Algorithmica (1996) 15: 600-625 Algorlth m | Ca_

© 1996 Springer-Verlag New York Inc.

Proportionate Progress: A Notion of Fairness in
Resource Allocatiort

S. K. Barual? N. K. Cohen? C. G. Plaxtor? and D. A. Varvet

Abstract. Given a setof tasks andnresources, where each tashkas arational weight. w = x.e/x.p, 0 <

X.w < 1, aperiodic schedulés one that allocates a resource to a tagkr exactlyx.e time units in each
interval [x.p - k, x.p - (k + 1)) for all k € N. We define a notion of proportionate progress, called P-fairness,
and use it to design an efficient algorithm which solves the periodic scheduling problem.

Key Words. Euclid’s algorithm, Fairness, Network flow, Periodic scheduling, Resource allocation.

1. Introduction. Scheduling is the act of assigning resources to activities or tasks.
Scheduling problems typically involve a set of constraints (e.g., deadlines) that must
be met by any schedule. Often these constraints are designed to enforce some notion
of fairness; for example, a very weak fairness constraint might be that any task will
eventually get to use the resource it has requested. For any particular set of constraints,
there are two problems to be addressed:

() The“decision” problem (i.e., determining whether or nota giveninstanceisfeasible).
(i) The “scheduling” problem (i.e., actually constructing the schedule for a given fea-
sible instance).

Many sets of constraints result in an intractable decision probigm [

The periodic scheduling problemas first discussed by Liu in 1969 1]. Given a

set ofn tasks andn resources, where each taskas rational weighk.w = x.e/x.p,

0 < x.w < 1, aperiodic schedulés one that allocates a resource to a tasér exactly

x.e time units orslotsin each intervalX.p - k, x.p - (k + 1)) for all k € N. Scheduling
decisions may be made only at integral times and a task may use either zero or one
resources at a time.

We might also consider a relaxed version of the periodic scheduling problem in which
tasks are not restricted to using zero or one resources at a time. Consider, for example,
allowing resource sharing; that is, in each unit of time a task may use a fraictidn
aresource, O< f < 1. If Y"_x.w < m, the following straightforward “resource
sharing” algorithm may be used to solve this relaxed version of the problem: Allocate a
fractionx.w of a resource to each task during each time unit. A second relaxed version
requires integral resource usage, but allows a task to use more than one resource at a time
(thatis, to run with arbitrary concurrency). In this version, multiple-resource scheduling
is easily reduced to single-resource scheduling.

1 This research was supported by NSF Research Initiation Award CCR-9111591, and the Texas Advanced
Research Program under Grant No. 91-003658-480.
2 Department of Computer Science, University of Texas, Austin, TX 78712-1188, USA.

Received May 28, 1993; revised January 5, 1995. Communicated by C. L. Lui.

Proportionate Progress: A Notion of Fairness in Resource Allocation 601

There are several optimal single-resource scheduling algorithms for the periodic
scheduling problem. The Earliest Deadline algorithm of Liu and Layland is one ex-
ample [L2]. None of them extends directly to multiple resources. As Liu pointed out,
“the simple fact that a task can use only one [resource] even when several [resources]
are free at the same time adds a surprising amount of difficulty” to the scheduling of
multiple resourcesl[l].

The decision problem has an efficient solution. Clearly, systemsin VE[}:I& X.w >
m cannot be scheduled. If resource sharing is allowed, those in WhEH x.w < m
can be scheduled by the resource sharing algorithm mentioned above. Baaldh]
used this fact, the network reduction of Hoif},[and the Ford—Fulkerson algorithrf] [
to show that there are solutions to the periodic scheduling problem. Thus, the decision
problem for such a periodic task system reduces to checkingﬁﬁgg Xw < m. A
method similar to that of Baruadt al. is used in Sectiof.

A more general form of the problem characterizes each xask four parameters,

X.s, X.e, X.d, andx.p, commonly referred to as starting time, execution requirement,
deadline, and period, respectively. Here, a taskust receive exactly.e units of the
resource in the time intervak[s + x.p - k, x.s + x.p - k + x.d) for all k € N. Leung’s
application of the Least Slack algorithm to this problem represents a recent improvement
on Earliest Deadlinel[0], for the case where scheduling decisions are not required to
occur at integer time instants. Leung was able to show that Least Slack schedules all
instances that can be scheduled by Earliest Deadline, as well as some instances that
Earliest Deadline cannot schedule. Both are optimal for scheduling a single resource but
not for multiple resources; in fact, there is no known optimal algorithm for this problem.
Our model may be viewed as a four-parameter model in which, fot,alls = 0 and

x.d = x.p. The general four-parameter model will not be addressed here.

Given a feasible instance of the periodic scheduling problesshadule generation
algorithm performs a (possibly emptypre-processing phasillowed by an infinite
execution phaseNo output is produced during the pre-processing phase. During the
execution phase, the algorithm produces an infinite sequence of og¥uts > 0),
whereX; is the subset of up tm tasks scheduled (i.e., assigned one copy of the resource)
in sloti. (Note that any output-free prefix of the computation may be designated as
the pre-processing phase.) ltedenote the elapsed running time (in the usual RAM
model) between the beginning of the execution phase and the time at which Hutput
is produced] > 0. Also, lett_; = 0. Then for any schedule generation algorithin
we define theer-slot time complexitgf A as the maximum over all feasible instances
and over ali > 0 oft; — t;_1. We further define thpre-processing time complexity
A as the maximum running time of the pre-processing phase over all feasible instances.
A schedule generation algorithmpslynomial timef and only if both the per-slot time
complexity and the pre-processing time complexity are polynomial in the input size.
Prior to this paper, no polynomial-time schedule generation algorithm was known for
the periodic scheduling problem.

Because all of the scheduling algorithms considered in this paper are schedule genera-
tion algorithms, for the sake of brevity we hereafter use the term “scheduling algorithm”
to mean “schedule generation algorithm”. Furthermore, because the scheduling algo-
rithm that we consider has an empty pre-processing phase (i.e., pre-processing time
complexity 0), we will focus our attention on per-slot time complexity. Accordingly,

602 S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel

throughout the paper, every time bound given for a scheduling algorithm should be
assumed to be a bound on the per-slot time complexity.

We solve the periodic scheduling problem by imposing an even stronger fairness
constraint. Our approach is based on maintaining proportionate progress: each task is
scheduled resources in proportion to its weight. Specifically, at every tinteeskx must
have been scheduled eitherw -t] or [x.w-t7] times. We call thiproportionate fairness
or P-fairness P-fairness is a strictly stronger condition than periodic scheduling, in that
any P-fair schedule is periodic while the converse is not generally true. P-fairness is a nat-
ural and desirable notion in certain practical applications. To the best of our knowledge,
none of the scheduling algorithms currently known generates P-fair schedules even in
the case of a single resource. We prove that any periodic scheduling problem instance for
which 22;3 X.w < mhas a P-fair schedule. This proof makes use of certain results from
network flow theory. We then describe and prove correct a polynomial-time scheduling
algorithm that generates a P-fair schedule for any feasible instance. Since every P-fair
schedule is also periodic, this algorithm solves the periodic scheduling problem.

We consider the research described here to be significant for several reasons. First,
we introduce a new and potentially important notion of fairness in resource sharing,
prove that this notion of fairness is actually achievable, and demonstrate its practical
applicability. Second, as a corollary to our main results, we solve the periodic scheduling
problem.

The remainder of this paper is organized as follows. Seé&idefines P-fairness and
some related concepts and gives examples of practical applications of P-fairness. Sec-
tion 3 establishes that P-fair schedules exist for the periodic scheduling problem. The
algorithm corresponding to the proof has exponential-time complexity, however. Sec-
tion 4 proves the correctness of a simple algorithm for producing such P-fair schedules.
The naive implementation of that algorithm schedules each slot in pseudopolynomial
time. Sectiorb presents an example execution of our algorithm on a particular input in-
stance. Sectiofiproves the correctness of a polynomial-time implementation. Section
offers some concluding remarks.

2. P-Fairness. This section defines P-fairness and some related concepts. We start
with some conventions:

e Scheduling decisions occur at integral valuediofe, numbered from 0. The real
interval between timé and timet + 1 (includingt, excludingt + 1) will be referred
to as slott,t € N.

e Forintegers andb, let[a, b) = {a, ..., b—1}. Furthermore, letd, b] = [a, b+ 1),
(a,bl =[a+1,b+1),and(a, b) =[a+1,Db).

e We consider an instanck of the fair resource sharing problem withresources and
n tasks. Specific tasks will be denoted by identifieendy, which range over, the
set of all tasks.

e Each task has an integeperiod x p, X.p > 1, an integeexecution requirement &,
x.e € (0, x.p), and a rationalveight xw = x.e/x.p. Note that O< x.w < 1. Without
loss of generality we confine our attention to the case wheg. X.w = m.

e Leto; denote théth symbol of stringr, i € N.

