
Software Engineering using Formal Methods
Modeling Distributed Systems

Wolfgang Ahrendt

17 September 2013

SEFM: Modeling Distributed Systems /GU 130917 1 / 37

This Lecture

You know you have a distributed system when the
crash of a computer you’ve never heard of stops
you from getting any work done.–Leslie Lamport

Using Promela channels for modeling distributed systems

SEFM: Modeling Distributed Systems /GU 130917 2 / 37

Modeling Distributed Systems

Distributed systems consist of

I nodes

I interacting via communication channels

I protocols dictate how nodes communicate with each other

Distributed systems are very complex

Models of distributed systems abstract away from details of
networks/protocols/nodes

In Promela:

I nodes modeled by Promela processes

I communication channels modeled by Promela channels

I protocols modeled by algorithm distributed over the processes

SEFM: Modeling Distributed Systems /GU 130917 3 / 37

Modeling Distributed Systems

Distributed systems consist of

I nodes

I interacting via communication channels

I protocols dictate how nodes communicate with each other

Distributed systems are very complex

Models of distributed systems abstract away from details of
networks/protocols/nodes

In Promela:

I nodes modeled by Promela processes

I communication channels modeled by Promela channels

I protocols modeled by algorithm distributed over the processes

SEFM: Modeling Distributed Systems /GU 130917 3 / 37

Channels in Promela

In Promela, channels are first class citizens

Data type chan with two operations for sending and receiving

A variable of channel type is declared by initializer:

chan name = [capacity] of {type1, ..., typen}

name name of channel variable
capacity non-negative integer constant
type i Promela data types

Example:
chan ch = [2] of { mtype, byte, bool }

SEFM: Modeling Distributed Systems /GU 130917 4 / 37

Meaning of Channels

chan name = [capacity] of {type1, ..., typen}

Creates a channel, which is stored in name

Messages communicated via the channel are n-tuples∈ type1× . . .× typen

Can buffer up to capacity messages, if capacity ≥ 1
⇒ “buffered channel”

The channel has no buffer, if capacity = 0
⇒ “rendezvous channel”

SEFM: Modeling Distributed Systems /GU 130917 5 / 37

Meaning of Channels

chan name = [capacity] of {type1, ..., typen}

Creates a channel, which is stored in name

Messages communicated via the channel are n-tuples∈ type1× . . .× typen

Can buffer up to capacity messages, if capacity ≥ 1
⇒ “buffered channel”

The channel has no buffer, if capacity = 0
⇒ “rendezvous channel”

SEFM: Modeling Distributed Systems /GU 130917 5 / 37

Meaning of Channels

chan name = [capacity] of {type1, ..., typen}

Creates a channel, which is stored in name

Messages communicated via the channel are n-tuples∈ type1× . . .× typen

Can buffer up to capacity messages, if capacity ≥ 1
⇒ “buffered channel”

The channel has no buffer, if capacity = 0
⇒ “rendezvous channel”

SEFM: Modeling Distributed Systems /GU 130917 5 / 37

Meaning of Channels

chan name = [capacity] of {type1, ..., typen}

Creates a channel, which is stored in name

Messages communicated via the channel are n-tuples∈ type1× . . .× typen

Can buffer up to capacity messages, if capacity ≥ 1
⇒ “buffered channel”

The channel has no buffer, if capacity = 0
⇒ “rendezvous channel”

SEFM: Modeling Distributed Systems /GU 130917 5 / 37

Meaning of Channels

Example:

chan ch = [2] of { mtype, byte, bool }

Creates a channel, which is stored in ch

Messages communicated via ch are 3-tuples ∈ mtype × byte × bool

Given, e.g., mtype {red, yellow, green},
an example message on ch can be: green, 20, false

ch is a buffered channel, buffering up to 2 messages

SEFM: Modeling Distributed Systems /GU 130917 6 / 37

Meaning of Channels

Example:

chan ch = [2] of { mtype, byte, bool }

Creates a channel, which is stored in ch

Messages communicated via ch are 3-tuples ∈ mtype × byte × bool

Given, e.g., mtype {red, yellow, green},
an example message on ch can be: green, 20, false

ch is a buffered channel, buffering up to 2 messages

SEFM: Modeling Distributed Systems /GU 130917 6 / 37

Meaning of Channels

Example:

chan ch = [2] of { mtype, byte, bool }

Creates a channel, which is stored in ch

Messages communicated via ch are 3-tuples ∈ mtype × byte × bool

Given, e.g., mtype {red, yellow, green},
an example message on ch can be:

green, 20, false

ch is a buffered channel, buffering up to 2 messages

SEFM: Modeling Distributed Systems /GU 130917 6 / 37

Meaning of Channels

Example:

chan ch = [2] of { mtype, byte, bool }

Creates a channel, which is stored in ch

Messages communicated via ch are 3-tuples ∈ mtype × byte × bool

Given, e.g., mtype {red, yellow, green},
an example message on ch can be: green, 20, false

ch is a buffered channel, buffering up to 2 messages

SEFM: Modeling Distributed Systems /GU 130917 6 / 37

Meaning of Channels

Example:

chan ch = [2] of { mtype, byte, bool }

Creates a channel, which is stored in ch

Messages communicated via ch are 3-tuples ∈ mtype × byte × bool

Given, e.g., mtype {red, yellow, green},
an example message on ch can be: green, 20, false

ch is a buffered channel, buffering up to 2 messages

SEFM: Modeling Distributed Systems /GU 130917 6 / 37

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn

I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn

I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn
I example: ch ? color, time, flash

