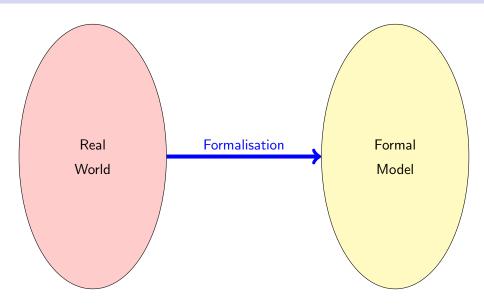
Software Engineering using Formal Methods

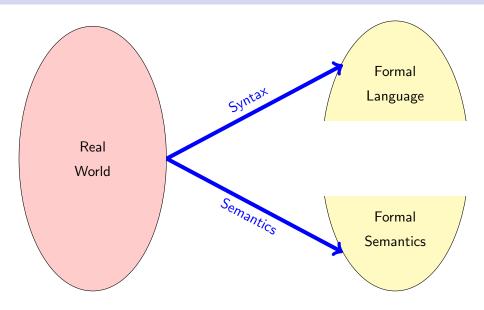
Formal Modeling with Linear Temporal Logic

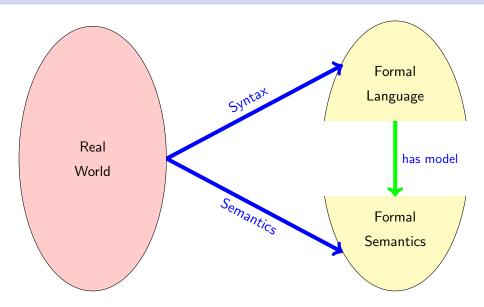
Wolfgang Ahrendt

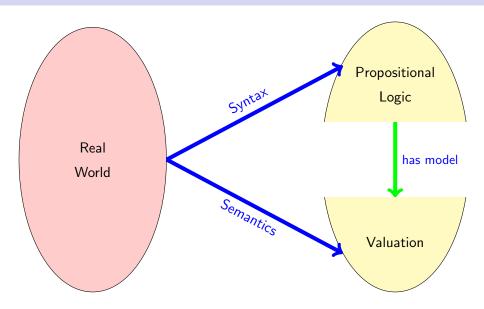
19th September 2013

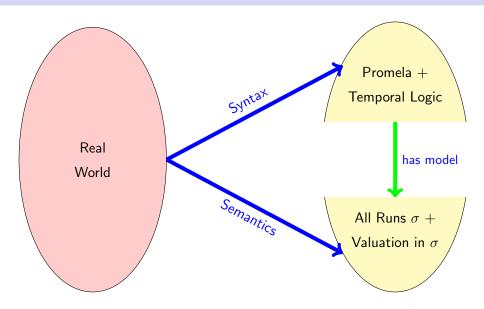
Recapitulation: Formalisation

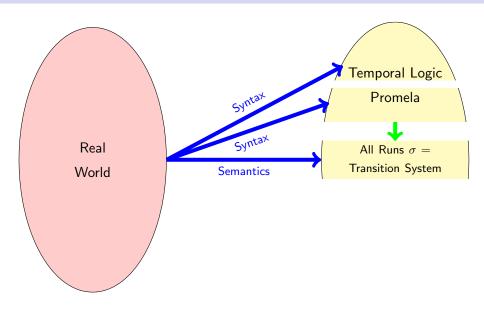




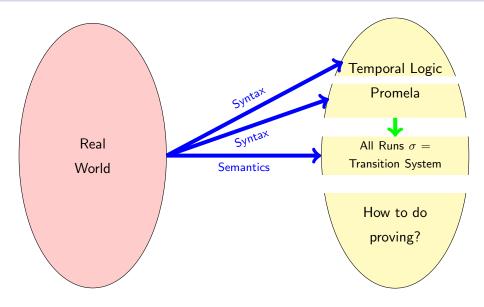




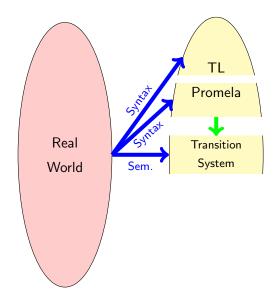




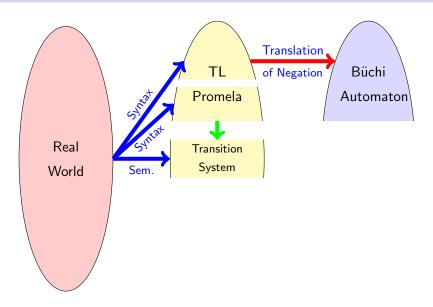
Formalisation: Syntax, Semantics, Proving



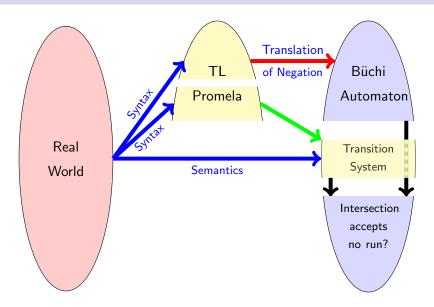
Formal Verification: Model Checking

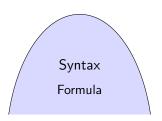


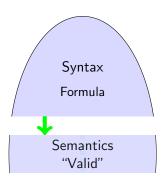
Formal Verification: Model Checking

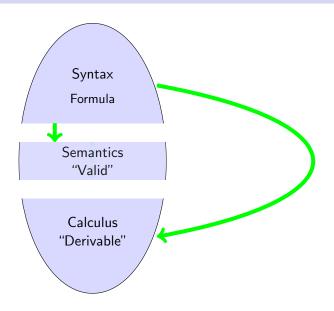


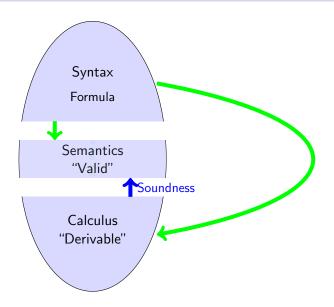
Formal Verification: Model Checking

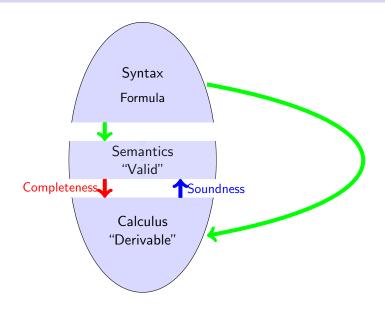


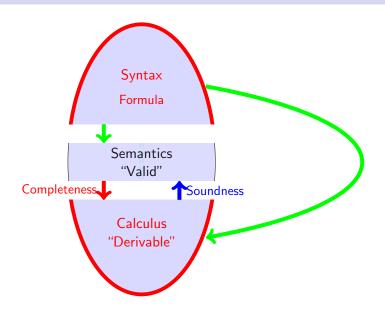




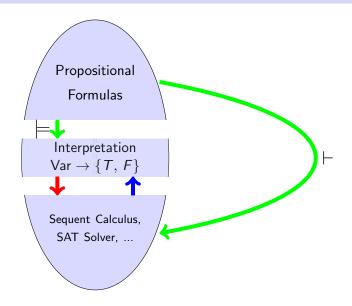




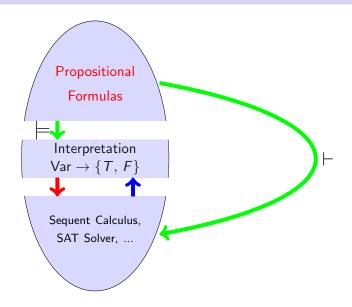




Simplest Case: Propositional Logic



Simplest Case: Propositional Logic—Syntax



Syntax of Propositional Logic

Signature

A set of Propositional Variables \mathcal{P} (with typical elements p, q, r, \ldots)

Syntax of Propositional Logic

Signature

A set of Propositional Variables $\mathcal P$ (with typical elements p,q,r,\ldots)

Propositional Connectives

true, false, \wedge , \vee , \neg , \rightarrow , \leftrightarrow

Syntax of Propositional Logic

Signature

A set of Propositional Variables \mathcal{P} (with typical elements p, q, r, ...)

Propositional Connectives

true, false, \wedge , \vee , \neg , \rightarrow , \leftrightarrow

Set of Propositional Formulas For₀

- \triangleright Truth constants true, false and variables \mathcal{P} are formulas
- If ϕ and ψ are formulas then

$$\neg \phi$$
, $\phi \land \psi$, $\phi \lor \psi$, $\phi \to \psi$, $\phi \leftrightarrow \psi$

are also formulas

► There are no other formulas (inductive definition)

Remark on Concrete Syntax

	Text book	Spin
Negation	_	!
Conjunction	\wedge	&&
Disjunction	\vee	
Implication	\rightarrow , \supset	->
Equivalence	\leftrightarrow	<->

Remark on Concrete Syntax

	Text book	Spin
Negation	\neg	!
Conjunction	\wedge	&&
Disjunction	\vee	
Implication	\rightarrow , \supset	->
Equivalence	\leftrightarrow	<->

We use mostly the textbook notation Except for tool-specific slides, input files

Let $\mathcal{P} = \{p, q, r\}$ be the set of propositional variables

Are the following character sequences also propositional formulas?

▶ true $\rightarrow p$

Let $\mathcal{P} = \{p, q, r\}$ be the set of propositional variables

Are the following character sequences also propositional formulas?

▶ true $\rightarrow p$ ✓

Let $\mathcal{P} = \{p, q, r\}$ be the set of propositional variables

- ▶ true $\rightarrow p$ ✓
- $\triangleright (p(q \land r)) \lor p$

Let
$$\mathcal{P} = \{p, q, r\}$$
 be the set of propositional variables

- ▶ true $\rightarrow p$ ✓
- $\blacktriangleright (p(q \land r)) \lor p \times$

Let
$$\mathcal{P} = \{p, q, r\}$$
 be the set of propositional variables

- ▶ true $\rightarrow p$ ✓
- $\triangleright (p(q \land r)) \lor p \times$
- $ightharpoonup p
 ightharpoonup (q \wedge)$

Let
$$\mathcal{P} = \{p, q, r\}$$
 be the set of propositional variables

- ▶ true $\rightarrow p$ ✓
- $\blacktriangleright (p(q \land r)) \lor p \times$
- $ightharpoonup p
 ightharpoonup (q \wedge)$

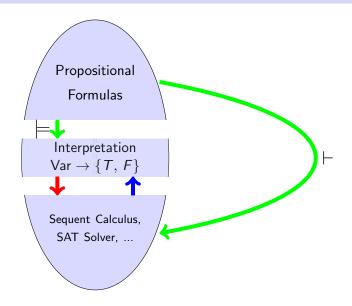
Let $\mathcal{P} = \{p, q, r\}$ be the set of propositional variables

- ▶ true $\rightarrow p$ ✓
- $\triangleright (p(q \land r)) \lor p \times$
- $ightharpoonup p
 ightarrow (q \wedge)
 ightharpoonup
 ightharpoonup q \wedge$
- false \land $(p \rightarrow (q \land r))$

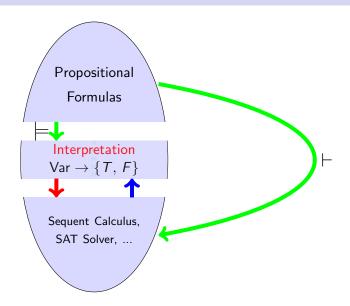
Let $\mathcal{P} = \{p, q, r\}$ be the set of propositional variables

- ▶ true $\rightarrow p$ ✓
- $\triangleright (p(q \land r)) \lor p \times$
- $ightharpoonup p
 ightharpoonup (q \wedge)$
- false \wedge $(p \rightarrow (q \wedge r))$ \checkmark

Simplest Case: Propositional Logic



Simplest Case: Propositional Logic



Semantics of Propositional Logic

Interpretation \mathcal{I}

Assigns a truth value to each propositional variable

$$\mathcal{I}: \mathcal{P} \to \{T, F\}$$

Semantics of Propositional Logic

Interpretation \mathcal{I}

Assigns a truth value to each propositional variable

$$\mathcal{I}: \mathcal{P} \to \{T, F\}$$

Example

Let
$$\mathcal{P} = \{p, q\}$$

$$p \rightarrow (q \rightarrow p)$$

$$\begin{array}{c|ccc} & p & q \\ \hline \mathcal{I}_1 & F & F \\ \mathcal{I}_2 & T & F \\ \vdots & \vdots & \vdots \end{array}$$

Semantics of Propositional Logic

Interpretation \mathcal{I}

Assigns a truth value to each propositional variable

$$\mathcal{I}: \mathcal{P} \to \{T, F\}$$

Example

Let
$$\mathcal{P} = \{p, q\}$$

$$p \rightarrow (q \rightarrow p)$$

$$\begin{array}{cccc} & p & q \\ \hline \mathcal{I}_1 & F & F \\ \mathcal{I}_2 & T & F \\ \vdots & \vdots & \vdots \end{array}$$

How to evaluate $p \rightarrow (q \rightarrow p)$ in each interpretation \mathcal{I}_i ?