Proportionate Progress: A Notion of Fairness in Resource Allocation 603

Now some definitions:

¢ A schedule $orinstanced is a function fromI" x N to {0, 1}, where) ", - S(x, t) <
m, t € N. Informally, S(x, t) = 1 if and only if taskx is scheduled in slat
e A scheduleSis periodicif and only if

Vi,x:ieN,xel: Z S(x,t) = x.e-i.
te[0,x.p-i)

e Thelag of a taskx at timet with respect to schedulg denotedag(S, x, t), is defined
by

lag(S, X, t) = X.w -t — Z S(x,).
ief0.t)

e A scheduleSis P-fair if and only if
Vx,t:xel,teN:—-1<lag(S x,t) < 1L
e A scheduleSis P-fair at time tif and only if a P-fair schedul&' exists such that
Vx :x € ' : lag(S, x,t) = lag(S, x, t).

Informally, lag(S, x, t) measures the difference between the number of resource al-
locations that task “should” have received in the set of slots {p and the number that
it actually received.

Periodic schedules can also be defined in terms of lag constraints. In particular, a
scheduleSis periodic if and only if

Vi,x:ieN,xeTl :lag(S x,x.p-i) =0.

from which it follows thatevery P-fair schedule is periodi¢Note that in the definition
of lag, the termx.w - t is independent 08, and the ternd _; 5, S(X, 1) is an integer.)
P-fairness is a very strict requirement. It demands that the absolute value of the
difference between the expected allocation and the actual allocation to every task always
be strictly less than 1. In other words, a task never gets an entire slot ahead or behind.
In general it is not possible to guarantee a smaller variation in lag. Considentical
tasks sharing a single resource, where the weight of each tagsk iBdk/in sufficiently
large, we can make the lag of the first (resp. last) task scheduled come arbitrarily close
to —1 (resp. 1).
P-fairness is the natural notion of fairness for many resource-allocation problems.
Here are two examples:

ExaMmPLE 1. An airline hasn airplanes andh flight crews,n > m, all of which are
based in the same city. Assume that exaatlflight crews are scheduled to work on
any given day. Due to seniority, job performance, or other factors, it may be desirable
to schedule some flight crews more often than others. For each flighix¢iestx.w to

the desired fraction of all days thatshould work, while ensuring that, - x.w = m.

A P-fair scheduler will produce a schedule in which every flight crew works at a steady
rate: aftert days, flight crewx will have worked eitheitx.w - t| or [x.w - t] days.

604 S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel

ExampPLE 2. Consider anode in a real-time communications network with a number of
incoming and outgoing edges. The weighty on an edgex corresponds to the relative
amount of traffic expected on that edge. A P-fairness requirement may be necessary to
maintain the real-time nature of the communications, and to prevent exceptionally long
queueing delays from building up along certain edges.

To see how the concepts of lag and P-fairness arise within our (as yet undefined)
scheduling algorithm for the periodic scheduling problem, the reader may now wish to
briefly examine Sectiof before continuing with Sectio.

3. Existence of a P-Fair Schedule. In Sections4 and6 we develop a polynomial-
time P-fair scheduling algorithm. The proof of correctness of that algorithm relies on the
existence of a P-fair schedule for the resource sharing problem. In this section we use
a network flow argument to prove the existence of such a P-fair schedule. In principle,
the network reduction could itself serve as the basis for a P-fair scheduling algorithm.
Unfortunately, the size of the network generated by our reduction is exponential in the
size of the given scheduling instance, and so the network reduction argument does not
by itself provide a polynomial-time algorithm.

With respect to instanc® of the resource sharing problem, &trliest(x, j) (resp.
latest(x, j)) denote the earliest (resp. latest) slot during which taskay be sched-
uled for thejth time, j € N, in any P-fair schedule. We can easily derive closed
form expressions foearliest(x, j) andlatest(x, j). Note thatearliest(x, j) = mint :
teN:xw-t+1)—(j+1) > —1andatest(x, j) =maxt:t e N: xw-t—j < 1.
Hence,

earliest(x, j) = [j/x.w],
and
latest(x, j) = [(j + D/x.w] — 1.

Note that earliest(x, j) < latest(x,j), X € T, j € N. Furthermore,
earliest(x, j + 1) — latest(x, j) is either O or 1. In other words, there is at most one slot
where either thgth or the(j + 1)st scheduling of task may occur.

The remainder of this section is devoted to proving the existence of a P-fair schedule
for any instance of the resource sharing probkemOur proof strategy is as follows:
First, we describe a reduction from instarde&o a weighted digrap with a designated
source and sink, such that certain flowsdrcorrespond exactly (in a manner that will
be made precise) to a P-fair scheduledorThen we prove the existence of such a flow
in G.

Throughout this section, lét denote the least common multiple of the task periods:
L = lemyer X. p.

LEMMA 3.1. Instance® has a P-fair schedule if and only if a schedule S exists such
that

vx,t:xel,teL]: —1<lag(S x,t) < 1.

Proportionate Progress: A Notion of Fairness in Resource Allocation 605

PROOFE An infinite P-fair schedul& may be obtained fron$s by scheduling in slot
those tasks scheduled Byin slott mod L. O

THEOREM1. Instance® has a P-fair schedule

Before proving this theorem, we present some definitions and an important lemma.
Recall thatk.w = x.e/x.p. We describe below the construction of a weighted digraph

G. The vertex seV of G is the union of six disjoint sets of verticds, ..., Vs, and

the edge sefE of G is the union of five disjoint sets of edggs, ..., E4, whereE; is a

subsetof Vi x Vi;1 x N),0<i < 4. Thatis,G is a “six-layered” graph, with all edges

connecting vertices in adjacent layers. The sets of vertices are as follows:

Vo = {source},
Vi = {{1x)[xeD)},

Vo = {(2,%,)| xeTl,jel0,xw-L)},
Vz = {3, x,t) [xeT,te0,L)},
Vo = {(4,t) |t [0, L)},
and
Vs = {sink}.

An edge is represented by a 3-tuple. Hov € V andw € N, the 3-tuple(u, v, w) € E
represents an edge framto v of capacityw. The sets of edges i@ are as follows:

Eo = {(source, (1, X),X.w-L) | x eI},
E:i = {({(L,x), 2%]),D)|xel,jel0,xw-L)}

Ex = {((2 %,]), 3, x,1),1) [xeT,
j €[0,x.w - L),t e [earliest(x, j), latest(x, j)]},
Es = {({3,x,t),(4,1),) | xel,tel0,L)},

and
Es = {({4,t),sink, m) | t € [0, L)}.

LEMMA 3.2. Ifthere is an integral flow of size AL in G, then a P-fair schedule exists
for ®.

ProOF By Lemma3.], it suffices to prove that the existence of an integral flow of size
m- L in G implies the existence of a sched8dor ® such that

vx,t:xel,te (O L]: -1<lag(S x,t) < 1.

Suppose there is an integral flow of sire L in G. The total capacity oE,, the set
of edges leading out of tteurce vertex, isequal t) , - Xx.w-L = m-L. Hence, each
edge inEg is filled to capacity, and each verték, x) receives exactlx.w - L units of

606 S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel

flow. Since there arg.w - L vertices inV, each connected (by an edge of unit capacity)
to vertex(1, x), and no two vertices ¥, are connected to the same vertexMy it
follows that each vertex i, receives a unit flow. Accordingly, each vertex\p sends

a unit flow to some vertex iNs.

We construct the desired sched@éom the given flow according to the following
rule: allocate a resource to tagkn slott if and only if there is a unit flow from vertex
(2, X, j) tovertex(3, x, t).

Because the total flow into theink vertex ism - L, each of the. edges of capacity
m in E,4 carriesm units of flow. Hence, for alt € [0, L), vertex(4, t) receives exactly
m unit flows from vertices invs. Each vertex3, x, t) in V3 is connected (by an edge
of unit capacity) to vertex4, t), and is not connected to any other vertein Thus,
S schedules exactlyn tasks in each time sldt for allt € [0, L). To see that no lag
constraints are violated b§, observe that, for each tagkand for allj € [0, x.w - L),
the jth scheduling of task occurs at a slot in the intervaddrliest(x, j), latest(x, j)].
(The jth scheduling corresponds to the unique unit flow out of vef®ex, j).) O

We now show the existence of an integral flow.