SEFM: Modeling Distributed Systems /GU 130917 7 / 37

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn
I name: channel variable

I expr1, ... , exprn: sequence of expressions,
where number and types match message type

I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn

I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn
I example: ch ? color, time, flash

SEFM: Modeling Distributed Systems /GU 130917 7 / 37

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn
I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type

I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn

I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn
I example: ch ? color, time, flash

SEFM: Modeling Distributed Systems /GU 130917 7 / 37

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn
I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message

I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn

I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn
I example: ch ? color, time, flash

SEFM: Modeling Distributed Systems /GU 130917 7 / 37

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn
I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn

I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn
I example: ch ? color, time, flash

SEFM: Modeling Distributed Systems /GU 130917 7 / 37

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn
I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn

I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn
I example: ch ? color, time, flash

SEFM: Modeling Distributed Systems /GU 130917 7 / 37

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn
I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn
I name: channel variable

I var1, ... , varn: sequence of variables,
where number and types match message type

I assigns values of message to var1, ... , varn
I example: ch ? color, time, flash

SEFM: Modeling Distributed Systems /GU 130917 7 / 37

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn
I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn
I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type

I assigns values of message to var1, ... , varn
I example: ch ? color, time, flash

SEFM: Modeling Distributed Systems /GU 130917 7 / 37

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn
I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn
I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn

I example: ch ? color, time, flash

SEFM: Modeling Distributed Systems /GU 130917 7 / 37

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn
I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn
I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn
I example: ch ? color, time, flash

SEFM: Modeling Distributed Systems /GU 130917 7 / 37

Client-Server

chan request = [0] of { byte };

active proctype Client0 () {

request ! 0;

}

active proctype Client1 () {

request ! 1;

}

...

Client0 and Client1 send messages 0 and 1 to request

order of sending is nondeterministic

SEFM: Modeling Distributed Systems /GU 130917 8 / 37

Client-Server

chan request = [0] of { byte };

active proctype Client0 () {

request ! 0;

}

active proctype Client1 () {

request ! 1;

}

...

Client0 and Client1 send messages 0 and 1 to request

order of sending is nondeterministic

SEFM: Modeling Distributed Systems /GU 130917 8 / 37

Client-Server

chan request = [0] of { byte };

active proctype Client0 () {

request ! 0;

}

active proctype Client1 () {

request ! 1;

}

...

Client0 and Client1 send messages 0 and 1 to request

order of sending is nondeterministic

SEFM: Modeling Distributed Systems /GU 130917 8 / 37

Client-Server

chan request = [0] of { byte };

...

active proctype Server () {

byte num;

do
:: request ? num;

print f ("serving client %d\n", num)

od
}

Server loops on:

I receiving first message from request, storing value in num

I printing

SEFM: Modeling Distributed Systems /GU 130917 9 / 37

Client-Server

chan request = [0] of { byte };

...

active proctype Server () {

byte num;

do
:: request ? num;

print f ("serving client %d\n", num)

od
}

Server loops on:

I receiving first message from request, storing value in num

I printing

SEFM: Modeling Distributed Systems /GU 130917 9 / 37

Client-Server

chan request = [0] of { byte };

...

active proctype Server () {

byte num;

do
:: request ? num;

print f ("serving client %d\n", num)

od
}

Server loops on:

I receiving first message from request,

storing value in num

I printing

SEFM: Modeling Distributed Systems /GU 130917 9 / 37

Client-Server

chan request = [0] of { byte };

...

active proctype Server () {

byte num;

do
:: request ? num;

print f ("serving client %d\n", num)

od
}

Server loops on:

I receiving first message from request, storing value in num

I printing

SEFM: Modeling Distributed Systems /GU 130917 9 / 37

Client-Server

chan request = [0] of { byte };

...

active proctype Server () {

byte num;

do
:: request ? num;

print f ("serving client %d\n", num)

od
}

Server loops on:

I receiving first message from request, storing value in num

I printing

SEFM: Modeling Distributed Systems /GU 130917 9 / 37

Demo

rendezvous1

random simulation

SEFM: Modeling Distributed Systems /GU 130917 10 / 37

Executability of receive Statement

request ? num

executable only if a message is available in channel request

⇒ receive statement frequently used as guard in if/do-statements

do
:: request ? num ->

print f ("serving client %d\n", num)

od

SEFM: Modeling Distributed Systems /GU 130917 11 / 37

Executability of receive Statement

request ? num

executable only if a message is available in channel request

⇒ receive statement frequently used as guard in if/do-statements

do
:: request ? num ->

print f ("serving client %d\n", num)

od

SEFM: Modeling Distributed Systems /GU 130917 11 / 37

Executability of receive Statement

request ? num

executable only if a message is available in channel request

⇒ receive statement frequently used as guard in if/do-statements

do
:: request ? num ->

print f ("serving client %d\n", num)

od

SEFM: Modeling Distributed Systems /GU 130917 11 / 37

Demo

rendezvous1

interactive simulation

SEFM: Modeling Distributed Systems /GU 130917 12 / 37

Rendezvous Channels

chan ch = [0] of { byte, byte };