Semantics of Propositional Logic

Interpretation \mathcal{I}

Assigns a truth value to each propositional variable

$$\mathcal{I}: \mathcal{P} \to \{T, F\}$$

Valuation Function

 $val_{\mathcal{I}}$: Continuation of \mathcal{I} on For_0

$$val_{\mathcal{I}}: For_0 \rightarrow \{T, F\}$$

$$val_{\mathcal{I}}(\text{true}) = T$$

 $val_{\mathcal{I}}(\text{false}) = F$
 $val_{\mathcal{I}}(p_i) = \mathcal{I}(p_i)$

(cont'd next page)

Semantics of Propositional Logic (Cont'd)

Valuation function (Cont'd)

$$val_{\mathcal{I}}(\neg \phi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = F \\ F & \text{otherwise} \end{cases}$$

$$val_{\mathcal{I}}(\phi \wedge \psi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = T \text{ and } val_{\mathcal{I}}(\psi) = T \\ F & \text{otherwise} \end{cases}$$

$$val_{\mathcal{I}}(\phi \vee \psi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = T \text{ or } val_{\mathcal{I}}(\psi) = T \\ F & \text{otherwise} \end{cases}$$

$$val_{\mathcal{I}}(\phi \rightarrow \psi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = F \text{ or } val_{\mathcal{I}}(\psi) = T \\ F & \text{otherwise} \end{cases}$$

$$val_{\mathcal{I}}(\phi \leftrightarrow \psi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = val_{\mathcal{I}}(\psi) \\ F & \text{otherwise} \end{cases}$$

Example

Let
$$\mathcal{P}=\{p,q\}$$

$$p \to (q \to p)$$

$$\frac{p \quad q}{\mathcal{I}_1 \quad F \quad F}$$

$$\mathcal{I}_2 \quad T \quad F$$

Example

Let
$$\mathcal{P} = \{p, q\}$$

$$val_{\mathcal{I}_2}(p \rightarrow (q \rightarrow p)) =$$

Example

Let
$$\mathcal{P} = \{p, q\}$$

$$\mathit{val}_{\mathcal{I}_2}(\ p\ o\ (q\ o\ p)\) = T \ \mathrm{iff} \ \mathit{val}_{\mathcal{I}_2}(p) = F \ \mathsf{or} \ \mathit{val}_{\mathcal{I}_2}(q\ o\ p) = T$$

Example

Let
$$\mathcal{P} = \{p, q\}$$

$$val_{\mathcal{I}_2}(p \rightarrow (q \rightarrow p)) = T \text{ iff } val_{\mathcal{I}_2}(p) = F \text{ or } val_{\mathcal{I}_2}(q \rightarrow p) = T$$
 $val_{\mathcal{I}_2}(p) = T \text{ or } val_{\mathcal{I}_2}(q \rightarrow p) = T \text{ or } val_{\mathcal{I}_2}(q \rightarrow p) = T \text{ or } val_{\mathcal{I}_2}(p) = T \text{ or } val_{\mathcal{I}_$

Example

Let
$$\mathcal{P} = \{p, q\}$$

$$val_{\mathcal{I}_2}(p \rightarrow (q \rightarrow p)) = T \text{ iff } val_{\mathcal{I}_2}(p) = F \text{ or } val_{\mathcal{I}_2}(q \rightarrow p) = T$$
 $val_{\mathcal{I}_2}(p) = \mathcal{I}_2(p) = T$

Example

Let
$$\mathcal{P} = \{p, q\}$$

$$val_{\mathcal{I}_2}(p \rightarrow (q \rightarrow p)) = T \text{ iff } val_{\mathcal{I}_2}(p) = F \text{ or } val_{\mathcal{I}_2}(q \rightarrow p) = T$$
 $val_{\mathcal{I}_2}(p) = \mathcal{I}_2(p) = T$

Example

Let
$$\mathcal{P} = \{p, q\}$$

$$val_{\mathcal{I}_2}(p \rightarrow (q \rightarrow p)) = T \text{ iff } val_{\mathcal{I}_2}(p) = F \text{ or } val_{\mathcal{I}_2}(q \rightarrow p) = T$$
 $val_{\mathcal{I}_2}(p) = \mathcal{I}_2(p) = T$
 $val_{\mathcal{I}_3}(q \rightarrow p) = T$

Example

Let
$$\mathcal{P} = \{p,q\}$$

$$p \rightarrow (q \rightarrow p)$$

$$p \rightarrow q$$

$$\begin{array}{c|ccc}
p & q \\
\hline
\mathcal{I}_1 & F & F \\
\mathcal{I}_2 & T & F \\
\end{array}$$

. . .

$$val_{\mathcal{I}_2}(p \rightarrow (q \rightarrow p)) = T \text{ iff } val_{\mathcal{I}_2}(p) = F \text{ or } val_{\mathcal{I}_2}(q \rightarrow p) = T$$
 $val_{\mathcal{I}_2}(p) = \mathcal{I}_2(p) = T$
 $val_{\mathcal{I}_3}(q \rightarrow p) = T \text{ iff } val_{\mathcal{I}_2}(q) = F \text{ or } val_{\mathcal{I}_3}(p) = T$

Example

Let
$$\mathcal{P} = \{p, q\}$$

How to evaluate $p \to (q \to p)$ in \mathcal{I}_2 ?

$$val_{\mathcal{I}_2}(p \rightarrow (q \rightarrow p)) = T \text{ iff } val_{\mathcal{I}_2}(p) = F \text{ or } val_{\mathcal{I}_2}(q \rightarrow p) = T$$
 $val_{\mathcal{I}_2}(p) = \mathcal{I}_2(p) = T$
 $val_{\mathcal{I}_2}(q \rightarrow p) = T \text{ iff } val_{\mathcal{I}_2}(q) = F \text{ or } val_{\mathcal{I}_2}(p) = T$
 $val_{\mathcal{I}_2}(q) = T \text{ or } val_{\mathcal{I}_2}(p) = T$

Example

Let
$$\mathcal{P} = \{p, q\}$$

$$val_{\mathcal{I}_2}(p \rightarrow (q \rightarrow p)) = T \text{ iff } val_{\mathcal{I}_2}(p) = F \text{ or } val_{\mathcal{I}_2}(q \rightarrow p) = T$$
 $val_{\mathcal{I}_2}(p) = \mathcal{I}_2(p) = T$
 $val_{\mathcal{I}_2}(q \rightarrow p) = T \text{ iff } val_{\mathcal{I}_2}(q) = F \text{ or } val_{\mathcal{I}_2}(p) = T$
 $val_{\mathcal{I}_2}(q) = \mathcal{I}_2(q) = T$

Example

Let
$$\mathcal{P} = \{p, q\}$$

$$\operatorname{val}_{\mathcal{I}_2}(p \to (q \to p)) = T \text{ iff } \operatorname{val}_{\mathcal{I}_2}(p) = F \text{ or } \operatorname{val}_{\mathcal{I}_2}(q \to p) = T$$
 $\operatorname{val}_{\mathcal{I}_2}(p) = \mathcal{I}_2(p) = T$
 $\operatorname{val}_{\mathcal{I}_2}(q \to p) = T \text{ iff } \operatorname{val}_{\mathcal{I}_2}(q) = F \text{ or } \operatorname{val}_{\mathcal{I}_2}(p) = T$
 $\operatorname{val}_{\mathcal{I}_2}(q) = \mathcal{I}_2(q) = F$

Semantic Notions of Propositional Logic

Let $\phi \in For_0$, $\Gamma \subseteq For_0$

Definition (Satisfying Interpretation, Consequence Relation)

 \mathcal{I} satisfies ϕ (write: $\mathcal{I} \models \phi$) iff $val_{\mathcal{I}}(\phi) = \mathcal{T}$

 ϕ follows from Γ (write: $\Gamma \models \phi$) iff for all interpretations \mathcal{I} :

If $\mathcal{I} \models \psi$ for all $\psi \in \Gamma$ then also $\mathcal{I} \models \phi$

Semantic Notions of Propositional Logic

Let $\phi \in For_0$, $\Gamma \subseteq For_0$

Definition (Satisfying Interpretation, Consequence Relation)

 \mathcal{I} satisfies ϕ (write: $\mathcal{I} \models \phi$) iff $val_{\mathcal{I}}(\phi) = \mathcal{T}$

 ϕ follows from Γ (write: $\Gamma \models \phi$) iff for all interpretations \mathcal{I} :

If $\mathcal{I} \models \psi$ for all $\psi \in \Gamma$ then also $\mathcal{I} \models \phi$

Definition (Satisfiability, Validity)

A formula is satisfiable if it is satisfied by some interpretation.

If every interpretation satisfies ϕ (write: $\models \phi$) then ϕ is called valid.

Formula (same as before)

$$p \rightarrow (q \rightarrow p)$$

Formula (same as before)

$$p \rightarrow (q \rightarrow p)$$

Is this formula valid?

$$\models p \rightarrow (q \rightarrow p)$$
?

$$p \wedge ((\neg p) \vee q)$$

Satisfiable?

$$p \wedge ((\neg p) \vee q)$$

Satisfiable?

$$p \wedge ((\neg p) \vee q)$$

Satisfiable?
Satisfying Interpretation?

$$p \wedge ((\neg p) \vee q)$$

Satisfiable?
Satisfying Interpretation?

$$\mathcal{I}(p) = T, \ \mathcal{I}(q) = T$$

$$p \wedge ((\neg p) \vee q)$$

Satisfiable?

ı

Satisfying Interpretation?

 $\mathcal{I}(p) = T, \ \mathcal{I}(q) = T$

Other Satisfying Interpretations?

$$p \wedge ((\neg p) \vee q)$$

Satisfiable?

V

Satisfying Interpretation?

$$\mathcal{I}(p) = T, \ \mathcal{I}(q) = T$$

Other Satisfying Interpretations?

$$p \wedge ((\neg p) \vee q)$$

Satisfiable?

V

Satisfying Interpretation?

 $\mathcal{I}(p) = T, \ \mathcal{I}(q) = T$

Other Satisfying Interpretations?

X

Therefore, also not valid!

$$p \wedge ((\neg p) \vee q)$$

Satisfiable?

V

Satisfying Interpretation?

$$\mathcal{I}(p) = T, \ \mathcal{I}(q) = T$$

Other Satisfying Interpretations?

X

Therefore, also not valid!

$$p \wedge ((\neg p) \vee q) \models q \vee r$$

Does it hold?

$$p \wedge ((\neg p) \vee q)$$

Satisfiable?

Satisfying Interpretation?

$$\mathcal{I}(p) = T, \ \mathcal{I}(q) = T$$

Other Satisfying Interpretations?