ProOF OFTHEOREM 1. Since all edges of the graph have integral capacity, if there is a
fractional flow of sizem - L in the graph, then there is an integral flow of that side [

It remains to be shown that such a fractional flow exists. We use the following flow
assignments:

Each edgésource, (1, x), X.w - L) € Eg carries a flow ofc.w - L.
Each edgé(1, x), (2, X, j), 1) € E; carries a unit flow.
Each edgé(3, x, t), (4,t), 1) € E3 carries a flow of size.w.
Each edgé (4, t), sink, m) € E4 carries a flow of sizen.
The flows through edges i, are as follows:
— Each edg€(2, x, j), (3, x, earliest(x, j)), 1) carries a flow of size

Xw — (j —Xw - [jIXw]),

which is less than 1, the capacity of the edge.
— Each edge ({2, X, j), (3, x, latest(x, j)),1) such that latest(x, j) =
earliest(x, j + 1) carries a flow of size

(+1D —xw-[(j +Dixw],

which is also less than 1, the capacity of the edge.
— Every other edgé&(2, x, j), (3, X, t), 1) € E; carries a flow of size.w.

We now prove that the flow just defined is a valid flow of sime L. The capacity
constraints have been met. The flow out ofsbarce vertexis) ", (x.w-L) =m-L.
We now complete the proof by showing that flow is conserved at every interior vertex.
The flow into each vertex i, is x.w - L, and there arg&.w - L edges leaving, each
carrying a unit flow. The flow into each vertex i is 1. Below we prove that the flow
out of each vertex iV, is 1, and that the flow into each verteX\fgis x.w. Each vertex in
V3 has only one outgoing edge carrying a flowxoiy. Each vertex iV, hasn incoming

Proportionate Progress: A Notion of Fairness in Resource Allocation 607

edges each carrying a flow of sixew; since} ", - x.w = m, the flow in ism, which
equals the flow out on the one outgoing edge.
It remains to prove that:

(i) The flow out of each vertex i, is 1.
(i) The flow into each vertex iVs is X.w.

For (i), consider an arbitrary verte2, x, j) in V.. There arelatest(x, j) —
earliest(x, j) + 1, or [(j + D/x.w] — |j/x.w], outgoing edges from2, x, j). If
earliest(x, j + 1) = latest(x, j) (equivalently,[(j + D)/x.w] — 1 = |(j + D/Xx.w]),
then the flow out of2, x, j) is

Xw — (j —xw- [jXxw])+xw-(J(j+ DIXxw]
— ixw] =2+ (+1D —xw- [(j +D/xw],

which simplifies to 1. Otherwisearliest(x, j + 1) = latest(X, j) + 1 (equivalently,
[(j + DIxw] = [(j + DIxw] = (j + DIx.w), and the flow out of2, x, j) is

Xw— (] —Xw- | jXw])+Xxw-((j+Dxw]—[jxw] -1,

which also simplifies to 1.

For (ii), consider an arbitrary vertex3, x,t) in Vz. If t = latest(x, j) =
earliest(x, j + 1) for somej € N, then there are two incoming edges(® x, t),
namely((2, x, j), (3, x,t), 1) and ({2, X, j + 1), (3, X, t), 1). These edges carry flows
of size(j +1) — xw - [(j + DIxw]| andx.w — ((j +1) — Xxw - |[(j + DiXx.w]),
respectively, for a total incoming flow of.w. Otherwise, there is only one incoming
edge to(3, x, t), and it carries a flow ok.w. O

4. A P-Fair Scheduling Algorithm. In this section, we present our scheduling algo-
rithm, Algorithm PF, and prove that it produces a P-fair schedule. Algorithm PF has the
following high-level structure: At each tinte> 0, a dynamic priority is assigned to each
task and then highest-priority tasks are scheduled in sldties are broken arbitrarily).
An example execution of our scheduling algorithm is presented in Sectiime reader
may wish to briefly examine that example before continuing with the formal presentation
that follows.

First, some definitions:

e Thecharacteristic stringof taskx, denotedx(x), is an infinite string ovef—, 0, +}
with
ar(X) =signx.w - (t+1) — [Xw-t] —1),t e N.
e Thecharacteristic substringf taskx at timet is the finite string

a(X, 1) = a1 (as2(X) - - -y (X),

wheret’ =mini :i >t :¢(x) =0.

e With respect to P-fair schedutgat timet, we say that task is aheadif and only if
lag(S, x,t) < 0, that taskx is behindif and only iflag(S, x, t) > 0, and that task
is punctualif and only if it is neither ahead nor behind.

608 S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel

e With respect to P-fair schedufgat timet, we say that task is tnegruif and only if x
is ahead and; (x) # +, that taskx is urgentif and only if x is behind and; (x) # —,
and that task is contendingf and only if it is neither tnegru nor urgent.

Lemmas 4.1-4.5 provide the logical machinery that we need in order to reason about
the terms introduced above.

LEMMA 4.1. Iftask x is ahead at time t under P-fair schedulgt&n

(@) If at(x) = —, then §x,t) = O and task x is ahead at timett 1.
(b) If ¢¢(x) = 0,then §x,t) = 0 and task x is punctual at time 1.
(©) If a¢(X) =+ and Sx,t) = 1,then task x is ahead at timett 1.
(d) If ¢¢(x) = 4+ and Sx,t) = 0, then task x is behind at time+t 1.

PROOE Assuming that task is ahead at timé¢ under P-fair schedul&, we have
Zie[o’t) S(X,i) = [x.w - t], wherex.w -t ¢ N; hence,[x.w -t] = [X.w -t] + 1 and
[Xow - t] =3 icor SX 1) — 1.

We now deal with each part in turn. For part (a) we have

w(X)=— A Z S(X, i) = [x.w -]
i€[0,t)
= xw-t+D—|xw-t]-1<0 A Y SXi)=[xw-t]
ie[0.t)
= xw-t+D)— Y Sxi)<0
i€[0,t)
= lag(S x,t+1) + S(x,t) < 0.

Because schedulis P-fair,lag(S, x,t + 1) > —1, and the inequality
lag(S, x,t +1) + S(x,t) <0

implies thatS(x, t) = 0. Hencelag(S, x,t + 1) < 0 and taskk is ahead at timé + 1,
as required. For part (b) we have

@) =0 A Y SXi)=[xw-t]
ie[0,t
= x[.w)~(t+l)—LX.w-tJ—l=O ALY ST = [xaw -t
ic[0,t
— x.w-(t+1)—lZ S(x,i) =0 .
— lag(S x,t+1) I—T-[Oétéx, t) =0.

Note thatlag(S, x,t + 1) + S(x, t) = 0 implies thatS(x, t) = 0 and taskk is punctual
at timet + 1, as required. For part (c), note thalSifx, t) = 1, thenlag(S, x,t + 1) <
lag(S, x, t). Finally, for part (d) we have

)=+ A Y Sxi)=[xw-t] A Sx1)=0
i€[0,t)

Proportionate Progress: A Notion of Fairness in Resource Allocation 609

= xw-t+D—|xw t]-1>0 A Y SKi)=[xw-t]

ie[0.t)
A S(X,t)=0
= xw-t+D— Y Sxi)>0 A Sx.1)=0
ie[0.t)
= lag(S,x,t+1) > 0. O

LEMMA 4.2. Iftask x is behind at time t under P-fair schedulgtt®&n

(@) If a;(X) = — and Sx, t) = 1, then task x is ahead at timett 1.
(b) If ¢r(x) = —and Sx,t) = 0,then task x is behind at time4t 1.
(c) If a;(x) = 0,then §x,t) = 1 and task x is punctual at time+t 1.
(d) If ¢t (x) = +, then §x,t) = 1 and task x is behind at time+ 1.

PrROOF Assuming that task is behind at timg under P-fair schedul&, we have
Ziem S(x,i) = [X.w-t], wherex.w -t ¢ N. Again, we deal with each partin turn. For
part (a) we have

(X)) =— A Z&x,i):Lx.w.tJ A S, t)=1

i€[0,t)
= xw-t+1)—|[xw-t]—-1<0 A ZS(X,i):Lx.w-tJ
i€[0,t)
A S t)=1
= x.w-(t+l)—ZS(x,i)—1<0 A S(X,t) =1

i€[0,t)
— lag(S,x,t+1) <0.