/* global to make visible in SpinSpider */

byte hour , minute;

active proctype Sender () {

print f ("ready\n");
ch ! 11, 45;

print f ("Sent\n")
}

active proctype Receiver () {

print f ("steady\n");
ch ? hour , minute;

print f ("Received\n")
}

Which interleavings can occur? ⇒ ask SpinSpider

SEFM: Modeling Distributed Systems /GU 130917 13 / 37

Rendezvous Channels

chan ch = [0] of { byte, byte };

/* global to make visible in SpinSpider */

byte hour , minute;

active proctype Sender () {

print f ("ready\n");
ch ! 11, 45;

print f ("Sent\n")
}

active proctype Receiver () {

print f ("steady\n");
ch ? hour , minute;

print f ("Received\n")
}

Which interleavings can occur?

⇒ ask SpinSpider

SEFM: Modeling Distributed Systems /GU 130917 13 / 37

Rendezvous Channels

chan ch = [0] of { byte, byte };

/* global to make visible in SpinSpider */

byte hour , minute;

active proctype Sender () {

print f ("ready\n");
ch ! 11, 45;

print f ("Sent\n")
}

active proctype Receiver () {

print f ("steady\n");
ch ? hour , minute;

print f ("Received\n")
}

Which interleavings can occur? ⇒ ask SpinSpider

SEFM: Modeling Distributed Systems /GU 130917 13 / 37

Demo

through jSpin:
SpinSpider on ReadySteady.pml

SEFM: Modeling Distributed Systems /GU 130917 14 / 37

Rendezvous are Synchronous

On a rendezvous channel:

transfer of message from sender to receiver is synchronous,
i.e., one single operation

Sender Receiver
...

...
(11,45) −→ (hour,minute)

...
...

SEFM: Modeling Distributed Systems /GU 130917 15 / 37

Rendezvous are Synchronous

On a rendezvous channel:

transfer of message from sender to receiver is synchronous,
i.e., one single operation

Sender Receiver
...

...
(11,45) −→ (hour,minute)

...
...

SEFM: Modeling Distributed Systems /GU 130917 15 / 37

Rendezvous are Synchronous

Either:

1. Sender process’ location counter at send (“!”):
“offer to engage in rendezvous”

2. Receiver process’ location counter at receive (“?”):
“rendezvous can be accepted”

or the other way round:

1. Receiver process’ location counter at receive (“?”):
“offer to engage in rendezvous”

2. Sender process’ location counter at send (“!”):
“rendezvous can be accepted”

in any cases:

location counter of both processes is incremented at once

only place where Promela processes execute synchronously

SEFM: Modeling Distributed Systems /GU 130917 16 / 37

Rendezvous are Synchronous

Either:

1. Sender process’ location counter at send (“!”):
“offer to engage in rendezvous”

2. Receiver process’ location counter at receive (“?”):
“rendezvous can be accepted”

or the other way round:

1. Receiver process’ location counter at receive (“?”):
“offer to engage in rendezvous”

2. Sender process’ location counter at send (“!”):
“rendezvous can be accepted”

in any cases:

location counter of both processes is incremented at once

only place where Promela processes execute synchronously

SEFM: Modeling Distributed Systems /GU 130917 16 / 37

Rendezvous are Synchronous

Either:

1. Sender process’ location counter at send (“!”):
“offer to engage in rendezvous”

2. Receiver process’ location counter at receive (“?”):
“rendezvous can be accepted”

or the other way round:

1. Receiver process’ location counter at receive (“?”):
“offer to engage in rendezvous”

2. Sender process’ location counter at send (“!”):
“rendezvous can be accepted”

in any cases:

location counter of both processes is incremented at once

only place where Promela processes execute synchronously

SEFM: Modeling Distributed Systems /GU 130917 16 / 37

Rendezvous are Synchronous

Either:

1. Sender process’ location counter at send (“!”):
“offer to engage in rendezvous”

2. Receiver process’ location counter at receive (“?”):
“rendezvous can be accepted”

or the other way round:

1. Receiver process’ location counter at receive (“?”):
“offer to engage in rendezvous”

2. Sender process’ location counter at send (“!”):
“rendezvous can be accepted”

in any cases:

location counter of both processes is incremented at once

only place where Promela processes execute synchronously

SEFM: Modeling Distributed Systems /GU 130917 16 / 37

Rendezvous are Synchronous

Either:

1. Sender process’ location counter at send (“!”):
“offer to engage in rendezvous”

2. Receiver process’ location counter at receive (“?”):
“rendezvous can be accepted”

or the other way round:

1. Receiver process’ location counter at receive (“?”):
“offer to engage in rendezvous”

2. Sender process’ location counter at send (“!”):
“rendezvous can be accepted”

in any cases:

location counter of both processes is incremented at once

only place where Promela processes execute synchronously

SEFM: Modeling Distributed Systems /GU 130917 16 / 37

Rendezvous are Synchronous

Either:

1. Sender process’ location counter at send (“!”):
“offer to engage in rendezvous”

2. Receiver process’ location counter at receive (“?”):
“rendezvous can be accepted”

or the other way round:

1. Receiver process’ location counter at receive (“?”):
“offer to engage in rendezvous”

2. Sender process’ location counter at send (“!”):
“rendezvous can be accepted”

in any cases:

location counter of both processes is incremented at once

only place where Promela processes execute synchronously

SEFM: Modeling Distributed Systems /GU 130917 16 / 37

Reconsider Client Server

chan request = [0] of { byte };

active proctype Server () {

byte num;

do :: request ? num ->

print f ("serving client %d\n", num)

od
}

active proctype Client0 () {

request ! 0

}

active proctype Client1 () {

request ! 1

}

so far no reply to clients

SEFM: Modeling Distributed Systems /GU 130917 17 / 37

Reconsider Client Server

chan request = [0] of { byte };

active proctype Server () {

byte num;

do :: request ? num ->

print f ("serving client %d\n", num)

od
}

active proctype Client0 () {

request ! 0

}

active proctype Client1 () {

request ! 1

}

so far no reply to clients

SEFM: Modeling Distributed Systems /GU 130917 17 / 37

Reply Channels

chan request = [0] of { byte };

chan reply = [0] of { bool };

active proctype Server () {

byte num;

do :: request ? num ->

print f ("serving client %d\n", num);

reply ! true
od

}

active proctype Client0 () {

request ! 0; reply ? _

}

active proctype Client1 () {

request ! 1; reply ? _

}

(anonymous variable “_” used if interested in receipt, not content)

SEFM: Modeling Distributed Systems /GU 130917 18 / 37

Reply Channels

chan request = [0] of { byte };

chan reply = [0] of { bool };

active proctype Server () {

byte num;

do :: request ? num ->

print f ("serving client %d\n", num);

reply ! true
od

}

active proctype Client0 () {

request ! 0; reply ? _

}

active proctype Client1 () {

request ! 1; reply ? _

}

(anonymous variable “_” used if interested in receipt, not content)

SEFM: Modeling Distributed Systems /GU 130917 18 / 37

Reply Channels - Single Server

chan request = [0] of { mtype };

chan reply = [0] of { mtype };

mtype = { nice , rude };

active proctype Server () {

mtype msg;

do :: request ? msg; reply ! msg

od
}

active proctype NiceClient () {

mtype msg;

request ! nice; reply ? msg;

}

active proctype RudeClient () {

mtype msg;

request ! rude; reply ? msg

}

SEFM: Modeling Distributed Systems /GU 130917 19 / 37

Reply Channels - Single Server

chan request = [0] of { mtype };

chan reply = [0] of { mtype };

mtype = { nice , rude };

active proctype Server () {

mtype msg;

do :: request ? msg; reply ! msg

od
}

active proctype NiceClient () {

mtype msg;

request ! nice; reply ? msg;

assert(msg == nice)

Ask Spin.

}

active proctype RudeClient () {

mtype msg;

request ! rude; reply ? msg

}

SEFM: Modeling Distributed Systems /GU 130917 19 / 37

Reply Channels - Single Server

chan request = [0] of { mtype };

chan reply = [0] of { mtype };

mtype = { nice , rude };

active proctype Server () {

mtype msg;

do :: request ? msg; reply ! msg

od
}

active proctype NiceClient () {

mtype msg;

request ! nice; reply ? msg;

assert(msg == nice) Is the assertion valid?

Ask Spin.

}

active proctype RudeClient () {

mtype msg;

request ! rude; reply ? msg

}

SEFM: Modeling Distributed Systems /GU 130917 19 / 37

Reply Channels - Single Server

chan request = [0] of { mtype };

chan reply = [0] of { mtype };

mtype = { nice , rude };

active proctype Server () {

mtype msg;

do :: request ? msg; reply ! msg

od
}

active proctype NiceClient () {

mtype msg;

request ! nice; reply ? msg;

assert(msg == nice) Is the assertion valid? Ask Spin.
}

active proctype RudeClient () {

mtype msg;

request ! rude; reply ? msg

}

SEFM: Modeling Distributed Systems /GU 130917 19 / 37

Several Servers

More realistic with several servers:

active [2] proctype Server () {

mtype msg;

do :: request ? msg; reply ! msg

od
}

active proctype NiceClient () {

mtype msg;

request ! nice; reply ? msg;

}

active proctype RudeClient () {

mtype msg;

request ! rude; reply ? msg

}

SEFM: Modeling Distributed Systems /GU 130917 20 / 37

Several Servers

More realistic with several servers:

active [2] proctype Server () {

mtype msg;

do :: request ? msg; reply ! msg

od
}

active proctype NiceClient () {

mtype msg;

request ! nice; reply ? msg;

assert(msg == nice)

Analyse with Spin.

}

active proctype RudeClient () {

mtype msg;

request ! rude; reply ? msg

}

SEFM: Modeling Distributed Systems /GU 130917 20 / 37

Several Servers

More realistic with several servers:

active [2] proctype Server () {

mtype msg;

do :: request ? msg; reply ! msg

od
}

active proctype NiceClient () {

mtype msg;

request ! nice; reply ? msg;

assert(msg == nice) And here?