Therefore, also not valid!

$$p \wedge ((\neg p) \vee q) \models q \vee r$$

Does it hold? Yes. Why?

```
1 byte n;
2 active proctype [2] P() {
3    n = 0;
4    n = n + 1
5 }
```

Can we characterise the states of P propositionally?

```
1 byte n;
2 active proctype [2] P() {
3    n = 0;
4    n = n + 1
5 }
```

Can we characterise the states of P propositionally?

Find a propositional formula ϕ_P which is true if and only if (iff) it describes a possible state of P.

Which interpretations do we need to "exclude"?

$$\phi_{\mathbf{P}} := \left(\right.$$

Which interpretations do we need to "exclude"?

▶ The variable n is represented by eight bits, all values possible

$$\phi_{\mathbf{P}} := \left(\right.$$

- Which interpretations do we need to "exclude"?
 - ▶ The variable n is represented by eight bits, all values possible
 - ▶ A process cannot be at two positions at the same time

$$\phi_{\mathrm{P}} := \left(\begin{array}{c} ((PC0_3 \land \neg PC0_4 \land \neg PC0_5) \lor \cdots) \land \\ \end{array} \right)$$

2 active proctype [2] P() {

```
3  n = 0;

4  n = n + 1

5 }

P: N_0, N_1, N_2, \dots, N_7 8-bit representation of byte

PCO_3, PCO_4, PCO_5, PCI_3, PCI_4, PCI_5 next instruction pointer
```

- Which interpretations do we need to "exclude"?
 - ▶ The variable n is represented by eight bits, all values possible
 - ▶ A process cannot be at two positions at the same time
 - ▶ If neither process 0 nor process 1 are at position 5, then n is zero

$$\phi_{\mathbf{P}} := \left(\begin{array}{c} ((PC0_3 \land \neg PC0_4 \land \neg PC0_5) \lor \cdots) \land \\ ((\neg PC0_5 \land \neg PC1_5) \implies (\neg N_0 \land \cdots \land \neg N_7)) \end{array} \right)$$

1 byte n;

2 active proctype [2] P() {

```
3  n = 0;
4  n = n + 1
5 }

P: N<sub>0</sub>, N<sub>1</sub>, N<sub>2</sub>,..., N<sub>7</sub> 8-bit representation of byte
    PCO<sub>3</sub>, PCO<sub>4</sub>, PCO<sub>5</sub>, PCI<sub>3</sub>, PCI<sub>4</sub>, PCI<sub>5</sub> next instruction pointer
```

Which interpretations do we need to "exclude"?

- ▶ The variable n is represented by eight bits, all values possible
- ▶ A process cannot be at two positions at the same time
- ▶ If neither process 0 nor process 1 are at position 5, then n is zero
- **.** . . .

1 byte n;

$$\phi_{\mathbf{P}} := \left(\begin{array}{c} ((PC0_3 \land \neg PC0_4 \land \neg PC0_5) \lor \cdots) \land \\ ((\neg PC0_5 \land \neg PC1_5) \implies (\neg N_0 \land \cdots \land \neg N_7)) \land \cdots \end{array} \right)$$

Is Propositional Logic Enough?

Can design for a program P a formula Φ_P describing all reachable states

For a given property Ψ the consequence relation

$$\Phi_p \models \Psi$$

holds when Ψ is true in any possible state reachable in any run of P

Is Propositional Logic Enough?

Can design for a program P a formula Φ_P describing all reachable states

For a given property Ψ the consequence relation

$$\Phi_p \models \Psi$$

holds when Ψ is true in any possible state reachable in any run of P

But How to Express Properties Involving State Changes?

In any run of a program P

- n will become greater than 0 eventually?
- n changes its value infinitely often

etc.

Is Propositional Logic Enough?

Can design for a program P a formula Φ_P describing all reachable states

For a given property Ψ the consequence relation

$$\Phi_p \models \Psi$$

holds when Ψ is true in any possible state reachable in any run of P

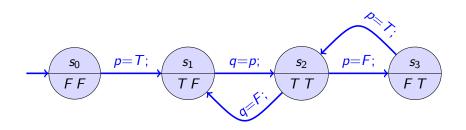
But How to Express Properties Involving State Changes?

In any run of a program P

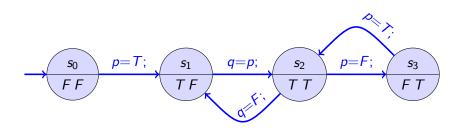
- n will become greater than 0 eventually?
- ► *n* changes its value infinitely often etc.

⇒ Need a more expressive logic: (Linear) Temporal Logic

Transition systems (aka Kripke Structures)

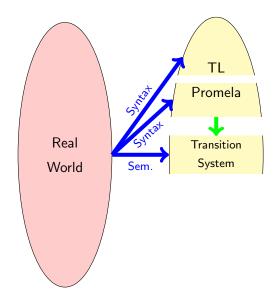


Transition systems (aka Kripke Structures)



- \triangleright Each state s_i has its own propositional interpretation l_i
 - ► Convention: list values of variables in ascending lexicographic order
- ► Computations, or runs, are *infinite* paths through states
 - ▶ Intuitively 'finite' runs modelled by looping on last state
- ► How to express (for example) that *p* changes its value infinitely often in each run?

Formal Verification: Model Checking



(Linear) Temporal Logic

An extension of propositional logic that allows to specify properties of all runs

(Linear) Temporal Logic—Syntax

An extension of propositional logic that allows to specify properties of all runs

Syntax

Based on propositional signature and syntax

Extension with three connectives:

Always If ϕ is a formula then so is $\Box \phi$

Eventually If ϕ is a formula then so is $\Diamond \phi$

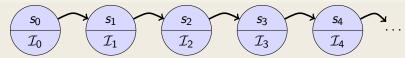
Until If ϕ and ψ are formulas then so is $\phi \mathcal{U} \psi$

Concrete Syntax

	text book	SPIN
Always		[]
Eventually	\Diamond	<>
Until	\mathcal{U}	U

Temporal Logic—Semantics

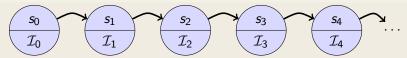
A run σ is an infinite chain of states



 \mathcal{I}_j propositional interpretation of variables in j-th state Write more compactly $s_0 \ s_1 \ s_2 \ s_3 \dots$

Temporal Logic—Semantics

A run σ is an infinite chain of states



 \mathcal{I}_j propositional interpretation of variables in j-th state Write more compactly $s_0 \ s_1 \ s_2 \ s_3 \dots$

If $\sigma = s_0 s_1 \cdots$, then $\sigma|_i$ denotes the suffix $s_i s_{i+1} \cdots$ of σ .

Valuation of temporal formula relative to run: infinite sequence of states

Valuation of temporal formula relative to run: infinite sequence of states

Definition (Validity Relation)

$$\sigma \models p$$
 iff $\mathcal{I}_0(p) = T$, for $p \in \mathcal{P}$.

Valuation of temporal formula relative to run: infinite sequence of states

Definition (Validity Relation)

$$\sigma \models p$$
 iff $\mathcal{I}_0(p) = T$, for $p \in \mathcal{P}$.
 $\sigma \models \neg \phi$ iff not $\sigma \models \phi$ (write $\sigma \not\models \phi$)

Valuation of temporal formula relative to run: infinite sequence of states

Definition (Validity Relation)

```
\begin{array}{ll} \sigma \models \rho & \text{iff} & \mathcal{I}_0(\rho) = T \text{, for } \rho \in \mathcal{P}. \\ \sigma \models \neg \phi & \text{iff} & \text{not } \sigma \models \phi \text{ (write } \sigma \not\models \phi) \\ \sigma \models \phi \land \psi & \text{iff} & \sigma \models \phi \text{ and } \sigma \models \psi \end{array}
```

Valuation of temporal formula relative to run: infinite sequence of states

Definition (Validity Relation)

```
\begin{array}{lll} \sigma \models \rho & \text{iff} & \mathcal{I}_0(\rho) = \mathcal{T}, \text{ for } \rho \in \mathcal{P}. \\ \sigma \models \neg \phi & \text{iff} & \text{not } \sigma \models \phi \quad (\text{write } \sigma \not\models \phi) \\ \sigma \models \phi \land \psi & \text{iff} & \sigma \models \phi \text{ and } \sigma \models \psi \\ \sigma \models \phi \lor \psi & \text{iff} & \sigma \models \phi \text{ or } \sigma \models \psi \\ \sigma \models \phi \to \psi & \text{iff} & \sigma \not\models \phi \text{ or } \sigma \models \psi \end{array}
```

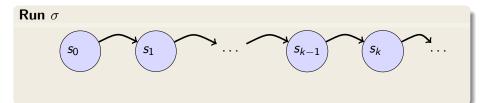
Valuation of temporal formula relative to run: infinite sequence of states

Definition (Validity Relation)

Validity of temporal formula depends on runs $\sigma = s_0 s_1 \dots$

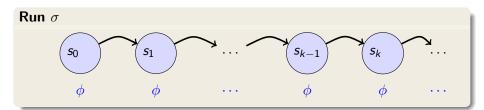
$$\begin{array}{lll} \sigma \models \rho & \text{iff} & \mathcal{I}_0(\rho) = T \text{, for } \rho \in \mathcal{P}. \\ \sigma \models \neg \phi & \text{iff} & \text{not } \sigma \models \phi \quad \text{(write } \sigma \not\models \phi \text{)} \\ \sigma \models \phi \land \psi & \text{iff} & \sigma \models \phi \text{ and } \sigma \models \psi \\ \sigma \models \phi \lor \psi & \text{iff} & \sigma \models \phi \text{ or } \sigma \models \psi \\ \sigma \models \phi \to \psi & \text{iff} & \sigma \not\models \phi \text{ or } \sigma \models \psi \end{array}$$

Temporal connectives?



Definition (Validity Relation for Temporal Connectives)

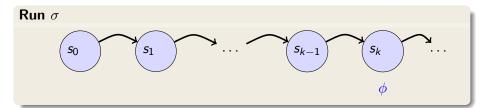
Given a run $\sigma = s_0 s_1 \cdots$



Definition (Validity Relation for Temporal Connectives)

Given a run
$$\sigma = s_0 s_1 \cdots$$

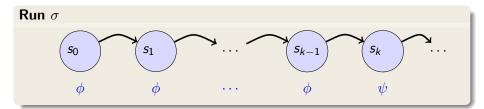
$$\sigma \models \Box \phi$$
 iff $\sigma|_k \models \phi$ for all $k \ge 0$



Definition (Validity Relation for Temporal Connectives)

Given a run
$$\sigma = s_0 s_1 \cdots$$

$$\sigma \models \Box \phi$$
 iff $\sigma|_k \models \phi$ for all $k \ge 0$
 $\sigma \models \Diamond \phi$ iff $\sigma|_k \models \phi$ for some $k \ge 0$



Definition (Validity Relation for Temporal Connectives)

Given a run
$$\sigma = s_0 \, s_1 \cdots$$

$$\sigma \models \Box \phi \qquad \text{iff} \quad \sigma|_k \models \phi \text{ for all } k \geq 0$$

$$\sigma \models \Diamond \phi \qquad \text{iff} \quad \sigma|_k \models \phi \text{ for some } k \geq 0$$

$$\sigma \models \phi \mathcal{U} \psi \qquad \text{iff} \quad \sigma|_k \models \psi \text{ for some } k \geq 0, \text{ and } \sigma|_j \models \phi \text{ for all } 0 \leq j < k$$

$$\text{(if } k = 0 \text{ then } \phi \text{ needs never hold)}$$

Safety and Liveness Properties

Safety Properties

- ► Always-formulas called safety properties: "something bad never happens"
- ▶ Let mutex ("mutual exclusion") be a variable that is true when two processes do not access a critical resource at the same time
- ▶ □ mutex expresses that simultaneous access never happens

Safety and Liveness Properties

Safety Properties

- ► Always-formulas called safety properties: "something bad never happens"
- ▶ Let mutex ("mutual exclusion") be a variable that is true when two processes do not access a critical resource at the same time
- ▶ □ mutex expresses that simultaneous access never happens

Liveness Properties

- Eventually-formulas called liveness properties: "something good happens eventually"
- Let s be variable that is true when a process delivers a service
- ▶ ♦ s expresses that service is eventually provided

Complex Properties

What does this mean?

$$\sigma \models \Box \Diamond \phi$$

Complex Properties

Infinitely Often

$$\sigma \models \Box \Diamond \phi$$

"During run σ the formula ϕ becomes true infinitely often"

Validity of Temporal Logic

Definition (Validity)

 ϕ is valid, write $\models \phi$, iff ϕ is valid in all runs $\sigma = s_0 s_1 \cdots$.