For part (b), note that iS(x, t) = 0, thenlag(S, x,t + 1) > lag(S, x, t). For part (c)
we have

@) =0 A Y Sxi)=|xw-t]

ie[0.t)

= xw-t+D—|xw t]-1=0 A Y Sxi)=|[xw-t]
i€[0,t)

— x.w-(t—i—l)—ZS(x,i)—l:O
i€[0,t)
= lag(S,x,t+1)+ S(x,t) —1=0.

Note thatlag(S, x,t + 1) + S(x,t) — 1 = 0 impliesS(x, t) = 1 and taskk is punctual
at timet 4 1, as required. For part (d) we have

@)=+ A Y SXi)=[xw-t]
ie[0.t)
= xw-t+D—|xw t]-1>0 A Y Sxi)=|[xw-t]
i€[0,t)

610 S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel

= xw-t+D)—)Y Sxi)-1>0
ie[0.t)

= lag(S x,t+1)+ S(x,t) —1> 0.

Note thatlag(S, x,t + 1) + S(x,t) — 1 > 0 impliesS(x, t) = 1 and task is behind at
timet + 1, as required. O

LEMMA 4.3. Iftask x is tnegru at time t under P-fair schedulgti®en $x,t) = 0.
ProoF Follows from Lemmat.1(a) and (b). O
LEMMA 4.4, If task x is urgent at time t under P-fair schedulgtisen §x,t) = 1.
PrOOF Follows from Lemmat.2(c) and (d). O

LEMMA 4.5, Iftask x is contending at time t under P-fair scheduje¢hgn

(@) If S(x,t) = 1,then x is ahead at time+ 1.
(b) If S(x,t) = 0,then x is behind at time+ 1.

PrOOF If x is ahead attimg this follows from Lemmat.1(c) and (d) and ik is behind
at timet it follows from Lemma4.2(a) and (b). Fox punctual we have the following:

lag(S, x,t) = X.w -t — Z S(x,i) =0
i€[0,t)
= xw-(t+D— > SXi)=xw
i€[0,t)
= lag(S, x,t +1) = x.w — S(X, t).

Because < x.w < 1, if S(x,t) = 1, thenx is ahead at timé+ 1, and ifS(x,t) = 0,
thenx is behind at time + 1, as required. O

Given the preceding definitions and lemmas, it is now straightforward to present our
scheduling algorithm, which is referred to Aorithm PFE At any timet the task of
Algorithm PF is to determine whiam-subset of tha tasks to schedule. By Lemmda/,
every urgenttask must be scheduled in the currenttime slotin order to preserve P-fairness.
Symmetrically, Lemmal.3 implies that no tnegru task can be scheduled in the current
time slot without violating P-fairness. Since our goal is to prove that Algorithm PF
produces a P-fair schedule, it must be that Algorithm PF schedules all of the urgent tasks
and none of the tnegru tasks. It remains to define the behavior of Algorithm PF on the
set of contending tasks.

Before doing so, however, we should pause to address two possible pitfalls. Let
no, N1, andn, denote the number of tnegru, contending, and urgent tasks att time
respectively. Ifn, > m, then it would be impossible for Algorithm PF to schedule
all of the urgent tasks. Symmetrically, i > n — m, then Algorithm PF would be
forced to schedule some tnegru task. (Becausg , X-w = m, we cannot hope to

Proportionate Progress: A Notion of Fairness in Resource Allocation 611

schedule instancé correctly unless alim resources are allocated in every slot.) An
immediate consequence of Theorénstated below, is that neither of these pitfalls will
ever arise under Algorithm PF. Thus, in defining the behavior of Algorithm PF on the
set of contending tasks, we can assume thhak n — m andn, < m. The task of
Algorithm PF is to determine which subset (of sire- n, < n;) of then; contending
tasks to schedule.

At each time, we can define a total orderon the set of contending tasks as follows:
x > yifand only if @(x,t) > a(y,t), where the comparison between characteristic
substringsy(x, t) anda(y, t) is resolved lexicographically with < 0 < +. Ties can
be broken arbitrarily; for example, we could assume that ties are broken in favor of the
lower-numbered task.

Algorithm PF schedules thm — n, highest-priority contending tasks according to
this total order. Algorithm PF is summarized in its entirety below:

1. Schedule all urgent tasks.
2. Allocate the remaining resources to the highest-priority contending tasks according
to the total order-.

Throughout the remainder of this section, &t denote the schedule produced by
Algorithm PF on instance.

LEMMA 4.6. If schedule & is P-fair at time { then it is P-fair attime t+ 1,t € N.

ProoFr Assume that schedulgr is P-fair at timet for somet € N. Hence, a P-fair
scheduleS exists such thatag(Ser, X, t) = lag(S, x,t), x € [0, n). Let X (resp.Y)
denote than-subset of tasks scheduled Byresp.Sof) in slott. If X =Y, thenSkis
P-fair at timet + 1 becausé&is P-fair attimet + 1. If X £ Y, tasksx € X andy € Y
exist such thak € X \ Y andy € Y \ X. In the argument that follows we demonstrate
the existence of a P-fair scheduesuch that:

() lag(Ser, X, t) =lag(S, x, t), x € [0, n).
(i) S schedules then-subsetX \ {x} U {y} in slott.

By repeating this argumenX \ Y| times, we can obtain a sequence of P-fair schedules
such that the last P-fair schedule in the sequeftesatisfieslag(Spr, X,t + 1) =
lag(S*, x,t + 1). Hence, schedul&k is P-fair at timet + 1, proving the lemma.

Accordingly, it is sufficent to prove the existence of a P-fair sche@ukes defined
above. We begin by claiming th&(x, i) # S(y, i) for somei > t. (If not, it follows
easily thatx.w = y.w, lag(S, x,t) = lag(S, y,t) + 1, and hence that Algorithm PF
would have given priority to task over tasky at timet, a contradiction.) We transform
scheduleSinto S as follows. Let

t Emini i >t:S(x, i) # Sy, i).

We prove below that in facs(x, t’) = 0 andS(y, t') = 1. ScheduleS' is defined to be
identical toS except that we “swap” the allocations to taskandy at slotst andt’,
settingS'(x,t) =0, S(y,t) =1, S(x,t) = 1, andS(y,t") = 0.

In the arguments that follow, all statements “categorizing” taskady (e.g., “task
X is not urgent at time”) are made with respect to the P-fair sched8lgNote that,

612 S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel

at timet, it makes no difference whether our claims are made with respegstor S,
sincelag(Ser, X, t) = lag(S, x, t), x € [0, n).)
Consider the following predicates:

Po(i) £ taskx is ahead at time,
Pi(i) £ tasky is behind at time,
Po(i) = () = o (y) #0,] € (t, i),

and
P(i) = Po(i) A Py(i) A Pai).

We prove by induction onthatP (i) holds,i € (t, t']. For the base case, set t+1.
SinceSoE(X, t) = 0 (resp.S(y, t) = 0), taskx (resp.y) is not urgent at timé. Similarly,
sinceS(x, t) = 1 (resp.Se(y, t) = 1), taskx (resp.y) is not tnegru at timé. Hence,
tasksx andy are both contending at tinte We can now use Lemm@a5(a) to establish
Po(t + 1). Similarly, Lemmad.5(b) impliesP,(t 4+ 1). Note thatP,(t 4+ 1) is vacuously
true. This completes the base case of the induction.

For the induction step, we assume tiPat) holds over the intervalt, i], and prove
that it holds overt, i + 1], wherei € (t, t’). By the definition oft’, we have

1) S(x, 1) = S(y,).

Given thatP,(i) is part of our induction hypothesi$,(i + 1) will follow if we can
establish that

(2) ai (X) = ai(y) # 0.
Assuming that (2) fails to hold, there are four cases to consider:

() aj(X) =—anda;(y) =0,

(i) «i(X) = — ande;(y) = +,
(i) o (x) = 0 ande;(y) = +, and
(iv) aj(x) =0 andgi(y) =0.

