most one value)

Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)

- ▶ $s \models \langle p \rangle \phi$ iff $\rho(p)(s)$ is defined and $\rho(p)(s) \models \phi$ (p terminates and ϕ is true in the final state after execution)
- ▶ $s \models [p]\phi$ iff $\rho(p)(s) \models \phi$ whenever $\rho(p)(s)$ is defined

 (If p terminates then ϕ is true in the final state after execution)
- ▶ Duality: $\langle \mathbf{p} \rangle \phi$ iff $\neg [\mathbf{p}] \neg \phi$ Exercise: justify this with help of semantic definitions
- ▶ Implication: if $\langle p \rangle \phi$ then $[p]\phi$ Total correctness implies partial correctness
 - converse is false
 - holds only for deterministic programs

More Examples

valid? meaning?

Example

$$\forall \tau \ y; ((\langle p \rangle x \stackrel{.}{=} y) \leftrightarrow (\langle q \rangle x \stackrel{.}{=} y))$$

Not valid in general

Programs p behave q equivalently on variable τ x

Example

$$\exists \tau \ y; (x \doteq y \rightarrow \langle p \rangle true)$$

Not valid in general

Program p terminates if only initial value of x is suitably chosen

Semantics of Programs

In labelled transition system $K = (States, \rho)$: $\rho : Program \rightarrow (States \rightarrow States)$ is semantics of programs $p \in Program$

ρ defined recursively on programs

Example (Semantics of assignment)

States s interpret non-rigid symbols f with $\mathcal{I}_s(f)$

$$ho({\tt x=t}\,;)(s)=s'$$
 where s' identical to s except $\mathcal{I}_{s'}(x)=\mathit{val}_s(t)$

Very tedious task to define ρ for JAVA. \Rightarrow Not in this course. **Next lecture**, we go directly to calculus for program formulas!

SEFM: DL 1 CHALMERS/GU 101004 46 / 47

Literature for this Lecture

- **KeY Book** Verification of Object-Oriented Software (see course web page), Chapter 10: Using KeY
- **KeY Book** Verification of Object-Oriented Software (see course web page), Chapter 3: Dynamic Logic (Sections 3.1, 3.2, 3.4, 3.5, 3.6.1, 3.6.3, 3.6.4)