Validity of Temporal Logic

Definition (Validity)

 ϕ is valid, write $\models \phi$, iff ϕ is valid in all runs $\sigma = s_0 s_1 \cdots$.

Recall that each run $s_0 s_1 \cdots$ essentially is an infinite sequence of interpretations $\mathcal{I}_0 \mathcal{I}_1 \cdots$

Representation of Runs

Can represent a set of runs as a sequence of propositional formulas:

 $ightharpoonup \phi_0 \phi_1, \cdots$ represents all runs $s_0 s_1 \cdots$ such that $s_i \models \phi_i$ for $i \geq 0$

Valid?

Valid?

No, there is a run where it is not valid:

Valid?

No, there is a run where it is not valid:

$$(\neg \phi \neg \phi \neg \phi \dots)$$

Valid?

No, there is a run where it is not valid:

$$(\neg \phi \neg \phi \neg \phi \dots)$$

Valid in some run?

Valid?

No, there is a run where it is not valid:

$$(\neg \phi \neg \phi \neg \phi \dots)$$

Valid in some run?

Yes, for example: $(\neg \phi \phi \phi \dots)$

 $\Diamond\Box\phi$

Valid?

No, there is a run where it is not valid:

$$(\neg \phi \neg \phi \neg \phi \ldots)$$

Valid in some run?

Yes, for example: $(\neg \phi \phi \phi \dots)$

$$\Box \phi \rightarrow \phi$$

$$(\neg\Box\phi)\leftrightarrow(\Diamond\neg\phi)$$

$$\Diamond \phi \leftrightarrow (\text{true } \mathcal{U}\phi)$$

$$\Diamond\Box\phi$$

Valid?

No, there is a run where it is not valid:

$$(\neg \phi \, \neg \phi \, \neg \phi \, \dots)$$

Valid in some run?

Yes, for example: $(\neg \phi \phi \phi \dots)$

$$\Box \phi \rightarrow \phi$$

$$(\neg \Box \phi) \leftrightarrow (\Diamond \neg \phi)$$

 $\Diamond \phi \leftrightarrow (\text{true } \mathcal{U}\phi)$

All are valid! (proof is exercise)

$\Diamond\Box\phi$

Valid?

No, there is a run where it is not valid: $(\neg \phi \neg \phi \neg \phi \dots)$

Valid in some run?

Yes, for example: $(\neg \phi \phi \phi \ldots)$

$$\Box \phi \rightarrow \phi$$

$$(\neg \Box \phi) \leftrightarrow (\Diamond \neg \phi)$$

$$\Diamond \phi \leftrightarrow (\text{true } \mathcal{U}\phi)$$

All are valid! (proof is exercise)

- ▶ □ is reflexive
- ▶ □ and ◊ are dual connectives
- ightharpoonup and \Diamond can be expressed with only using $\mathcal U$

Transition Systems: Formal Definition

Definition (Transition System)

A transition system $\mathcal{T}=(S, \mathit{Ini}, \delta, \mathcal{I})$ is composed of a set of states S, a set $\emptyset \neq \mathit{Ini} \subseteq S$ of initial states, a transition relation $\delta \subseteq S \times S$, and a labeling \mathcal{I} of each state $s \in S$ with a propositional interpretation \mathcal{I}_s .

Definition (Run of Transition System)

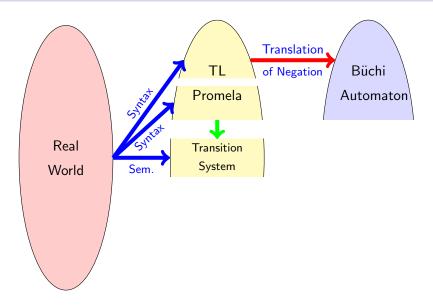
A run of \mathcal{T} is a sequence of states $\sigma = s_0 s_1 \cdots$ such that $s_0 \in Ini$ and for all i is $s_i \in S$ as well as $(s_i, s_{i+1}) \in \delta$.

Extension of validity of temporal formulas to transition systems:

Definition (Validity Relation)

Given a transition system $\mathcal{T} = (S, Ini, \delta, \mathcal{I})$, a temporal formula ϕ is valid in \mathcal{T} (write $\mathcal{T} \models \phi$) iff $\sigma \models \phi$ for all runs σ of \mathcal{T} .

Formal Verification: Model Checking



ω -Languages

Given a finite alphabet (vocabulary) Σ

A word $w \in \Sigma^*$ is a finite sequence

$$w = a_o \cdots a_n$$

with $a_i \in \Sigma, i \in \{0, \ldots, n\}$

 $\mathcal{L} \subseteq \Sigma^*$ is called a language

ω -Languages

Given a finite alphabet (vocabulary) Σ

An ω -word $w \in \Sigma^{\omega}$ is an infinite sequence

$$w = a_o \cdots a_k \cdots$$

with $a_i \in \Sigma, i \in \mathbb{N}$

 $\mathcal{L}^{\omega} \subseteq \Sigma^{\omega}$ is called an ω -language

Büchi Automaton

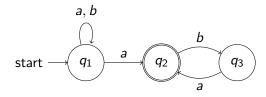
Definition (Büchi Automaton)

A (non-deterministic) Büchi automaton over an alphabet Σ consists of a

- ► finite, non-empty set of locations *Q*
- ▶ a non-empty set of initial/start locations $I \subseteq Q$
- ▶ a set of accepting locations $F = \{F_1, ..., F_n\} \subseteq Q$
- ▶ a transition relation $\delta \subseteq Q \times \Sigma \times Q$

Example

$$\Sigma = \{a,b\}, Q = \{q_1,q_2,q_3\}, I = \{q_1\}, F = \{q_2\}$$



Büchi Automaton—Executions and Accepted Words

Definition (Execution)

Let $\mathcal{B} = (Q, I, F, \delta)$ be a Büchi automaton over alphabet Σ .

An execution of \mathcal{B} is a pair (w, v), with

$$\mathbf{w} = \mathbf{a}_o \cdots \mathbf{a}_k \cdots \in \mathbf{\Sigma}^{\omega}$$

$$v = q_o \cdots q_k \cdots \in Q^{\omega}$$

where $q_0 \in I$, and $(q_i, a_i, q_{i+1}) \in \delta$, for all $i \in \mathbb{N}$

Büchi Automaton—Executions and Accepted Words

Definition (Execution)

Let $\mathcal{B} = (Q, I, F, \delta)$ be a Büchi automaton over alphabet Σ . An execution of \mathcal{B} is a pair (w, v), with

- $\mathbf{w} = \mathbf{a}_0 \cdots \mathbf{a}_k \cdots \in \Sigma^{\omega}$
- $v = q_0 \cdots q_k \cdots \in Q^{\omega}$

where $q_0 \in I$, and $(q_i, a_i, q_{i+1}) \in \delta$, for all $i \in \mathbb{N}$

Definition (Accepted Word)

A Büchi automaton $\mathcal B$ accepts a word $w \in \Sigma^\omega$, if there exists an execution (w,v) of $\mathcal B$ where some accepting location $f \in F$ appears infinitely often in v

Büchi Automaton—Language

Let
$$\mathcal{B} = (Q, I, F, \delta)$$
 be a Büchi automaton, then

$$\mathcal{L}^{\omega}(\mathcal{B}) = \{ w \in \Sigma^{\omega} | w \in \Sigma^{\omega} \text{ is an accepted word of } \mathcal{B} \}$$

denotes the ω -language recognised by \mathcal{B} .

Büchi Automaton—Language

Let
$$\mathcal{B} = (Q, I, F, \delta)$$
 be a Büchi automaton, then

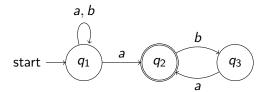
$$\mathcal{L}^{\omega}(\mathcal{B}) = \{ w \in \Sigma^{\omega} | w \in \Sigma^{\omega} \text{ is an accepted word of } \mathcal{B} \}$$

denotes the ω -language recognised by \mathcal{B} .

An ω -language for which an accepting Büchi automaton exists is called ω -regular language.

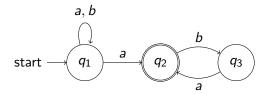
Example, ω -Regular Expression

Which language is accepted by the following Büchi automaton?



Example, ω -Regular Expression

Which language is accepted by the following Büchi automaton?

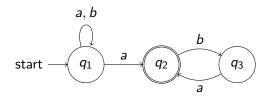


Solution:
$$(a+b)^*(ab)^{\omega}$$

[NB:
$$(ab)^{\omega} = a(ba)^{\omega}$$
]

Example, ω -Regular Expression

Which language is accepted by the following Büchi automaton?



Solution:
$$(a+b)^*(ab)^{\omega}$$

[NB:
$$(ab)^{\omega} = a(ba)^{\omega}$$
]

 ω -regular expressions like standard regular expression

$$a+b$$
 a or b

a* arbitrarily, but finitely often a

new: a^{ω} infinitely often a

Decidability, Closure Properties

Many properties for regular finite automata hold also for Büchi automata

Theorem (Decidability)

It is decidable whether the accepted language $\mathcal{L}^{\omega}(\mathcal{B})$ of a Büchi automaton \mathcal{B} is empty.

Decidability, Closure Properties

Many properties for regular finite automata hold also for Büchi automata

Theorem (Decidability)

It is decidable whether the accepted language $\mathcal{L}^{\omega}(\mathcal{B})$ of a Büchi automaton \mathcal{B} is empty.

Theorem (Closure properties)

The set of ω -regular languages is closed with respect to intersection, union and complement:

- if $\mathcal{L}_1, \mathcal{L}_2$ are ω -regular then $\mathcal{L}_1 \cap \mathcal{L}_2$ and $\mathcal{L}_1 \cup \mathcal{L}_2$ are ω -regular
- \mathcal{L} is ω -regular then $\Sigma^{\omega} \setminus \mathcal{L}$ is ω -regular

Decidability, Closure Properties

Many properties for regular finite automata hold also for Büchi automata

Theorem (Decidability)

It is decidable whether the accepted language $\mathcal{L}^{\omega}(\mathcal{B})$ of a Büchi automaton \mathcal{B} is empty.