(The symmetric versions of the first three cases are impossiblesirnceat timet and
P,(i) holds.) Assume that case (i) holds. Lem#nia) andPy(i) imply thatS(x, i) = O.
Lemma4.2(c) andPy(i) imply that S(y, i) = 1, contradicting (1). Assume that case (ii)
holds. Lemmat.1(a) andPy(i) imply that S(x, i) = 0. Lemma4.2(d) andPy(i) imply
thatS(y, i) = 1, contradicting (1). Assume that case (iii) holds. Lemhigb) andPy(i)
imply that S(x, i) = 0. Lemma4.2(d) andPy(i) imply that S(y, i) = 1, contradicting
(1). Finally, assume that case (iv) holds. Lemfn&b) andPy (i) imply thatS(x, i) = O.
Lemma4.2(c) andPy (i) imply thatS(y, i) = 1, contradicting (1). Hence, (2) holds and
P>(i + 1) holds. It remains to establigPy(i + 1) andPy(i + 1).

By Lemma4.1land Py(i), if S(x,i) = 1, thena;(x) = +. Converselyg; (X) = +
and (2) implye; (y) = +; P1(i) and Lemmat.2Z(d) then implyS(y, i) = 1, finally, (1)
implies S(x, i) = 1. Hence, we have proven that

©) Sx,i)=1 < ax) =+

Proportionate Progress: A Notion of Fairness in Resource Allocation 613

By (1)—(3), at timei we either had:

(i) S(x,i) = S(y,i)=0and;(X) = aj(y) = —, or
(i) S(x,i) = S(y,i) =1anda(X) = ai(y) = +.

Consider case (i). By Lemmal(a) andPy(i), Po(i + 1) holds. By Lemmait.2(b) and
P1(i), P1(i +1) holds. Similarly, consider case (ii). By Lemmd(c) andPy(i), Po(i +1)
holds. By Lemmad.2(d) andPy(i), Pi(i + 1) holds. HencePy(i + 1) and Pi(i + 1)
hold. This completes our proof by induction.

Given thatP(i) holds,i e (t,t], it is now quite easy to prove the two remaining
claims that we need, namely:

(i) S(x,t") =0andS(y,t") =1, and

(i) S is P-fair.

Because our algorithm schedules tgsk

(4) ay(X) < av(y),
and, by the definition of’,

(5) S(x, t') # Sy, t).

If ap (X) = — oray (X) = 0, thenPqy(t") and (5) impliesS(y, t') = 1. If oy (X) = +, then
(4) impliesay (y) = +; Lemma4.2(d) then impliesS(y,t") = 1; finally, (5) implies
S(x, t") = 0. Thus claim (i) holds.

For claim (ii), it is sufficient to prove that

(6) Viiie@t]: —1<lag(S,x,i) <1
and
(7) Viiie@t]: —1<lag(S,y,i) <1

since all other lags are the same as under sch&lidlete thatag(S, x, i) = lag(S, x, i)

+1,i e (t,t']. SinceSis P-fair, (6) will hold if we can show thdag(S, x,i) < 0O,

i € (t,t']. This is immediate, sinc®y(i) holds for alli € (t,t’]. Thus, (6) holds. A
symmetric argument proves that (7) holds. Hence, claim (ii) holds, and our proof is
complete. O

THEOREMZ2. Schedule & is P-fair.

PrROOF By Theoreml, schedulesgis P-fair at time 0. Hence, Lemnda6implies that
scheduleSok is P-fair at timet, t € N. O

5. An Example Execution of Algorithm PF. In this section we trace in considerable
detail the execution of Algorithm PF on a particular input instance. The input instance is
presented in Tabl&. There are four tasks:, w, X, andy. The tasks are to be scheduled
on three resources. Values of the relevant task parameters are given inlL.Talaleh

task is characterized by an execution requirement (see the second column of)Table

614 S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel

Table 1. An example instance of the periodic scheduling problem.

Execution
Task requirement Period Weight
v 1 3 1/3= 03
w 2 4 2/4 = 0.5
X 5 7 5/7 = 0.714285
y 8 11 8/11= 0.72
z 335 462 335/462= 0.7251082

and a period (see the third column). The weight of a task is defined to be the ratio of
its execution requirement to its period (see the fourth column). Since the weights of the
four tasks sum to less than the number of copies of the resource, a fifth “dummy” task
z has been added with weight such that the weights of all tasks, including the dummy,
together sum to 3.

A couple of remarks concerning the input instance are in order. First, we have repre-
sented the weights of the tasks in Table decimal as well as fractional form; since the
tasksx, y, andz have weights that are very close to each other, the decimal expansion
is useful to make the relative ordering of these weights more obvious. Second, observe
that the dummy task has a very large period relative to those of the other tasks. (In
general, the period of the dummy task can be as large as the least common multiple of
the other task periods.) We would like to emphasize that the inclusion of a dummy task
does not degrade the per-slot time complexity of Algorithm PF by more than a constant
factor. (Algorithm PF requires time linear in the size of the input instance to schedule
each slot, and the inclusion of tagkncreases the input size by no more than a constant
factor.) In Table2, we trace the execution of Algorithm PF on the above input instance
for the first twenty time units.

e The first column of the table indicates the time associated with each row.

¢ In the next set of five columns we list, for each of the five tasks, the product of the
task’s lag and its period at each time slot. Since all lags are initially zero, and the
lag of a given taski changes by either subtractiig— u.w) (whenu is allocated a
resource), or by adding.w (whenu is not allocated a resource), representing the lag
in this manner (i.e., as a product of lag and period) ensures that all entries are integers.

¢ In the next set of five columns we list the first twenty symbols in the characteristic
string of each task. The characteristic string of any task may be obtained from the
table by reading down the appropriate column. (For example, the characteristic string
of taskv is of the form -~ — 0 — —0...", and that of the dummy task begins
et =+ =+

e The last three columns list, respectively, the sets of urgent, contending, and tnegru
tasks at each time. As defined in Sectigrthe urgent tasks at any tinteare those
with a strictly positive lag and & or 0 in positiont of the characteristic string, while
the tnegru tasks are those with a strictly negative lag andoa a O inpositiont of
the characteristic string. All remaining tasks are contending. The contending tasks
are listed in Table2 by order of priority, according to the total order defined in

615

Proportionate Progress: A Notion of Fairness in Resource Allocation

{} x=a<z<Kk {m} + + + 0 €0T— - €— Z T 6T
{} a<m<x<z<AK {} - - + - ve T - 0 0 8T
{} z<AKk<x {m ‘a} + + - 0 1Te— L— T Z Z IT
{} m=a<z<A {x} + + + - ¥8T— y— € 0 T 9T
{} a<x<z<K {m} + + + 0 15— - - Z 0 qT
{a} m<x<z<AK {} - - - - 0. 4 0 0 - vT
{} z<Ah<a {x m} + + 0 0 G9z— 9— Z Z T €T
{} a<m<z<A {x} + + + - 8ET— &= ¥ 0 0 49
{a} x<z<K {m} + - + 0 11— 0 T— Z - TT
(A} Mm=a<x<z {} - 0 - - 91T 8— T 0 T ot
{} a<z<A {x ‘m} + + + 0 6TC— G— € Z 0 6
} m<x<z<AK {a} + + + - 26— - - 0 Z 8
{m} a<x<z<AKk {} - - - 0 Ge T 0 - T .
{} a<Kk<m {zx} + + 0 - 29T 1— Z 0 0 9
{} x<z<Kk {m ‘a} + + + 0 €LT— = €— Z Z S
{} m=a<x<z<AK {} + + + - 9y— - - 0 T 14
{m} a<x<z<AKk {} - - - 0 18 4 T - 0 €
} z<h<m {x*a} + + + - ¥S52— 9— € 0 4 14
{} a<x<z<AKk {m} + + + 0 12T— €— A 2 T T
} a<m<x<z<AK {} - - - - 0 0 0 0 0 0
sysel Sysel Sysel z A X m z A X m a 1
nibau] Buipuayuo)d uabin Bulis onsualoereyd pouad x feq

'4d wyioh)y Jo uonnoaxa ajdwexs uy 'z a|gel

616 S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel

Section4. More specifically, an expression of the fofm > y) in Table2 indicates
that(x > y) holds, but(y > x) does not, while an entry of the for(= y) indicates
that both(x > y) and(y > x) hold.

The schedule generated by Algorithm PF can easily be determined from Zable
(Below we describe how Algorithm PF computes the table entries.) At eacht tiatle
of the urgent tasks, and none of the tnegru tasks, are allocated copies of the resource.
Any remaining resources are allocated to the highest-priority contending tasks, with
ties broken arbitrarily. (Theorefhestablishes that such a schedule is always possible by
proving that: (i) the number of urgent tasks does not exceed the number of resources, and
(ii) the number of non-tnegru tasks is greater than or equal to the number of resources.)
At time 2, for example, the three copies of the resource are allocated toutaskand
w; similarly, at time 14, the resources are allocated to tgsksandx.