Analyse with Spin.

}

active proctype RudeClient () {

mtype msg;

request ! rude; reply ? msg

}

SEFM: Modeling Distributed Systems /GU 130917 20 / 37

Several Servers

More realistic with several servers:

active [2] proctype Server () {

mtype msg;

do :: request ? msg; reply ! msg

od
}

active proctype NiceClient () {

mtype msg;

request ! nice; reply ? msg;

assert(msg == nice) And here? Analyse with Spin.
}

active proctype RudeClient () {

mtype msg;

request ! rude; reply ? msg

}

SEFM: Modeling Distributed Systems /GU 130917 20 / 37

Sending Channels via Channels

To fix the protocol:

clients declare local reply channel + send it to server

SEFM: Modeling Distributed Systems /GU 130917 21 / 37

Sending Channels via Channels

To fix the protocol:

clients declare local reply channel + send it to server

SEFM: Modeling Distributed Systems /GU 130917 21 / 37

Sending Channels via Channels

mtype = { nice , rude };

chan request = [0] of { mtype, chan };

active [2] proctype Server () {

mtype msg; chan ch;

do :: request ? msg , ch;

ch ! msg

od
}

active proctype NiceClient () {

chan reply = [0] of { mtype }; mtype msg;

request ! nice , reply; reply ? msg;

assert (msg == nice)

}

active proctype RudeClient () {

chan reply = [0] of { mtype }; mtype msg;

request ! rude , reply; reply ? msg

}

verify with Spin

SEFM: Modeling Distributed Systems /GU 130917 22 / 37

Sending Channels via Channels

mtype = { nice , rude };

chan request = [0] of { mtype, chan };

active [2] proctype Server () {

mtype msg; chan ch;

do :: request ? msg , ch;

ch ! msg

od
}

active proctype NiceClient () {

chan reply = [0] of { mtype }; mtype msg;

request ! nice , reply; reply ? msg;

assert (msg == nice)

}

active proctype RudeClient () {

chan reply = [0] of { mtype }; mtype msg;

request ! rude , reply; reply ? msg

}
verify with Spin

SEFM: Modeling Distributed Systems /GU 130917 22 / 37

Scope of Channels

channels are typically declared global

global channel

I usual case
I all processes can send and/or receive messages

local channel

I rarely used
I dies with its process
I can be useful to model security issues

example:
local channel could be passed
through a global channel

SEFM: Modeling Distributed Systems /GU 130917 23 / 37

Sending Process IDs

used fixed constants used for identification (here nice, rude)

I inflexible

I doesn’t scale

Alternative:
processes send their own, unique process ID, _pid, as part of message

example, clients code:

chan reply = [0] of { byte, byte };

request ! pid, reply;

reply ? serverID , clientID;

assert (clientID == pid)

SEFM: Modeling Distributed Systems /GU 130917 24 / 37

Sending Process IDs

used fixed constants used for identification (here nice, rude)

I inflexible

I doesn’t scale

Alternative:
processes send their own, unique process ID, _pid, as part of message

example, clients code:

chan reply = [0] of { byte, byte };

request ! pid, reply;

reply ? serverID , clientID;

assert (clientID == pid)

SEFM: Modeling Distributed Systems /GU 130917 24 / 37

Sending Process IDs

used fixed constants used for identification (here nice, rude)

I inflexible

I doesn’t scale

Alternative:
processes send their own, unique process ID, _pid, as part of message

example, clients code:

chan reply = [0] of { byte, byte };

request ! pid, reply;

reply ? serverID , clientID;

assert (clientID == pid)

SEFM: Modeling Distributed Systems /GU 130917 24 / 37

Sending Process IDs

used fixed constants used for identification (here nice, rude)

I inflexible

I doesn’t scale

Alternative:
processes send their own, unique process ID, _pid, as part of message

example, clients code:

chan reply = [0] of { byte, byte };

request ! pid, reply;

reply ? serverID , clientID;

assert (clientID == pid)

SEFM: Modeling Distributed Systems /GU 130917 24 / 37

Sending Process IDs

used fixed constants used for identification (here nice, rude)

I inflexible

I doesn’t scale

Alternative:
processes send their own, unique process ID, _pid, as part of message

example, clients code:

chan reply = [0] of { byte, byte };

request ! pid, reply;

reply ? serverID , clientID;

assert (clientID == pid)

SEFM: Modeling Distributed Systems /GU 130917 24 / 37

Limitations of Rendezvous Channels

I rendezvous too restrictive for many applications

I servers and clients block each other too much

I difficult to manage uneven workload
(online shop: dozens of webservers serve thousands of clients)

SEFM: Modeling Distributed Systems /GU 130917 25 / 37

Buffered Channel

buffered channels queue messages;
requests/services no not immediately block clients/servers

example:
chan ch = [3] of { mtype, byte, bool }

SEFM: Modeling Distributed Systems /GU 130917 26 / 37

Buffered Channels

buffered channels, with capacity cap

I can hold up to cap messages

I are a FIFO (first-in-first-out) data structure:
always the ‘oldest’ message in channel is retrieved by a receive

I (normal) receive statement reads and removes message from cap

I Sending and Receiving to/from buffered channels is asynchronous,
i.e. interleaved