Theorem (Closure properties)

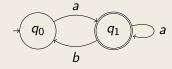
The set of ω -regular languages is closed with respect to intersection, union and complement:

- if $\mathcal{L}_1, \mathcal{L}_2$ are ω -regular then $\mathcal{L}_1 \cap \mathcal{L}_2$ and $\mathcal{L}_1 \cup \mathcal{L}_2$ are ω -regular
- \mathcal{L} is ω -regular then $\Sigma^{\omega} \setminus \mathcal{L}$ is ω -regular

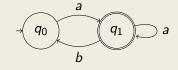
But in contrast to regular finite automata

Non-deterministic Büchi automata are strictly more expressive than deterministic ones

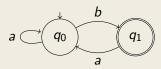
Language:



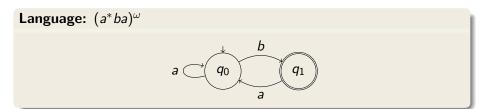
Language:
$$a(a + ba)^{\omega}$$



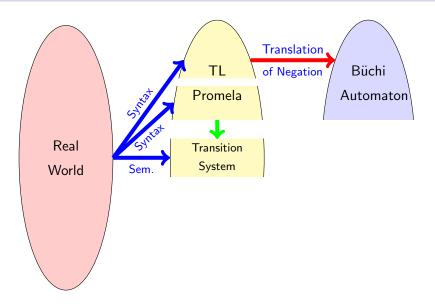
Language:



Language:
$$a(a + ba)^{\omega}$$



Formal Verification: Model Checking



Linear Temporal Logic and Büchi Automata

LTL and Büchi Automata are connected

Recall

Definition (Validity Relation)

Given a transition system $\mathcal{T} = (S, Ini, \delta, \mathcal{I})$, a temporal formula ϕ is valid in \mathcal{T} (write $\mathcal{T} \models \phi$) iff $\sigma \models \phi$ for all runs σ of \mathcal{T} .

A run of the transition system is an infinite sequence of interpretations I

Linear Temporal Logic and Büchi Automata

LTL and Büchi Automata are connected

Recall

Definition (Validity Relation)

Given a transition system $\mathcal{T} = (S, Ini, \delta, \mathcal{I})$, a temporal formula ϕ is valid in \mathcal{T} (write $\mathcal{T} \models \phi$) iff $\sigma \models \phi$ for all runs σ of \mathcal{T} .

A run of the transition system is an infinite sequence of interpretations I

Intended Connection

Given an LTL formula ϕ :

Construct a Büchi automaton accepting exactly those runs (infinite sequences of interpretations) that satisfy ϕ

Encoding an LTL Formula as a Büchi Automaton

 \mathcal{P} set of propositional variables, e.g., $\mathcal{P} = \{r, s\}$

Alphabet Σ of Büchi automaton

A state transition of Büchi automaton must represent an interpretation Let Σ (i.e., the alphabet of the automata) be set of all interpretations over \mathcal{P} , i.e., $\Sigma = 2^{\mathcal{P}}$

Example

$$\Sigma = \big\{\emptyset, \{r\}, \{s\}, \{r, s\}\big\}$$

$$I_{\emptyset}(r) = F, I_{\emptyset}(s) = F, I_{\{r\}}(r) = T, I_{\{r\}}(s) = F, \dots$$

Example (Büchi automaton for formula r over $\mathcal{P} = \{r, s\}$)

A Büchi automaton ${\cal B}$ accepting exactly those runs σ satisfying r

Example (Büchi automaton for formula r over $\mathcal{P} = \{r, s\}$)

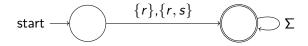
A Büchi automaton ${\mathcal B}$ accepting exactly those runs σ satisfying r



In the first state s_0 (of σ) at least r must hold, the rest is arbitrary

Example (Büchi automaton for formula r over $\mathcal{P} = \{r, s\}$)

A Büchi automaton ${\mathcal B}$ accepting exactly those runs σ satisfying r

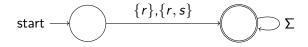


In the first state s_0 (of σ) at least r must hold, the rest is arbitrary

Example (Büchi automaton for formula $\Box r$ **over** $\mathcal{P} = \{r, s\}$ **)**

Example (Büchi automaton for formula r over $\mathcal{P} = \{r, s\}$)

A Büchi automaton ${\mathcal B}$ accepting exactly those runs σ satisfying r



In the first state s_0 (of σ) at least r must hold, the rest is arbitrary

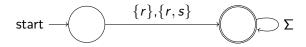
Example (Büchi automaton for formula $\Box r$ over $\mathcal{P} = \{r, s\}$)

start
$$\longrightarrow$$
 $\{r\},\{r,s\}$

In all states s (of σ) at least r must hold

Example (Büchi automaton for formula r over $\mathcal{P} = \{r, s\}$)

A Büchi automaton ${\mathcal B}$ accepting exactly those runs σ satisfying r



In the first state s_0 (of σ) at least r must hold, the rest is arbitrary

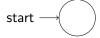
Example (Büchi automaton for formula $\Box r$ over $\mathcal{P} = \{r, s\}$)

start
$$\longrightarrow \Sigma_r$$

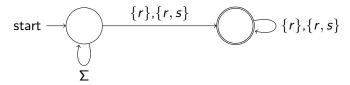
 $\Sigma_r := \{I | I \in \Sigma, r \in I\}$

In all states s (of σ) at least r must hold

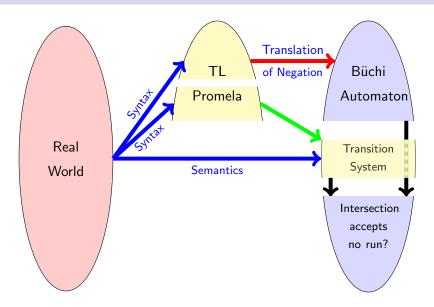
Example (Büchi automaton for formula $\Diamond \Box r$ over $\mathcal{P} = \{r, s\}$)



Example (Büchi automaton for formula $\Diamond \Box r$ **over** $\mathcal{P} = \{r, s\}$ **)**



Formal Verification: Model Checking



Model Checking

Check whether a formula is valid in all runs of a transition system

Given a transition system \mathcal{T} (e.g., derived from a PROMELA program)

Verification task: is the LTL formula ϕ satisfied in all runs of \mathcal{T} , i.e.,

$$\mathcal{T} \models \phi$$
 ?

Model Checking

Check whether a formula is valid in all runs of a transition system

Given a transition system \mathcal{T} (e.g., derived from a PROMELA program)

Verification task: is the LTL formula ϕ satisfied in all runs of \mathcal{T} , i.e.,

$$\mathcal{T} \models \phi$$
 ?

Temporal model checking with SPIN: Topic of next lecture

Model Checking

Check whether a formula is valid in all runs of a transition system

Given a transition system \mathcal{T} (e.g., derived from a PROMELA program)

Verification task: is the LTL formula ϕ satisfied in all runs of \mathcal{T} , i.e.,

$$\mathcal{T} \models \phi$$
 ?

Temporal model checking with SPIN: Topic of next lecture

Today: Basic principle behind SPIN model checking

$$\mathcal{T} \models \phi$$
 ?

1. Represent transition system $\mathcal T$ as Büchi automaton $\mathcal B_{\mathcal T}$ such that $\mathcal B_{\mathcal T}$ accepts exactly those words corresponding to runs through $\mathcal T$

$$\mathcal{T} \models \phi$$
 ?

- 1. Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ such that $\mathcal{B}_{\mathcal{T}}$ accepts exactly those words corresponding to runs through \mathcal{T}
- 2. Construct Büchi automaton $\mathcal{B}_{\neg \phi}$ for negation of formula ϕ

$$\mathcal{T} \models \phi$$
 ?

- 1. Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ such that $\mathcal{B}_{\mathcal{T}}$ accepts exactly those words corresponding to runs through \mathcal{T}
- 2. Construct Büchi automaton $\mathcal{B}_{\neg \phi}$ for negation of formula ϕ
- **3**. If

$$\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi}) = \emptyset$$

then ϕ holds.

$$\mathcal{T} \models \phi$$
 ?

- 1. Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ such that $\mathcal{B}_{\mathcal{T}}$ accepts exactly those words corresponding to runs through \mathcal{T}
- 2. Construct Büchi automaton $\mathcal{B}_{\neg \phi}$ for negation of formula ϕ
- **3.** If

$$\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi}) = \emptyset$$

then ϕ holds.

lf

$$\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi}) \neq \emptyset$$

then each element of the set is a counterexample for ϕ .

$$\mathcal{T} \models \phi$$
 ?

- 1. Represent transition system $\mathcal T$ as Büchi automaton $\mathcal B_{\mathcal T}$ such that $\mathcal B_{\mathcal T}$ accepts exactly those words corresponding to runs through $\mathcal T$
- 2. Construct Büchi automaton $\mathcal{B}_{\neg \phi}$ for negation of formula ϕ
- **3.** If

$$\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi}) = \emptyset$$

then ϕ holds.

lf

$$\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi}) \neq \emptyset$$

then each element of the set is a counterexample for ϕ .

To check $\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi})$ construct intersection automaton and search for cycle through accepting state

First Step: Represent transition system $\mathcal T$ as Büchi automaton $\mathcal B_{\mathcal T}$ accepting exactly those words representing a run of $\mathcal T$

Example

```
active proctype P () {
  do
    :: atomic {
    !wQ; wP = true
    };
    Pcs = true;
    atomic {
        Pcs = false;
        wP = false
    }
od }
```

First location skipped and second made atomic just to keep automaton small; similar code for process Q

First Step: Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ accepting exactly those words representing a run of \mathcal{T}

Example

```
active proctype P () {
                                        start
                                                   q_0
do
  :: atomic {
                                        \{wP
                                                           \{wQ\}
      !wQ; wP = true
     };
     Pcs = true;
                                         q_1
                                                       Ø
                                                             q_2
     atomic {
      Pcs = false:
                                                               \{wQ, Qcs\}
                               \{wP, Pcs\}
      wP = false
                                         q3
                                                             q_4
od }
```

First location skipped and second made atomic just to keep automaton small; similar code for process Q

First Step: Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ accepting exactly those words representing a run of \mathcal{T}

Example

```
active proctype P () {
                                        start
                                                   q_0
do
  :: atomic {
                                        \{wP
                                                          \{wQ\}
      !wQ; wP = true
     };
                                         q_1
                                                       Ø
                                                             q_2
     Pcs = true;
     atomic {
      Pcs = false:
                               \{wP, Pcs\}
                                                              \{wQ, Qcs\}
      wP = false
                                         q3
                                                             q_4
od }
```

Which are the accepting locations?

First Step: Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ accepting exactly those words representing a run of \mathcal{T}

Example

```
active proctype P () {
                                        start
                                                   q_0
do
  :: atomic {
                                        \{wP
                                                          \{wQ\}
      !wQ; wP = true
     };
                                         q_1
                                                       Ø
                                                             q_2
     Pcs = true;
     atomic {
      Pcs = false:
                               \{wP, Pcs\}
                                                              \{wQ, Qcs\}
      wP = false
                                         q3
                                                             q_4
od }
```

Which are the accepting locations? All!

First Step: Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ accepting exactly those words representing a run of \mathcal{T}

Example

```
active proctype P () {
                                        start
                                                   q_0
do
  :: atomic {
                                        \{wP
                                                          \{wQ\}
      !wQ; wP = true
     };
     Pcs = true;
                                         q_1
                                                            q_2
     atomic {
      Pcs = false:
                                                              \{wQ, Qcs\}
                              \{wP, Pcs\}
      wP = false
                                         q3
                                                            q_4
od }
```

The property we want to check is $\phi = \Box \neg Pcs$ (which does not hold)

Büchi Automaton $B_{\neg \phi}$ for $\neg \phi$

Second Step:

Construct Büchi Automaton corresponding to negated LTL formula

$$\mathcal{T} \models \phi$$
 holds iff there is no accepting run of \mathcal{T} for $\neg \phi$

Simplify
$$\neg \phi = \neg \Box \neg Pcs = \Diamond Pcs$$

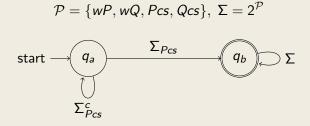
Büchi Automaton $B_{\neg \phi}$ **for** $\neg \phi$

Second Step:

Construct Büchi Automaton corresponding to negated LTL formula

 $\mathcal{T} \models \phi$ holds iff there is **no** accepting run of \mathcal{T} for $\neg \phi$ Simplify $\neg \phi = \neg \Box \neg Pcs = \Diamond Pcs$

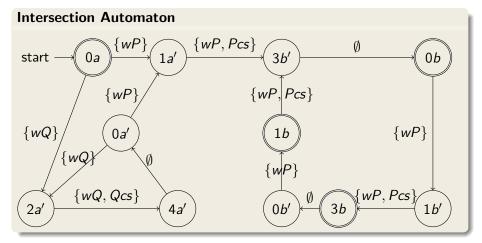
Büchi Automaton $\mathcal{B}_{\neg \phi}$



$$\Sigma_{Pcs} = \{I | I \in \Sigma, Pcs \in I\}, \quad \Sigma_{Pcs}^{c} = \Sigma - \Sigma_{Pcs}$$

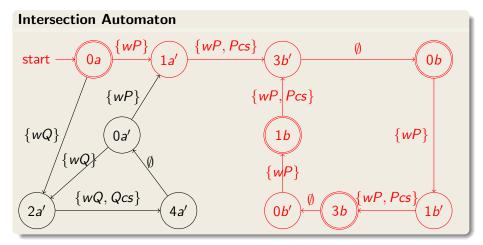
Third Step:
$$\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi}) = \emptyset$$
 ?