Before proceeding to describe how Algorithm PF computes the entries in Zable
we remark that the schedule of Taldlés easily seen to be P-fair. To verify this claim,
observe that all lags in the table lie in the real intergaal, +1), that is, the absolute
value of each “lag< period” entry is strictly smaller than the corresponding period.

At time 0, the lags of all tasks are, by definition, zero; furthermore, all tasks are
contending. The total ordering of the tasks according to the relatigm as given in
the next-to-last column of Table This is determined by lexicographically comparing
the characteristic substrings of the tasks, witthaving priority over 0, and O over
—. (For example, in comparing tasksandw, the characteristic substringgx, 0) =
“++ —++0"anda(w,0) = “0” are compared, and taskis determined to have
greater priority.) Algorithm PF therefore allocates the three resources toytaskand
X. The lags for time 1 are now computed as follows. For eachuabkkt was allocated
a resource at time 0, the quantity “lagperiod” is decremented byu. p — u.e). (This
corresponds to decrementing the lag’by- u.w).) For each task that was not allocated
a copy of the resource at time 0, the quantity “lageriod” is incremented by.e. (This
corresponds to increasing the laglbw). Given these lags at time 1, Algorithm PF now
determines which three tasks to schedule in slot 1 (the urgenutasid the highest-
priority contending taskg andz are selected), computes the lags corresponding to time 2,
and so on.

Note that Algorithm PF does not need to store the entire schedule prior ta tme
order to allocate the resources at titnén fact, the schedule at tintecan be determined
from the set of task execution requirements, periods, and lags dt flihe space required
by Algorithm PF is therefore linear in the size of the input instance.

We conclude our example by discussing how, given the lags at time 11, Algorithm PF
allocates the three resources at time 12 and updates Zali¢ime 11, taskw is urgent
since it has a positive lag dra 0 in itscharacteristic string. Similarly, taskis tnegru
since it has a negative lag@a O in itscharacteristic string. The remaining three tasks
are contending, and, by comparing the characteristic substsitgsll) = “ + 07,
ay, 1) ="++—+++..." anda(z,1) =“ ++ —+++...", we find that task
y has the highest priority, followed landx in that order. (Observe that the entries in
Table2 are not, in themselves, sufficient to determine that z, since the characteristic
substrings are tied in the first eight places.) Algorithm PF therefore allocates the three
resources to tasks, y, andz. The lags are now updated in the manner discussed earlier;

Proportionate Progress: A Notion of Fairness in Resource Allocation 617

for example, the “lag< period” entry of taskw for time 12 is decreased liw.p — w.e)
to (2 — (4 — 2)) = 0, while that of task is increased bx.eto (—1+5) = 4.

6. The Comparison Algorithm. We now present two implementations of the char-
acteristic substring comparison function required by Algorithm PF. The first, which we
call NaiveCompare, we prove correct. The secondpmpare, we prove equivalent to
the first and show that it runs in polynomial time. Both subroutines use only integer
variables, and the integer operatidns +, -, mod}. We prove that the number of inte-
ger operations performed lyompare on tasksx andy is at most linear in the size of
the binary representation of i p, y. p}. (Furthermore, all intermediate values can be
represented iflg(maxXx.p, y.p})] bits.)

SubroutineCompare can be used as the basis for an implementation of Algorithm PF
that requires at mostlinear time (in the size of instabt decide whichm-subset of the
n tasks to schedule in a given slot. A detailed sketch of this linear-time implementation
is given in Sectiorb.3.

6.1. A Naive Implementation This subsection presents a naive implementation of the
characteristic substring comparison algorithm. Given contending taaksly at time
t, our goal is to determine whether:

() ax,t) <a(y,t),
(i) a(x,t) > a(y,t),or
(i) a(x,t) = a(y,t).
The naive approach is to compare the two substrings one symbol at a time. Note that for
any P-fair schedul& andi € [0, |a(X, t)]):

ai (X, 1) = apyiy1(X)

= signXx.w-(t+i+2) — [xw-{t+i+1)]—1
sign(lag(S, x,t) + X.w - (i +2) — [lag(S, X, t) + x.w- (i + 1| — 1)
sign(x.p-lag(S, x,t) + x.e- (i +2)
—X.p-LX.p-lag(S, x,t) + x.e- (i +1)/x.p] — X.p)

= sign(x.e— X.p+ (X.p-lag(S, x,t) + x.e- (i + 1)) modx.p),

where the last equation follows from the identity |b/a] = b — b moda, for positive
integersa andb. If task x is contending at timé under P-fair schedul&, we have
(X.p-lag(S, x, t) + x.e) € (0, x.p). Hence
ap(X, 1) = sign(x.p - lag(s, x,t) + 2- x.e — X.p).

Let

a = X.p—X.e,

bo & x.e,
and

Co = x.p-lag(S, x,t) +2- x.e — X.p.

618 S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel

Note thatag € (0, x.p), bp € (0, x.p), andcy € (—ag, by). Defineay, by, andc;
similarly with respect to task. Givenay, by, andcy, it is straightforward to compute
a(X, t) one symbol at a time, using a constant number of integer operations per symbol.
Of coursew(y, t) can be computed in a similar fashion. This is the approach taken in
subroutineNaiveCompare below. Note that in theth iteration of thedo loop, we have
sign(co) = ai (X, t) and sigricy) = a(y, t).

(1) NaiveCompare(ag, b, Co, a1, by, €1)

(2) int ag, by, Co, a3, by, c1;

(©) I

(4) docg>0AcCc>0— Cp,CL:=C—ap,C—ag
(5) [co<O0OACI<0— co,Cri=Co+bp,C1+Db
(6) od;

(7) ifcg=0Acp=0— return TIEfi;

8 ifcg=0Ac1<0— return 0

9) [co<O0ACL>0— return 1

(10) fi

(11) }

The return values dflaiveCompare are 0, 1, and TIE. The return value 0 indicates
that the task corresponding to the trigég, bg, Co) should be given priority over the one
corresponding to the tripléy, by, ¢1). Conversely, the return value 1 indicates that the
triple (as, bs, ¢1) should have priority. The return value TIE indicates that either can be
scheduled ahead of the other. As mentioned in Sectjauch a tie could be broken
using the task numbers.

DEFINITION 6.1. Atriple(a, b, ¢) is admissiblaf and only if:

(i) aandb are positive integers.
(ii) cisanintegerin the interval-a, b) such that gcfh, b} | c.

We say that a 6-tupléay, bo, Co, a1, by, ¢1) is admissiblef and only if (ag, by, co) and
(a1, by, c1) are admissible triples.

It is immediate from the foregoing discussion that every input 6-tuple passed to
NaiveCompare by our scheduling algorithm is admissible. Condition (ii) implies that
NaiveCompare will eventually terminate. Unfortunately, the running time Ndive-
Compare is not very good; it is pseudopolynomial in the input size. This deficiency will
be addressed in the next section.

6.2. An Efficient Implementation In this section we present a polynomial-time sub-
routineCompare with the same input-output behavior as teiveCompare subroutine

of Section6.1 The algorithm is recursive. As argued in Sectn, we can assume
that any 6-tuple of arguments passed to MaéveCompare subroutine is admissible.
Correspondingly, the arguments of any top-level calCtimpare may be assumed to

be admissible. Lemm@.1 below proves that this assumption can be extended to any
nontrivial depth of recursion.

Proportionate Progress: A Notion of Fairness in Resource Allocation 619

LEMMA 6.1. If algorithm Compare is called with an admissiblé-tuple, then every
resulting recursive call will also involve an admissiléiduple

ProOOF Assume thaCompare is called with admissible 6-tupl@, bo, Co, a1, b1, ¢1).
Note that, for 0< i < 1, g andb; are not changed withi€ompare but thatc; is
assigned a new value at line 8. For the sake of clarityCletpresent the value passed
to ¢; in the call toCompare and letC/ represent the value af after Line 8. To prove
the lemma we establish the following pair of claims, fox0 < 1:

(i) If the recursive call in line 4 ofCompare is executed, therb;, g, —C;) is an
admissible triple.
(i) If the recursive call in line 16 is executed, théag, by, ¢), defined as

(& — (b moda;), by moda;, C/ + (b moda)),

is an admissible triple.

The proof of claim (i) is straightforward(a;, b;, C;) is admissible if and only if
(b, a;, —C;) is admissible.