SEFM: Modeling Distributed Systems /GU 130917 27 / 37

Buffered Channels

buffered channels, with capacity cap

I can hold up to cap messages

I are a FIFO (first-in-first-out) data structure:
always the ‘oldest’ message in channel is retrieved by a receive

I (normal) receive statement reads and removes message from cap

I Sending and Receiving to/from buffered channels is asynchronous,
i.e. interleaved

SEFM: Modeling Distributed Systems /GU 130917 27 / 37

Buffered Channels

buffered channels, with capacity cap

I can hold up to cap messages

I are a FIFO (first-in-first-out) data structure:
always the ‘oldest’ message in channel is retrieved by a receive

I (normal) receive statement reads and removes message from cap

I Sending and Receiving to/from buffered channels is asynchronous,
i.e. interleaved

SEFM: Modeling Distributed Systems /GU 130917 27 / 37

Buffered Channels

buffered channels, with capacity cap

I can hold up to cap messages

I are a FIFO (first-in-first-out) data structure:
always the ‘oldest’ message in channel is retrieved by a receive

I (normal) receive statement reads and removes message from cap

I Sending and Receiving to/from buffered channels is asynchronous,
i.e. interleaved

SEFM: Modeling Distributed Systems /GU 130917 27 / 37

Executability of Buffered Channel operations

given channel ch, with capacity cap, currently containing n messages

receive statement ch ? msg

is executable iff ch is not empty, i.e., n > 0

send statement ch ! msg

is executable iff there is still ‘space’ in the message queue,
i.e., n < cap

An non-executable receive or send statement will block until it is
executable again

(The Spin option -m has a different send semantics:
attempting to send to a full channel does not block, but the message
gets lost instead.)

SEFM: Modeling Distributed Systems /GU 130917 28 / 37

Executability of Buffered Channel operations

given channel ch, with capacity cap, currently containing n messages

receive statement ch ? msg

is executable iff ch is not empty, i.e., n > 0

send statement ch ! msg

is executable iff there is still ‘space’ in the message queue,
i.e., n < cap

An non-executable receive or send statement will block until it is
executable again

(The Spin option -m has a different send semantics:
attempting to send to a full channel does not block, but the message
gets lost instead.)

SEFM: Modeling Distributed Systems /GU 130917 28 / 37

Checking Channel for Full/Empty

this can save from unnecessary blocking:

given channel ch:

full(ch) checks whether ch is full
nfull(ch) checks whether ch is not full
empty(ch) checks whether ch is empty
nempty(ch) checks whether ch is not empty

illegal to negate those
avoid combining with else

SEFM: Modeling Distributed Systems /GU 130917 29 / 37

Copy Message without Removing

with
ch ? color, time, flash

you

I assign values from the message to color, time, flash

I remove message from ch

with
ch ? <color, time, flash>

you

I assign values from the message to color, time, flash

I leave message in ch

SEFM: Modeling Distributed Systems /GU 130917 30 / 37

Copy Message without Removing

with
ch ? color, time, flash

you

I assign values from the message to color, time, flash

I remove message from ch

with
ch ? <color, time, flash>

you

I assign values from the message to color, time, flash

I leave message in ch

SEFM: Modeling Distributed Systems /GU 130917 30 / 37

Dispatching Messages

Recurring task: Dispatch action depending on message type.

mtype = {hi , bye};

chan ch = [0] of {mtype};

active proctype Server () {

mtype msg;

read:

ch ? msg;

do
:: msg == hi -> print f ("Hello .\n"); goto read

:: msg == bye -> print f ("See you.\n"); break
od

}

...

There is a better way!

SEFM: Modeling Distributed Systems /GU 130917 31 / 37

Dispatching Messages

Recurring task: Dispatch action depending on message type.

mtype = {hi , bye};

chan ch = [0] of {mtype};

active proctype Server () {

mtype msg;

read:

ch ? msg;

do
:: msg == hi -> print f ("Hello .\n"); goto read

:: msg == bye -> print f ("See you.\n"); break
od

}

...

There is a better way!

SEFM: Modeling Distributed Systems /GU 130917 31 / 37

Dispatching Messages

Recurring task: Dispatch action depending on message type.

mtype = {hi , bye};

chan ch = [0] of {mtype};

active proctype Server () {

mtype msg;

read:

ch ? msg;

do
:: msg == hi -> print f ("Hello .\n"); goto read

:: msg == bye -> print f ("See you.\n"); break
od

}

...

There is a better way!

SEFM: Modeling Distributed Systems /GU 130917 31 / 37

Pattern Matching

Receive statement allows also values as arguments:

ch ? exp1, . . . , expn

I exp1, . . . , expn any(!) expressions of correct type
I statement is executable, iff message msg1, . . . ,msgn in channel ch

matches arguments, i.e. if
I expi is a variable, then any value of msgi (of correct type) matches

and is assigned if statement is executed
I expi is a value, e.g. 23, msgi must have same value

SEFM: Modeling Distributed Systems /GU 130917 32 / 37

Pattern Matching Examples

Assume

chan ch = [0] of { int , int };
int id = 5;

Does ch ? 0, id match message

I [0, 5] ? 4 [0, 7] ? 4 [1, 7] ? 8

I Value of id afterwards?