Third Step:
$$\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi}) = \emptyset$$
 ?



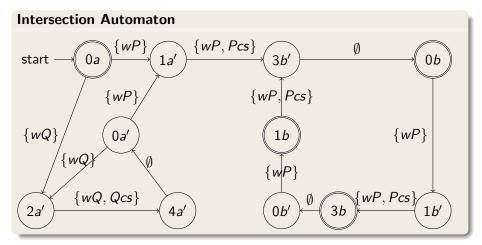
Third Step:
$$\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi}) \neq \emptyset$$

Counterexample



Third Step:
$$\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi}) \neq \emptyset$$

Counterexample Construction of intersection automaton: Appendix



Literature for this Lecture

Ben-Ari Section 5.2.1 (only syntax of LTL)

Baier and Katoen Principles of Model Checking, May 2008, The MIT Press, ISBN: 0-262-02649-X

Appendix I:

Intersection Automaton

Construction

Construction of Intersection Automaton

Given: two Büchi automata $\mathcal{B}_i = (Q_i, \delta_i, I_i, F_i), i = 1, 2$

Wanted: a Büchi automaton

$$\mathcal{B}_{1\cap 2} = (Q_{1\cap 2}, \delta_{1\cap 2}, I_{1\cap 2}, F_{1\cap 2})$$

accepting a word w iff w is accepted by \mathcal{B}_1 and \mathcal{B}_2

Construction of Intersection Automaton

Given: two Büchi automata $\mathcal{B}_i = (Q_i, \delta_i, I_i, F_i), i = 1, 2$

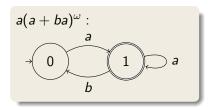
Wanted: a Büchi automaton

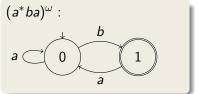
$$\mathcal{B}_{1\cap 2} = (Q_{1\cap 2}, \delta_{1\cap 2}, I_{1\cap 2}, F_{1\cap 2})$$

accepting a word w iff w is accepted by \mathcal{B}_1 and \mathcal{B}_2

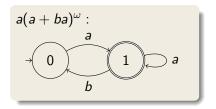
Maybe just the product automaton as for regular automata?

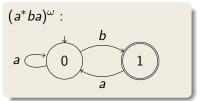
$$\Sigma = \{a, b\}$$



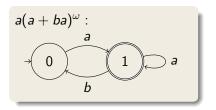


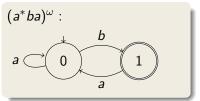
$$\Sigma = \{a, b\}, \ a(a + ba)^{\omega} \cap (a^*ba)^{\omega} = \emptyset$$
?



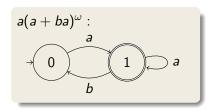


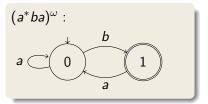
$$\Sigma = \{a, b\}, \ a(a + ba)^{\omega} \cap (a^*ba)^{\omega} = \emptyset$$
? No, e.g., $a(ba)^{\omega}$



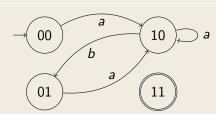


$$\Sigma = \{a, b\}, \ a(a + ba)^{\omega} \cap (a^*ba)^{\omega} = \emptyset$$
? No, e.g., $a(ba)^{\omega}$



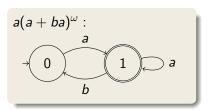


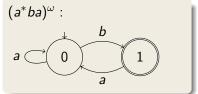
Product Automaton:



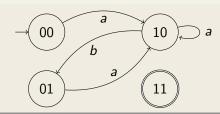
First Attempt: Product Automata for Intersection

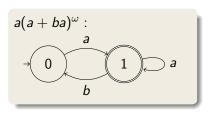
$$\Sigma = \{a, b\}, \ a(a + ba)^{\omega} \cap (a^*ba)^{\omega} = \emptyset$$
? No, e.g., $a(ba)^{\omega}$

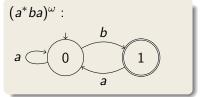


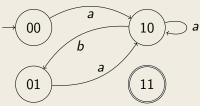


Product Automaton: accepting location 11 never reached

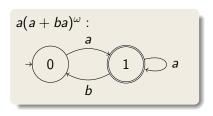


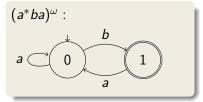


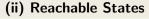


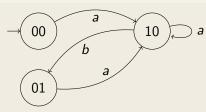


 $Q_{\cap} = Q_1 \times Q_2$

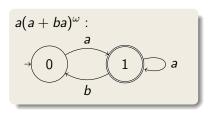


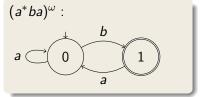


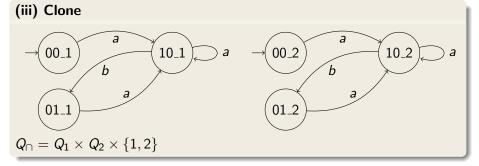


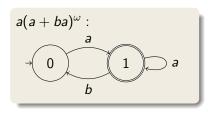


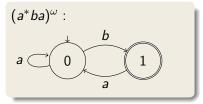
 $Q_{\cap} = Q_1 \times Q_2$

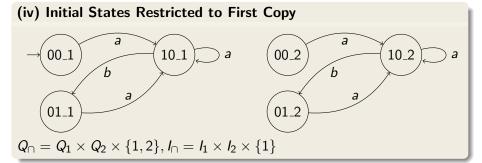


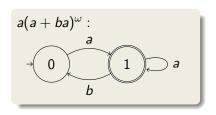


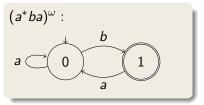




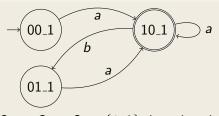


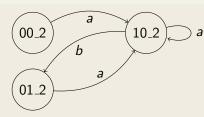






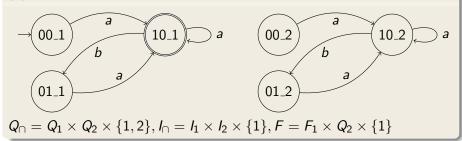
(v) Final States Restricted to First Atomaton of First Copy

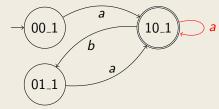


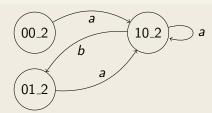


 $Q_{\cap} = Q_1 \times Q_2 \times \{1, 2\}, I_{\cap} = I_1 \times I_2 \times \{1\}, F = F_1 \times Q_2 \times \{1\}$

(v) Final States Restricted to First Atomaton of First Copy



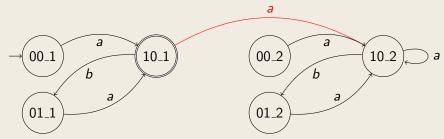




$$Q_{\cap} = Q_1 \times Q_2 \times \{1, 2\}, I_{\cap} = I_1 \times I_2 \times \{1\}, F = F_1 \times Q_2 \times \{1\}$$

$$s_1 \in Q_1, s_2 \in Q_2, \alpha \in \Sigma$$
:

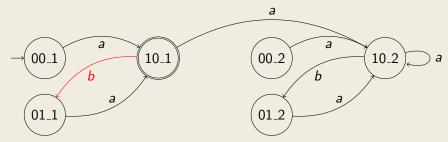
$$\text{if } \underline{s_1} \in \textit{\textbf{F}}_1: \quad \delta_{\cap}((s_1,s_2,1),\alpha) = \{(s_1',s_2',2) | s_1' \in \delta_1(s_1,\alpha), s_2' \in \delta_2(s_2,\alpha)\}$$



$$\textit{Q}_{\cap} = \textit{Q}_{1} \times \textit{Q}_{2} \times \{1,2\}, \textit{I}_{\cap} = \textit{I}_{1} \times \textit{I}_{2} \times \{1\}, \textit{F} = \textit{F}_{1} \times \textit{Q}_{2} \times \{1\}$$

$$s_1 \in Q_1, s_2 \in Q_2, \alpha \in \Sigma$$
:

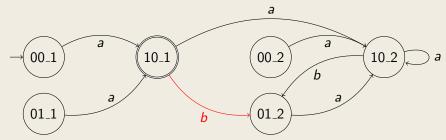
if
$$s_1 \in F_1$$
: $\delta_{\cap}((s_1, s_2, 1), \alpha) = \{(s'_1, s'_2, 2) | s'_1 \in \delta_1(s_1, \alpha), s'_2 \in \delta_2(s_2, \alpha)\}$



$$Q_{\cap} = Q_1 \times Q_2 \times \{1, 2\}, I_{\cap} = I_1 \times I_2 \times \{1\}, F = F_1 \times Q_2 \times \{1\}$$

$$s_1 \in Q_1, s_2 \in Q_2, \alpha \in \Sigma$$
:

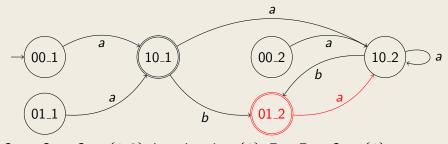
if
$$s_1 \in F_1$$
: $\delta_{\cap}((s_1, s_2, 1), \alpha) = \{(s'_1, s'_2, 2) | s'_1 \in \delta_1(s_1, \alpha), s'_2 \in \delta_2(s_2, \alpha)\}$



$$\textit{Q}_{\cap} = \textit{Q}_{1} \times \textit{Q}_{2} \times \{1,2\}, \textit{I}_{\cap} = \textit{I}_{1} \times \textit{I}_{2} \times \{1\}, \textit{F} = \textit{F}_{1} \times \textit{Q}_{2} \times \{1\}$$

$$s_1 \in Q_1, s_2 \in Q_2, \alpha \in \Sigma$$
:

if
$$s_1 \in F_1$$
: $\delta_{\cap}((s_1, s_2, 1), \alpha) = \{(s'_1, s'_2, 2) | s'_1 \in \delta_1(s_1, \alpha), s'_2 \in \delta_2(s_2, \alpha)\}$

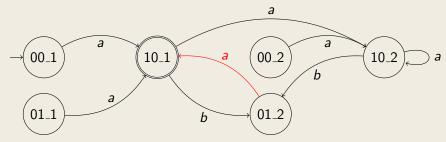


$$\textit{Q}_{\cap} = \textit{Q}_{1} \times \textit{Q}_{2} \times \{1,2\}, \textit{I}_{\cap} = \textit{I}_{1} \times \textit{I}_{2} \times \{1\}, \textit{F} = \textit{F}_{1} \times \textit{Q}_{2} \times \{1\}$$

$$s_1 \in Q_1, s_2 \in Q_2, \alpha \in \Sigma$$
:

if
$$s_1 \in F_1$$
: $\delta_{\cap}((s_1, s_2, 1), \alpha) = \{(s'_1, s'_2, 2) | s'_1 \in \delta_1(s_1, \alpha), s'_2 \in \delta_2(s_2, \alpha)\}$

$$\text{if } \underline{s_2} \in \underline{\textit{F}_2}: \quad \delta_{\cap}((s_1,s_2,2),\alpha) = \{(s_1',s_2',1) | s_1' \in \delta_1(s_1,\alpha), s_2' \in \delta_2(s_2,\alpha)\}$$