We now address claim (ii). First, note thagjf| C;, then the recursive call at line 16
is not reached. Thus we can assume &tC;, which easily implies; [b anda; f C/.
Line 8 set<C/ to —a + (C; moda;) and hencel = —a + (C; moda;) + (bj moda)).
If ag > bg ora; > by, then again the recursive call at line 16 is not reached. Thus we can
assumethat; moda) € (0, 3) and botte! = (g — (b moda;)) andb = (bj moda;)
are positive integers. It remains to prove that{gédof} | ¢ and thatc) € (—a&/, by).

The identities gcfin, n} = gcd{m, m — n} and gcdm, n} = gcdim, m modn}, m >
n > 0, are easily verified. (Note that two common versions of Euclid’s GCD algorithm
depend on these identities.) The second identity implies thgagdsl} = gcd{a;, b }.
The first identity implies that gdd/, b/} = gcd{a, b{} and therefore gday, b/} =
gcdia;, by }. For convenience, le = gcdia;, bj} = gcdia/, b}. Becausda;, by, C)
is an admissible tripleg; | Ci. Sinceg; | & we haveg; | (Ci moda). Note that
(b moda;) = b/, and sog; | (b moda;). Thus,c; = —a+ (Ci moda) + (b moda;)
is a sum of multiples ofj; and therefore is itself a multiple of.

Finally, becauséb; moda;) and(C; moda;) are both in(0, &), it follows that—a; +
(b moda) < —a& + (C; moda) + (b moda) < (b moda). Henceg € (—&, by),
completing the proof of claim (ii). O

THEOREM3. Letd = min{l(ap), £(bg), £(a1), £(by)} wheret(i) = [Ig(i + 1)]. Then
algorithmCompare performs Qd) integer operations

PROOFE Since algorithnCompare does not contain any loops and uses only tail re-
cursion, it is sufficient to prove that the maximum depth of recursioB(d). More
precisely, we prove by induction that the maximum depth of recursiom is- 2 if
min{ag, a;} < min{bg, b1}, and 21 — 1 otherwise.

The base of our induction @ = 1. (By Lemma4.1, d > 0.) Note that if(a, b, ¢)
is an admissible triple, them+ b > 2. Thus, using Lemma@.1, we haveg; + b > 2,

620 S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel

0<i<1.Ifd=1,thenag = a; = by = b; = 1, which impliescy = ¢; = 0. Thus the
depth of recursion is®@— 2 = 0, as claimed.

For the induction step, assume thdat 2 and that the claim holds for smaller values
of d. We consider two cases:

1. If min{ag, a1} < min{bg, b1} (and the depth of recursion is greater than 0), line 16 of
Compare must be executed. Lef, b, andc] be defined as in the proof of Lemrfil,
and assume without loss of generality that< a;. Thus,4(ag) = d > 2. Since
a) + by = ap, min{(ay), £(by)} < d. The claim then follows by the induction
hypothesis.

2. If min{ag, a;} > min{by, b1}, then the recursive call in line 4 @ompare will be
executed. That call will terminate within at most 2 2 additional levels of recursion
by the argument of the preceding case. Thus, the maximum depth of recursion is at
most 2 — 1, as claimed. O

(1) Compare(ap, bo, Co, a1, by, €1)
(2) int ag, b, Co, as, by, C1;
) {
(4) if min{ag, a1} > min{bg, by} —
return Compare(by, a;, —Cy, bg, ag, —Cp) fi;
(5) if [colag] > [c/ag] —> return O
(6) [Tcolap] < [Cifag] —> return 1
i
(8) Co.C1:=Co—a- [Colag], C1 — a1 - [Cafay];
9 ifcg=0Ac =0 — return TIE
(20) [co0ACcp=0— return O
(1)) lco=0Ac1#0 — return 1
12) fi
(13) if |bolag] > |by/a;] —> return O
(14) [l Lbo/ag] < |b1/a;| —> return 1

(15) fi;

(16) return Compare(ag — (bp moday), by moday, ¢y + (bg moday),
a7 a; — (by moday), by modag, ¢; + (by moday))
(18) }

It remains to argue that:

(i) Compare never executes a division by 0.
(i) Compare always returns the correct value.

Claim (i) is easy to justify: all divisions are bgp or a;, which are strictly positive.
Claim (i) is addressed by the following theorem.

THEOREM4. On any admissible inp-tuple algorithmsNaiveCompare and Com-
pare return the same value

ProoF In the following, leto; denote the characteristic substring associated with the
admissible triplga;, b, ¢), 0<i < 1.

Proportionate Progress: A Notion of Fairness in Resource Allocation 621

We prove the theorem by induction on the depth of recursion used by algorithm
Compare. By Theorem3, this depth is finite. For the base case, assumeQbatpare
does not call itself recursively, i.e., that the maximum depth of recursion is 0. Thus, one
of the nonrecursiveeturn statements is executed (the two recursetern statements
arein lines 4 and 16). In the argument that follows we deal with each of the nonrecursive
return statements in turn.

Since the recursive call on line 4 is not executed, we can assume thiahnaiy} <
min{bg, b;}. Now consider the two quantitiefgo/ag] and[ci/a;], being compared in
lines 5 and 6. Note that the strirag must begin with[c;/g;1 +'s, followed by either a
— or a 0. Thus, theeturn statements of lines 5 and 6 correctly handle any case where
[Colag] # [ci/ay].

If execution proceeds beyond line 7,1et [co/ag] (= [c1/a;]). Note that line 8 then
setscy andc; to the values these variables would have attainédhineCompare after
processing the common prefixof-'s in op andoy (i.e., after exiting thelo loop). Leto;
denote the string; with this common prefix removed,f i < 1. It remains to compare
stringsoy ando;.

Note that after executing line 8, we hagiec (—a;,0], 0 < i < 1. If eithercy or c;
is equal to 0, we can immediately determine the outcome of the comparison between
stringso, ando;. For example, ity = 0 andc; # 0, theno, > o] because = +'0,
whereas the firdt+ 1 symbols of the string; are+!—. Reasoning in this manner, we
can see that the threeturn statements of lines 9-11 correctly handle any case where
eithercy or ¢, is equal to 0.

If execution proceeds beyond line 12, we have (—g;,0), 0<i < 1. For each,

0 <i <1, we now consider three cases:

Casel:c = —(b moda). In this case it is easy to verify that = — +!P/a1 0. In
what follows, let®; denote the string- +5/31 Q.
Case2: ¢ € (—&, —(moda)). In this case the firstbi/a | + 1 symbols ofs;

form the strings; £ —+b/al | et ¢ denote the new value of after processing these
symbols as ilNaiveCompare. Then

¢ =c+b—a-[b/a]
= ¢ + (b moda).
Note thatc/ € (—a;, 0).

Case3:c € (—(b moda),0). Inthis case the firdty /a;7+ 1 symbols ot form the

string®; = —+M/7 Let ¢ denote the new value af after processing these symbols
as inNaiveCompare. Then

¢ =c+b—a-[bia]
= ¢ — (& — (b moda)).
Note thatc/ € (—a;, 0).
In Case 1 above we completely characterize the strinn Cases 2 and 3 we identify

a prefix ofs; and find that after processing that prefix, the new valug oémains in
the interval(—a;, 0), meaning that the preceding case analysis can be repeated on the

622 S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel

remaining suffix ob;'. In other words, the string’ may be viewed as a sequencezfs
and®;’s, followed by a single occurrence af;. Whenever bo/ag| # |bi/ai |, we can
immediately determine which of the stringg ando; is lexicographically greater. In
particular, thereturn statements of lines 13 and 14 correctly handle any case in which
[bo/ag] # [bi/ay].

We have now completed the base case of the induction, that is, we have proven
that Compare works correctly (i.e., returns the same valueNasveCompare) on any
admissible input for which no recursive call is generated. It remains to consider the
induction step. Accordingly, we assume that algoritBempare works correctly on
any admissible input leading to a maximum depth of recursion strictly lessdhan
d > 0. It remains to prove thaCompare works correctly on any admissible input
(ag, b, Co, a1, by, ¢1) with associated maximum depth of recursin> 0. There are
two cases to be considered:

(i) The top-level recursive call is made in line 4.
(ii) The top-level recursive call is made in line 16.