To match the value stored in a variable var use eval(var)

Does ch ? 0, eval(id) match message

I [0, 5] ? 4 [0, 7] ? 8 [1, 7] ? 8

I Value of id afterwards?

SEFM: Modeling Distributed Systems /GU 130917 33 / 37

Pattern Matching Examples

Assume

chan ch = [0] of { int , int };
int id = 5;

Does ch ? 0, id match message

I [0, 5] ?

4 [0, 7] ? 4 [1, 7] ? 8

I Value of id afterwards?

To match the value stored in a variable var use eval(var)

Does ch ? 0, eval(id) match message

I [0, 5] ? 4 [0, 7] ? 8 [1, 7] ? 8

I Value of id afterwards?

SEFM: Modeling Distributed Systems /GU 130917 33 / 37

Pattern Matching Examples

Assume

chan ch = [0] of { int , int };
int id = 5;

Does ch ? 0, id match message

I [0, 5] ? 4

[0, 7] ? 4 [1, 7] ? 8

I Value of id afterwards?

To match the value stored in a variable var use eval(var)

Does ch ? 0, eval(id) match message

I [0, 5] ? 4 [0, 7] ? 8 [1, 7] ? 8

I Value of id afterwards?

SEFM: Modeling Distributed Systems /GU 130917 33 / 37

Pattern Matching Examples

Assume

chan ch = [0] of { int , int };
int id = 5;

Does ch ? 0, id match message

I [0, 5] ? 4 [0, 7] ?

4 [1, 7] ? 8

I Value of id afterwards?

To match the value stored in a variable var use eval(var)

Does ch ? 0, eval(id) match message

I [0, 5] ? 4 [0, 7] ? 8 [1, 7] ? 8

I Value of id afterwards?

SEFM: Modeling Distributed Systems /GU 130917 33 / 37

Pattern Matching Examples

Assume

chan ch = [0] of { int , int };
int id = 5;

Does ch ? 0, id match message

I [0, 5] ? 4 [0, 7] ? 4

[1, 7] ? 8

I Value of id afterwards?

To match the value stored in a variable var use eval(var)

Does ch ? 0, eval(id) match message

I [0, 5] ? 4 [0, 7] ? 8 [1, 7] ? 8

I Value of id afterwards?

SEFM: Modeling Distributed Systems /GU 130917 33 / 37

Pattern Matching Examples

Assume

chan ch = [0] of { int , int };
int id = 5;

Does ch ? 0, id match message

I [0, 5] ? 4 [0, 7] ? 4 [1, 7] ?

8

I Value of id afterwards?

To match the value stored in a variable var use eval(var)

Does ch ? 0, eval(id) match message

I [0, 5] ? 4 [0, 7] ? 8 [1, 7] ? 8

I Value of id afterwards?

SEFM: Modeling Distributed Systems /GU 130917 33 / 37

Pattern Matching Examples

Assume

chan ch = [0] of { int , int };
int id = 5;

Does ch ? 0, id match message

I [0, 5] ? 4 [0, 7] ? 4 [1, 7] ? 8

I Value of id afterwards?

To match the value stored in a variable var use eval(var)

Does ch ? 0, eval(id) match message

I [0, 5] ? 4 [0, 7] ? 8 [1, 7] ? 8

I Value of id afterwards?

SEFM: Modeling Distributed Systems /GU 130917 33 / 37

Pattern Matching Examples

Assume

chan ch = [0] of { int , int };
int id = 5;

Does ch ? 0, id match message

I [0, 5] ? 4 [0, 7] ? 4 [1, 7] ? 8

I Value of id afterwards?

To match the value stored in a variable var use eval(var)

Does ch ? 0, eval(id) match message

I [0, 5] ? 4 [0, 7] ? 8 [1, 7] ? 8

I Value of id afterwards?

SEFM: Modeling Distributed Systems /GU 130917 33 / 37

Pattern Matching Examples

Assume

chan ch = [0] of { int , int };
int id = 5;

Does ch ? 0, id match message

I [0, 5] ? 4 [0, 7] ? 4 [1, 7] ? 8

I Value of id afterwards?

To match the value stored in a variable var use eval(var)

Does ch ? 0, eval(id) match message

I [0, 5] ? 4 [0, 7] ? 8 [1, 7] ? 8

I Value of id afterwards?

SEFM: Modeling Distributed Systems /GU 130917 33 / 37

Pattern Matching Examples

Assume

chan ch = [0] of { int , int };
int id = 5;

Does ch ? 0, id match message

I [0, 5] ? 4 [0, 7] ? 4 [1, 7] ? 8

I Value of id afterwards?

To match the value stored in a variable var use eval(var)

Does ch ? 0, eval(id) match message

I [0, 5] ?

4 [0, 7] ? 8 [1, 7] ? 8

I Value of id afterwards?

SEFM: Modeling Distributed Systems /GU 130917 33 / 37

Pattern Matching Examples

Assume

chan ch = [0] of { int , int };
int id = 5;

Does ch ? 0, id match message

I [0, 5] ? 4 [0, 7] ? 4 [1, 7] ? 8

I Value of id afterwards?