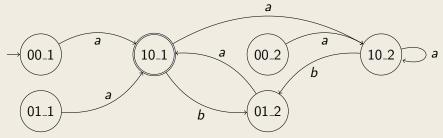
$$Q_{\cap} = Q_1 \times Q_2 \times \{1, 2\}, I_{\cap} = I_1 \times I_2 \times \{1\}, F = F_1 \times Q_2 \times \{1\}$$

$$s_1 \in Q_1, s_2 \in Q_2, \alpha \in \Sigma$$
:

if
$$s_1 \in F_1$$
: $\delta_{\cap}((s_1, s_2, 1), \alpha) = \{(s'_1, s'_2, 2) | s'_1 \in \delta_1(s_1, \alpha), s'_2 \in \delta_2(s_2, \alpha)\}$

if
$$s_2 \in F_2$$
: $\delta_{\cap}((s_1, s_2, 2), \alpha) = \{(s'_1, s'_2, 1) | s'_1 \in \delta_1(s_1, \alpha), s'_2 \in \delta_2(s_2, \alpha)\}$

(viii) Transitions of Product Automaton



$$Q_{\cap} = Q_1 \times Q_2 \times \{1, 2\}, I_{\cap} = I_1 \times I_2 \times \{1\}, F = F_1 \times Q_2 \times \{1\}$$

$$s_1 \in Q_1, s_2 \in Q_2, \alpha \in \Sigma$$
:

if
$$s_1 \in F_1$$
: $\delta_{\cap}((s_1, s_2, 1), \alpha) = \{(s'_1, s'_2, 2) | s'_1 \in \delta_1(s_1, \alpha), s'_2 \in \delta_2(s_2, \alpha)\}$

if
$$s_2 \in F_2$$
: $\delta_{\cap}((s_1, s_2, 2), \alpha) = \{(s'_1, s'_2, 1) | s'_1 \in \delta_1(s_1, \alpha), s'_2 \in \delta_2(s_2, \alpha)\}$

else:
$$\delta_{\cap}((s_1, s_2, i), \alpha) = \{(s'_1, s'_2, i) | s'_1 \in \delta_1(s_1, \alpha), s'_2 \in \delta_2(s_2, \alpha)\}$$

Appendix II:

Construction of a Büchi Automaton \mathcal{B}_{ϕ} for an LTL-Formula ϕ

The General Case: Generalised Büchi Automata

Generalize Büchi automata so that sets of interpretations accepted

A generalised Büchi automaton is defined as:

$$\mathcal{B}^{g} = (Q, \delta, I, \mathbb{F})$$

 Q, δ, I as for standard Büchi automata

$$\mathbb{F} = \{\mathcal{F}_1, \dots, \mathcal{F}_n\}$$
, where $\mathcal{F}_i = \{q_{i1}, \dots, q_{im_i}\} \subseteq Q$

The General Case: Generalised Büchi Automata

Generalize Büchi automata so that sets of interpretations accepted

A generalised Büchi automaton is defined as:

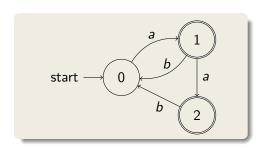
$$\mathcal{B}^{g} = (Q, \delta, I, \mathbb{F})$$

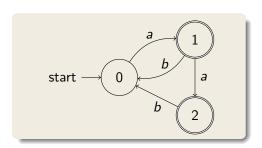
 Q, δ, I as for standard Büchi automata

$$\mathbb{F} = \{\mathcal{F}_1, \dots, \mathcal{F}_n\}$$
, where $\mathcal{F}_i = \{q_{i1}, \dots, q_{im_i}\} \subseteq Q$

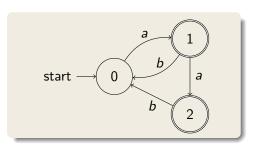
Definition (Acceptance for generalised Büchi automata)

A generalised Büchi automaton accepts an ω -word $w \in \Sigma^{\omega}$ iff for every $i \in \{1, ..., n\}$ at least one $q_{ik} \in \mathcal{F}_i$ is visited infinitely often.



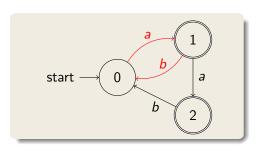


$$\mathcal{B}^{\textit{normal}} \text{ with } \mathcal{F} = \{1,2\}, \qquad \mathcal{B}^{\textit{general}} \text{ with } \mathbb{F} = \{\overbrace{\{1\}}^{\mathcal{F}_1}, \overbrace{\{2\}}^{\mathcal{F}_2}\}$$



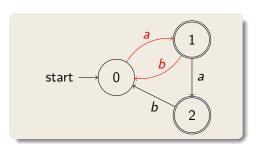
$$\mathcal{B}^{\textit{normal}} \text{ with } \mathcal{F} = \{1,2\}, \qquad \mathcal{B}^{\textit{general}} \text{ with } \mathbb{F} = \{\overbrace{\{1\}},\overbrace{\{2\}}\}$$

$$\omega$$
-word $\mid \mathcal{B}^{normal} \mid \mathcal{B}^{general}$



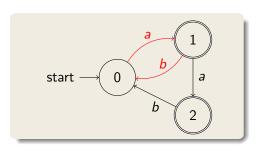
$$\mathcal{B}^{normal}$$
 with $\mathcal{F} = \{1,2\}$, $\mathcal{B}^{general}$ with $\mathbb{F} = \{\overline{\{1\}},\overline{\{2\}}\}$

$\omega ext{-word}$	\mathcal{B}^{normal}	$\mathcal{B}^{general}$
$(ab)^{\omega}$		



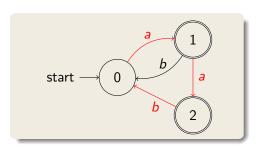
$$\mathcal{B}^{normal}$$
 with $\mathcal{F}=\{1,2\}$, $\mathcal{B}^{general}$ with $\mathbb{F}=\{\overbrace{\{1\}}^{\mathcal{F}_1},\overbrace{\{2\}}^{\mathcal{F}_2}\}$

$\omega ext{-word}$	\mathcal{B}^{normal}	$\mathcal{B}^{general}$
$(ab)^{\omega}$	✓	



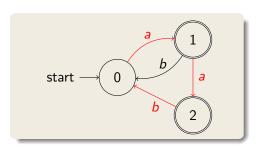
$$\mathcal{B}^{normal}$$
 with $\mathcal{F} = \{1,2\}$, $\mathcal{B}^{general}$ with $\mathbb{F} = \{\overline{\{1\}},\overline{\{2\}}\}$

$\omega ext{-word}$	\mathcal{B}^{normal}	$\mathcal{B}^{ extit{general}}$
$\overline{~(ab)^{\omega}}$	V	X



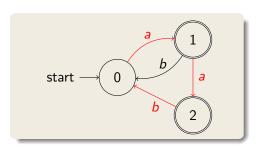
$$\mathcal{B}^{normal}$$
 with $\mathcal{F} = \{1,2\}$, $\mathcal{B}^{general}$ with $\mathbb{F} = \{\overbrace{\{1\}}^{\mathcal{F}_1}, \overbrace{\{2\}}^{\mathcal{F}_2}\}$

$\omega ext{-word}$	\mathcal{B}^{normal}	$\mathcal{B}^{general}$
$(ab)^{\omega}$	V	X
$(aab)^\omega$		



$$\mathcal{B}^{normal}$$
 with $\mathcal{F}=\{1,2\}$, $\mathcal{B}^{general}$ with $\mathbb{F}=\{\overbrace{\{1\}}^{\mathcal{F}_1},\overbrace{\{2\}}^{\mathcal{F}_2}\}$

$\omega ext{-word}$	\mathcal{B}^{normal}	$\mathcal{B}^{general}$
$(ab)^{\omega}$	✓	X
$(aab)^\omega$	✓	



$$\mathcal{B}^{normal}$$
 with $\mathcal{F}=\{1,2\}$, $\mathcal{B}^{general}$ with $\mathbb{F}=\{\overbrace{\{1\}}^{\mathcal{F}_1},\overbrace{\{2\}}^{\mathcal{F}_2}\}$

$\omega ext{-word}$	\mathcal{B}^{normal}	$\mathcal{B}^{ extit{general}}$
$(ab)^{\omega}$	V	×
$(aab)^\omega$	✓	✓

Fischer-Ladner Closure

Fischer-Ladner closure of an LTL-formula ϕ

 $FL(\phi) = \{ \varphi | \varphi \text{ is subformula or negated subformula of } \phi \}$

Fischer-Ladner Closure

Fischer-Ladner closure of an LTL-formula ϕ

$$FL(\phi) = \{ \varphi | \varphi \text{ is subformula or negated subformula of } \phi \}$$

 $(\neg\neg\varphi)$ is identified with φ

Fischer-Ladner Closure

Fischer-Ladner closure of an LTL-formula ϕ

$$\mathit{FL}(\phi) = \{ \varphi | \varphi \text{ is subformula or negated subformula of } \phi \}$$

 $(\neg\neg\varphi)$ is identified with φ

Example

$$FL(rUs) = \{r, \neg r, s, \neg s, rUs, \neg (rUs)\}$$

Assumption:

 \mathcal{U} only temporal logic operator in LTL-formula (can express \Box, \Diamond with \mathcal{U})

Assumption:

 ${\cal U}$ only temporal logic operator in LTL-formula (can express \square, \lozenge with ${\cal U})$

Locations of \mathcal{B}_{ϕ} are $Q\subseteq 2^{FL(\phi)}$ where each $q\in Q$ satisfies:

Consistent, Total

- $\psi \in \mathit{FL}(\phi)$: exactly one of ψ and $\neg \psi$ in q
- $\psi_1 \mathcal{U} \psi_2 \in (FL(\phi) \backslash q)$ then $\psi_2 \notin q$

- $\psi_1 \wedge \psi_2 \in q$: $\psi_1 \in q$ and $\psi_2 \in q$
- ... other propositional connectives similar
- ▶ $\psi_1 \mathcal{U} \psi_2 \in q$ then $\psi_1 \in q$ or $\psi_2 \in q$

Assumption:

 \mathcal{U} only temporal logic operator in LTL-formula (can express \square, \lozenge with \mathcal{U})

Locations of \mathcal{B}_{ϕ} are $Q \subseteq 2^{FL(\phi)}$ where each $g \in Q$ satisfies:

- **Consistent, Total** $\flat \psi \in FL(\phi)$: exactly one of ψ and $\neg \psi$ in q
 - $\blacktriangleright \psi_1 \mathcal{U} \psi_2 \in (FL(\phi) \backslash q) \text{ then } \psi_2 \not\in q$

- \bullet $\psi_1 \land \psi_2 \in q$: $\psi_1 \in q$ and $\psi_2 \in q$
- ... other propositional connectives similar
- \bullet $\psi_1 \mathcal{U} \psi_2 \in \mathfrak{q}$ then $\psi_1 \in \mathfrak{q}$ or $\psi_2 \in \mathfrak{q}$

$$FL(rUs) = \{r, \neg r, s, \neg s, rUs, \neg (rUs)\}$$

$$\in Q$$

Assumption:

 \mathcal{U} only temporal logic operator in LTL-formula (can express \square, \lozenge with \mathcal{U})

Locations of \mathcal{B}_{ϕ} are $Q \subseteq 2^{FL(\phi)}$ where each $a \in Q$ satisfies:

- **Consistent, Total** $\flat \psi \in FL(\phi)$: exactly one of ψ and $\neg \psi$ in q
 - $\blacktriangleright \psi_1 \mathcal{U} \psi_2 \in (FL(\phi) \backslash q) \text{ then } \psi_2 \not\in q$

- $\psi_1 \wedge \psi_2 \in q$: $\psi_1 \in q$ and $\psi_2 \in q$
- ... other propositional connectives similar
- \bullet $\psi_1 \mathcal{U} \psi_2 \in \mathfrak{q}$ then $\psi_1 \in \mathfrak{q}$ or $\psi_2 \in \mathfrak{q}$

$$FL(rUs) = \{r, \neg r, s, \neg s, rUs, \neg (rUs)\}$$

$$\in Q$$

$$\{rUs, \neg r, s\}$$

Assumption:

 \mathcal{U} only temporal logic operator in LTL-formula (can express \square, \lozenge with \mathcal{U})

Locations of \mathcal{B}_{ϕ} are $Q \subseteq 2^{FL(\phi)}$ where each $a \in Q$ satisfies:

- **Consistent, Total** $\flat \psi \in FL(\phi)$: exactly one of ψ and $\neg \psi$ in q
 - $\blacktriangleright \psi_1 \mathcal{U} \psi_2 \in (FL(\phi) \backslash q) \text{ then } \psi_2 \not\in q$

- $\psi_1 \wedge \psi_2 \in q$: $\psi_1 \in q$ and $\psi_2 \in q$
- ... other propositional connectives similar
- \bullet $\psi_1 \mathcal{U} \psi_2 \in \mathfrak{q}$ then $\psi_1 \in \mathfrak{q}$ or $\psi_2 \in \mathfrak{q}$

$$FL(rUs) = \{r, \neg r, s, \neg s, rUs, \neg (rUs)\}$$

$$\frac{\in Q}{\frac{\{rUs, \neg r, s\}}{\{rUs, \neg r, \neg s\}}}$$

Assumption:

 \mathcal{U} only temporal logic operator in LTL-formula (can express \square, \lozenge with \mathcal{U})

Locations of \mathcal{B}_{ϕ} are $Q \subseteq 2^{FL(\phi)}$ where each $a \in Q$ satisfies:

- **Consistent, Total** $\flat \psi \in FL(\phi)$: exactly one of ψ and $\neg \psi$ in q
 - $\blacktriangleright \psi_1 \mathcal{U} \psi_2 \in (FL(\phi) \backslash q) \text{ then } \psi_2 \not\in q$

- $\psi_1 \wedge \psi_2 \in q$: $\psi_1 \in q$ and $\psi_2 \in q$
- ... other propositional connectives similar
- \bullet $\psi_1 \mathcal{U} \psi_2 \in \mathfrak{q}$ then $\psi_1 \in \mathfrak{q}$ or $\psi_2 \in \mathfrak{q}$

$$FL(rUs) = \{r, \neg r, s, \neg s, rUs, \neg (rUs)\}$$

$$= \underbrace{\begin{cases} Q \\ \hline \{rUs, \neg r, s\} \end{cases}}_{\{\neg (rUs), r, s\}}$$

$$= \underbrace{\begin{cases} rUs, \neg r, \neg s \\ \hline \{rUs, \neg r, \neg s\} \end{cases}}_{\{\neg (rUs), r, s\}}$$

Assumption:

 \mathcal{U} only temporal logic operator in LTL-formula (can express \square, \lozenge with \mathcal{U})

Locations of \mathcal{B}_{ϕ} are $Q \subseteq 2^{FL(\phi)}$ where each $a \in Q$ satisfies:

- **Consistent, Total** $\flat \psi \in FL(\phi)$: exactly one of ψ and $\neg \psi$ in q
 - $\blacktriangleright \psi_1 \mathcal{U} \psi_2 \in (FL(\phi) \backslash q) \text{ then } \psi_2 \not\in q$

- $\psi_1 \wedge \psi_2 \in q$: $\psi_1 \in q$ and $\psi_2 \in q$
- ... other propositional connectives similar
- \bullet $\psi_1 \mathcal{U} \psi_2 \in \mathfrak{q}$ then $\psi_1 \in \mathfrak{q}$ or $\psi_2 \in \mathfrak{q}$

$$FL(rUs) = \{r, \neg r, s, \neg s, rUs, \neg (rUs)\}$$

$$\frac{\in Q}{\{rUs, \neg r, s\}} \frac{}{\{rUs, \neg r, \neg s\}} \frac{\mathsf{X}}{\{\neg (rUs), r, s\}} \frac{}{\{\neg (rUs), r, \neg s\}} \frac{\mathsf{X}}{\mathsf{X}}$$

$$\underbrace{\{r\mathcal{U}s,\neg r,s\}}_{q_1},\underbrace{\{r\mathcal{U}s,r,\neg s\}}_{q_2},\underbrace{\{r\mathcal{U}s,r,s\}}_{q_3},\underbrace{\{\neg(r\mathcal{U}s),r,\neg s\}}_{q_4},\underbrace{\{\neg(r\mathcal{U}s),\neg r,\neg s\}}_{q_5}$$

 q_5

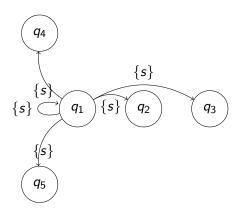
$$\underbrace{\{r\mathcal{U}s,\neg r,s\}}_{q_1},\underbrace{\{r\mathcal{U}s,r,\neg s\}}_{q_2},\underbrace{\{r\mathcal{U}s,r,s\}}_{q_3},\underbrace{\{\neg (r\mathcal{U}s),r,\neg s\}}_{q_4},\underbrace{\{\neg (r\mathcal{U}s),\neg r,\neg s\}}_{q_5}$$

Transitions $(q, \alpha, q') \in \delta_{\phi}$:

$$\alpha = \mathbf{g} \cap \mathcal{P}$$

- 1. If $\psi_1 \mathcal{U} \psi_2 \in q$ and $\psi_2 \notin q$ then $\psi_1 \mathcal{U} \psi_2 \in q'$
- 2. If $\psi_1 \mathcal{U} \psi_2 \in (FL(\phi) \backslash q)$ and $\psi_1 \in q$ then $\psi_1 \mathcal{U} \psi_2 \not\in q'$

$$\underbrace{\{r\mathcal{U}s,\neg r,s\}}_{q_1},\underbrace{\{r\mathcal{U}s,r,\neg s\}}_{q_2},\underbrace{\{r\mathcal{U}s,r,s\}}_{q_3},\underbrace{\{\neg (r\mathcal{U}s),r,\neg s\}}_{q_4},\underbrace{\{\neg (r\mathcal{U}s),\neg r,\neg s\}}_{q_5}$$

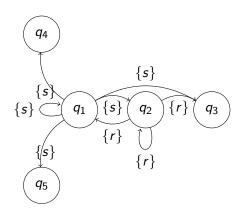


Transitions $(q, \alpha, q') \in \delta_{\phi}$:

$$\alpha = \mathbf{q} \cap \mathcal{P}$$

- 1. If $\psi_1 \mathcal{U} \psi_2 \in q$ and $\psi_2 \notin q$ then $\psi_1 \mathcal{U} \psi_2 \in q'$
- 2. If $\psi_1 \mathcal{U} \psi_2 \in (FL(\phi) \backslash q)$ and $\psi_1 \in q$ then $\psi_1 \mathcal{U} \psi_2 \not\in q'$

$$\underbrace{\{r\mathcal{U}s,\neg r,s\}}_{q_1},\underbrace{\{r\mathcal{U}s,r,\neg s\}}_{q_2},\underbrace{\{r\mathcal{U}s,r,s\}}_{q_3},\underbrace{\{\neg (r\mathcal{U}s),r,\neg s\}}_{q_4},\underbrace{\{\neg (r\mathcal{U}s),\neg r,\neg s\}}_{q_5}$$

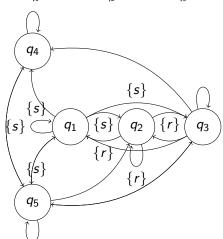


Transitions $(q, \alpha, q') \in \delta_{\phi}$:

$$\alpha = \mathbf{q} \cap \mathcal{P}$$

- 1. If $\psi_1 \mathcal{U} \psi_2 \in q$ and $\psi_2 \notin q$ then $\psi_1 \mathcal{U} \psi_2 \in q'$
- 2. If $\psi_1 \mathcal{U} \psi_2 \in (FL(\phi) \backslash q)$ and $\psi_1 \in q$ then $\psi_1 \mathcal{U} \psi_2 \not\in q'$

$$\underbrace{\{r\mathcal{U}s,\neg r,s\}}_{q_1},\underbrace{\{r\mathcal{U}s,r,\neg s\}}_{q_2},\underbrace{\{r\mathcal{U}s,r,s\}}_{q_3},\underbrace{\{\neg (r\mathcal{U}s),r,\neg s\}}_{q_4},\underbrace{\{\neg (r\mathcal{U}s),\neg r,\neg s\}}_{q_5}$$



Transitions $(q, \alpha, q') \in \delta_{\phi}$:

$$\alpha = \mathbf{q} \cap \mathcal{P}$$

- 1. If $\psi_1 \mathcal{U} \psi_2 \in q$ and $\psi_2 \notin q$ then $\psi_1 \mathcal{U} \psi_2 \in q'$
- 2. If $\psi_1 \mathcal{U} \psi_2 \in (FL(\phi) \backslash q)$ and $\psi_1 \in q$ then $\psi_1 \mathcal{U} \psi_2 \not\in q'$

$$\underbrace{\{r\mathcal{U}s,\neg r,s\}}_{q_1},\underbrace{\{r\mathcal{U}s,r,\neg s\}}_{q_2},\underbrace{\{r\mathcal{U}s,r,s\}}_{q_3},\underbrace{\{\neg(r\mathcal{U}s),r,\neg s\}}_{q_4},\underbrace{\{\neg(r\mathcal{U}s),\neg r,\neg s\}}_{q_5}$$
Initial locations
$$q\in I_\phi \text{ iff } \phi\in q$$

$$\{s\}$$

$$\{s\}$$

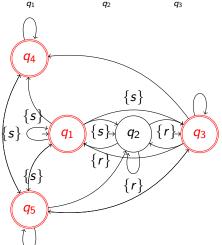
$$\{r\}$$

$$\{g\}$$

Initial locations

$$q \in I_{\phi}$$
 iff $\phi \in q$

$$\underbrace{\{r\mathcal{U}s,\neg r,s\}}_{q_1},\underbrace{\{r\mathcal{U}s,r,\neg s\}}_{q_2},\underbrace{\{r\mathcal{U}s,r,s\}}_{q_3},\underbrace{\{\neg(r\mathcal{U}s),r,\neg s\}}_{q_4},\underbrace{\{\neg(r\mathcal{U}s),\neg r,\neg s\}}_{q_5}$$



Initial locations

$$q \in \mathit{I}_{\phi}$$
 iff $\phi \in q$

Accepting locations

$$\mathbb{F} = \{\mathcal{F}_1, \dots, \mathcal{F}_n\}$$

- ▶ One \mathcal{F}_i for each $\psi_{i1} \mathcal{U} \psi_{i2} \in FL(\phi)$; Example: $\mathbb{F} = \{\mathcal{F}_1\}$
- ▶ \mathcal{F}_i set of locations that do *not* contain $\psi_{i1}\mathcal{U}\psi_{i2}$ or that contain ψ_{i2} Ex.: $\mathcal{F}_1 = \{q_1, q_3, q_4, q_5\}$

Remarks on Generalized Büchi Automata

- ▶ Construction always gives exponential number of states in $|\phi|$
- Satisfiability checking of LTL is PSPACE-complete
- There exist (more complex) constructions that minimize number of required states
 - ► One of these is used in SPIN, which moreover computes the states lazily