The case in which the top-level recursive call occursinline 4 is quite easy to handle. Let
7j denote the characteristic substring associated with the admissible(kiipde, —¢;),
0 < i < 1. Note that the strings; and; are closely related. In particular, they are
“complementary” strings in the sense that one can be obtained from the other by changing
—'sto+'s, +'s to —’s, and leaving the 0 symbol unchanged. With this observation, it is
easy to see thaaiveCompare will return the same result ofb,, a;, —¢;, bg, ag, —Co)
as it would on(ag, by, Co, a1, b1, ¢1). By the induction hypothesis, the recursive call of
line 4 will function correctly, completing the analysis of this case.

It remains to consider the case in which the top-level recursive call occurs in line 16.
Our base case analysis implies that when line 16 is executed:

(i) co € (—ao,0),
(i) c1 € (-a1,0),
(i) ©=60=e,
(iv) @ = @0 = @1,
(V) © = @0 =0y,
(vi) stringsc) ando; (as defined in the base case analysis) can be viewed as strings of
©’s and®’s terminated by @.

Furthermore, it is straightforward to prove thgf viewed as a string ovép, ©, @},
corresponds to the characteristic substring of the admissible triple

(& — (b moda), by moda;, ¢ + (by moda;)),

0 <i < 1. (To make the correspondence, replacby —, ® by 0, and® by +.) Thus,
the induction hypothesis implies that the recursive call of line 16 correctly compares
stringso} ando;. O

6.3. A Linear-Time Implementation of Algorithm PFin this section we describe how
subroutineCompare can be used as the basis for a linear-time (in the size of instance
®) implementation of Algorithm PF.

Proportionate Progress: A Notion of Fairness in Resource Allocation 623

A single call to subroutin€ompare can be used to determine the relative priority of
any two contending tasks. Thus, by applying subrou@oenpare within any optimal
comparison-based selection algorithm (e.g., [2]), we can obtain an implementation of
Algorithm PF that make® (n) calls to subroutin€ompare to decide whichm-subset of
then tasks to schedule in any given slot. This simple approach yields a polynomial-time
scheduling algorithm, but unfortunately does not yield the desired linear-time bound.
The problem is that the cost of individual calls to subroutenpare can vary widely,
since the cost depends on the number of bits in the arguments pasSechpare.

For example, if a significant fraction of th@(n) calls toCompare happen to involve
pairs of tasks with a substantially greater-than-average number of bits in the binary
representations of their periods, then the overall running time of this implementation
of Algorithm PF could be super-linear. In the remainder of this section, we sketch the
details of a slightly more complicated implementation of Algorithm PF that achieves the
desired linear-time bound. Our approach is based on generalizing subrGatinpare

to examine the entire set of contending tasks at once, rather than two at a time.

Note that subroutineNaiveCompare andCompare both have the following high-
level structure: For two given input tasks, successive “tie-breakers” are applied (i.e., an
integer is calculated for each task and these integers are compared) until either the tie is
broken (i.e., the relative priority of the two tasks has been determined) or it is determined
that the two tasks have identical characteristic substrings (i.e., the two tasks have equal
priority). Furthermore, the complexity of either of these subroutines is given by the
worst-case length of the sequence of tie-breakers, since each tie-breaker requires only a
constant number of integer operations. In the case of subroQtmgpare, Theorem3
implies that the length of the sequence of tie-breake®(i$), whered is as defined in
the statement of the theorem. (For the purposes of the present analysis, it is sufficient to
observe thatl is no larger than the minimum number of bits in the binary representations
of the two task periods.)

Assume without loss of generality that: (i) we are in the process of scheduling slot
t > 0, (i) m < mtasks are urgent at timteand (iii)n" < n—m’ tasks are contending at
timet. Thus, it remains to select the highest-priofity— m’)-subset of th@' contending
tasks. We now describe a generalized version of subroGtngpare to accomplish this
objective. The generalized subroutine works by applying a sequence of tie-breakers to

successive subse 2 --- 2 Cyx = ¢ of the set of contending tasks. (These tie-
breakers correspond to the tie-breakers performed by the two-task version of subroutine
Compare.)

Tie-breaker 0 is applied to the entire set of contending tasks@hés,the set of con-
tending tasks). In general, tie-breakdérehaves as follows. First, an integer is calculated
for each task irC;. (The integer associated with a given task C; is the same as the
integer that would be assignedxdy tie-breakei in a call to the two-task version of
Compare involving x and any other task in C;.) Second, a linear-comparison selec-
tion algorithm is applied to this set of integers to partiti@ninto the following three
uniquely-determined subsets: (i) the sulSeof tasks which must be scheduled in slot
t on the basis of tie-breaker(ii) the subseC/” of tasks which must not be scheduled in
slott on the basis of tie-breakéy and (iii) the remaining contending tas&s, ;. Note
that every task irC;, ; has the same associated integer in tie-breakas well as in all
previous tie-breakers).

624 S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel

The preceding discussion can be formalized in a straightforward fashion by using
induction over the sequence of tie-breakers. Now observe that a givex eshnot
belong toC; unless is Big-Oh of the number of bits in the binary representatior.gf
The linear-time bound follows immediately.

7. Conclusions. We have defined a new notion of fairness, called P-fairness, which
we believe to be quite useful in a variety of resource allocation problems. We have
shown that P-fair schedules exist for the resource sharing problem, which is a slight
generalization of the periodic scheduling problem. Furthermore, we have provided an
efficient algorithm for computing a P-fair schedule.

The swapping argument of Lemma captures the essence of P-fairness by modeling
exchanges that are permissible in P-fair schedules. An interesting problem for future
research is to identify generalizations of the periodic scheduling problem that can be
handled within the same framework.

The Compare subroutine appears to be closely related to Euclid’s GCD algorithm,
as well as to various algorithms that have been proposed for 2-ILP, that is, integer linear
programming with two variabless], [8], [13], [14]. (ILP is NP-complete in general,
but can be solved in polynomial time for any fixed number of variakig$ Deng has
extensively studied the relationship between GCD and 2-H]P [

Our P-fair scheduling algorithm produces schedules with a large number of preemp-
tions. Itwould be interesting to investigate algorithms for solving the periodic scheduling
problem which minimize the number of preemptions.

Acknowledgments. We would like to thank A. K. Mok and C. L. Liu for their en-
couragement and interest in this problem. We are indebted to the members of the Austin
Tuesday Afternoon Club for their many helpful comments and suggestions. In particu-
lar, E. W. Dijkstra suggested a nice simplification of NeveCompare subroutine. We
would also like to thank the anonymous referees for their comments, which have helped
to improve the readability of the paper.

References

[1] S. K. Baruah, R. R. Howell, and L. E. Rosier. Algorithms and complexity concerning the preemptive
scheduling of periodic, real-time tasks on one processeal-Time System2:301-324, 1990.

[2] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selectmmnal
of Computer and System Sciencé448-461, 1973.

[3] X.Deng. Mathematical Programming: Complexity and Applications. Ph.D. thesis, Department of Op-
erations Research, Stanford University, Stanford, CA, September 1989.

[4] L.R. Ford, Jr., and D. R. Fulkersofrlows in NetworksPrinceton University Press, Princeton, NJ,
1962.

[5] M. R. Garey and D. S. Johnso€omputers and IntractabilityA Guide to the Theory of NP-
Completenes$-reeman, New York, 1979.

[6] D. S. Hirschberg and C. K. Wong. A polynomial-time algorithm for the knapsack problem with two
variables.Journal of the Association for Computing Maching2:147-154, 1976.

Proportionate Progress: A Notion of Fairness in Resource Allocation 625

(7]
(8]
(9]
(20]

(1]

(12]

(13]
(14]

W. A. Horn. Some simple scheduling algorithniéaval Research Logistics Quarterl21:177-185,
1974.

R. Kannan. A polynomial algorithm for the two-variable integer programming problenrnal of the
Association for Computing Machiner§7:118-122, 1980.

H. W. Lenstra, Jr. Integer programming with a fixed number of variatteghematics of Operations
Research8:538-548, 1983.

J. Y.-T. Leung. A new algorithm for scheduling periodic, real-time tagigorithmica 4:209-219,
1989.

C. L. Liu. Scheduling Algorithms for Multiprocessors in a Hard-Real-Time Environment. JPL Space Pro-
grams Summary 37-60, vol. I, Jet Propulsion Laboratory, California Institute of Technology, Pasadena,
CA, pages 28-37, November, 1969.

C. L. Liuand J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environ-
ment.Journal of the Association for Computing Machineg2®:46—61, 1973.

H. E. Scarf. Production sets with indivisibilities, Part |I: GeneralitBsonometrica49:1-32, 1981.

H. E. Scarf. Production sets with indivisibilities, Part II: The case of two activitERnometrica
49:395-423, 1981.