To match the value stored in a variable var use eval(var)

Does ch ? 0, eval(id) match message

I [0, 5] ? 4

[0, 7] ? 8 [1, 7] ? 8

I Value of id afterwards?

SEFM: Modeling Distributed Systems /GU 130917 33 / 37

Pattern Matching Examples

Assume

chan ch = [0] of { int , int };
int id = 5;

Does ch ? 0, id match message

I [0, 5] ? 4 [0, 7] ? 4 [1, 7] ? 8

I Value of id afterwards?

To match the value stored in a variable var use eval(var)

Does ch ? 0, eval(id) match message

I [0, 5] ? 4 [0, 7] ?

8 [1, 7] ? 8

I Value of id afterwards?

SEFM: Modeling Distributed Systems /GU 130917 33 / 37

Pattern Matching Examples

Assume

chan ch = [0] of { int , int };
int id = 5;

Does ch ? 0, id match message

I [0, 5] ? 4 [0, 7] ? 4 [1, 7] ? 8

I Value of id afterwards?

To match the value stored in a variable var use eval(var)

Does ch ? 0, eval(id) match message

I [0, 5] ? 4 [0, 7] ? 8

[1, 7] ? 8

I Value of id afterwards?

SEFM: Modeling Distributed Systems /GU 130917 33 / 37

Pattern Matching Examples

Assume

chan ch = [0] of { int , int };
int id = 5;

Does ch ? 0, id match message

I [0, 5] ? 4 [0, 7] ? 4 [1, 7] ? 8

I Value of id afterwards?

To match the value stored in a variable var use eval(var)

Does ch ? 0, eval(id) match message

I [0, 5] ? 4 [0, 7] ? 8 [1, 7] ?

8

I Value of id afterwards?

SEFM: Modeling Distributed Systems /GU 130917 33 / 37

Pattern Matching Examples

Assume

chan ch = [0] of { int , int };
int id = 5;

Does ch ? 0, id match message

I [0, 5] ? 4 [0, 7] ? 4 [1, 7] ? 8

I Value of id afterwards?

To match the value stored in a variable var use eval(var)

Does ch ? 0, eval(id) match message

I [0, 5] ? 4 [0, 7] ? 8 [1, 7] ? 8

I Value of id afterwards?

SEFM: Modeling Distributed Systems /GU 130917 33 / 37

Pattern Matching Examples

Assume

chan ch = [0] of { int , int };
int id = 5;

Does ch ? 0, id match message

I [0, 5] ? 4 [0, 7] ? 4 [1, 7] ? 8

I Value of id afterwards?

To match the value stored in a variable var use eval(var)

Does ch ? 0, eval(id) match message

I [0, 5] ? 4 [0, 7] ? 8 [1, 7] ? 8

I Value of id afterwards?

SEFM: Modeling Distributed Systems /GU 130917 33 / 37

Dispatching Messages Revisited

Recurring task: Dispatch action depending on message type.

mtype = {hi , bye};

chan ch = [0] of {mtype};

active proctype Server () {

int i;

do
:: ch ? hi -> print f ("Hello.\n")
:: ch ? bye -> print f ("See you.\n"); break

od
}

...

SEFM: Modeling Distributed Systems /GU 130917 34 / 37

Dispatching Messages Revisited

Random receive ?? (for buffered channels)

I Executable if matching message exists in channel.

I If executed, first matching message removed from channel.

mtype = {hi , bye};

chan ch = [3] of {mtype};

active proctype Server () {

int i;

do
:: ch ?? bye -> print f ("See you.\n"); break
:: e l se -> print f ("Hello .\n")

od
}

...

SEFM: Modeling Distributed Systems /GU 130917 35 / 37

Dispatching Messages Revisited

Random receive ?? (for buffered channels)

I Executable if matching message exists in channel.

I If executed, first matching message removed from channel.

mtype = {hi , bye};

chan ch = [3] of {mtype};

active proctype Server () {

int i;

do
:: ch ?? bye -> print f ("See you.\n"); break
:: e l se -> print f ("Hello .\n")

od
}

...

SEFM: Modeling Distributed Systems /GU 130917 35 / 37

Nicer Message Formatting

Promela provides an alternative, but equivalent syntax for

ch ! exp1, exp2, exp3

namely

ch ! exp1(exp2, exp3)

Increases readability for certain applications, e.g. modeling of protocol
modelling:

ch!send(msg,id) vs. ch!send,msg,id

ch!ack(id) vs. ch!ack,id

SEFM: Modeling Distributed Systems /GU 130917 36 / 37

Nicer Message Formatting

Promela provides an alternative, but equivalent syntax for

ch ! exp1, exp2, exp3

namely

ch ! exp1(exp2, exp3)

Increases readability for certain applications, e.g. modeling of protocol
modelling:

ch!send(msg,id) vs. ch!send,msg,id

ch!ack(id) vs. ch!ack,id

SEFM: Modeling Distributed Systems /GU 130917 36 / 37

And finally

Buffered channels are part of the state!

State space gets much bigger using buffered channels

Use with care (and with small buffers).

SEFM: Modeling Distributed Systems /GU 130917 37 / 37

	Modeling Distributed Systems
	Channels in Promela

