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Proportionate Progress: A Notion of Fairness in
Resource Allocation1

S. K. Baruah,2 N. K. Cohen,2 C. G. Plaxton,2 and D. A. Varvel2

Abstract. Given a set ofn tasks andm resources, where each taskx has a rational weightx.w = x.e/x.p, 0<
x.w < 1, aperiodic scheduleis one that allocates a resource to a taskx for exactlyx.e time units in each
interval [x.p · k, x.p · (k+ 1)) for all k ∈ N. We define a notion of proportionate progress, called P-fairness,
and use it to design an efficient algorithm which solves the periodic scheduling problem.
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1. Introduction. Scheduling is the act of assigning resources to activities or tasks.
Scheduling problems typically involve a set of constraints (e.g., deadlines) that must
be met by any schedule. Often these constraints are designed to enforce some notion
of fairness; for example, a very weak fairness constraint might be that any task will
eventually get to use the resource it has requested. For any particular set of constraints,
there are two problems to be addressed:

(i) The “decision” problem (i.e., determining whether or not a given instance is feasible).
(ii) The “scheduling” problem (i.e., actually constructing the schedule for a given fea-

sible instance).

Many sets of constraints result in an intractable decision problem [5].
The periodic scheduling problemwas first discussed by Liu in 1969 [11]. Given a

set ofn tasks andm resources, where each taskx has rational weightx.w = x.e/x.p,
0< x.w < 1, aperiodic scheduleis one that allocates a resource to a taskx for exactly
x.e time units orslotsin each interval [x.p · k, x.p · (k+ 1)) for all k ∈ N. Scheduling
decisions may be made only at integral times and a task may use either zero or one
resources at a time.

We might also consider a relaxed version of the periodic scheduling problem in which
tasks are not restricted to using zero or one resources at a time. Consider, for example,
allowing resource sharing; that is, in each unit of time a task may use a fractionf of
a resource, 0≤ f ≤ 1. If

∑n−1
x=0 x.w ≤ m, the following straightforward “resource

sharing” algorithm may be used to solve this relaxed version of the problem: Allocate a
fractionx.w of a resource to each task during each time unit. A second relaxed version
requires integral resource usage, but allows a task to use more than one resource at a time
(that is, to run with arbitrary concurrency). In this version, multiple-resource scheduling
is easily reduced to single-resource scheduling.
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There are several optimal single-resource scheduling algorithms for the periodic
scheduling problem. The Earliest Deadline algorithm of Liu and Layland is one ex-
ample [12]. None of them extends directly to multiple resources. As Liu pointed out,
“the simple fact that a task can use only one [resource] even when several [resources]
are free at the same time adds a surprising amount of difficulty” to the scheduling of
multiple resources [11].

The decision problem has an efficient solution. Clearly, systems in which
∑n−1

x=0 x.w >
m cannot be scheduled. If resource sharing is allowed, those in which

∑n−1
x=0 x.w ≤ m

can be scheduled by the resource sharing algorithm mentioned above. Baruahet al. [1]
used this fact, the network reduction of Horn [7], and the Ford–Fulkerson algorithm [4]
to show that there are solutions to the periodic scheduling problem. Thus, the decision
problem for such a periodic task system reduces to checking that

∑n−1
x=0 x.w ≤ m. A

method similar to that of Baruahet al. is used in Section3.
A more general form of the problem characterizes each taskx by four parameters,

x.s, x.e, x.d, andx.p, commonly referred to as starting time, execution requirement,
deadline, and period, respectively. Here, a taskx must receive exactlyx.e units of the
resource in the time interval [x.s+ x.p · k, x.s+ x.p · k+ x.d) for all k ∈ N. Leung’s
application of the Least Slack algorithm to this problem represents a recent improvement
on Earliest Deadline [10], for the case where scheduling decisions are not required to
occur at integer time instants. Leung was able to show that Least Slack schedules all
instances that can be scheduled by Earliest Deadline, as well as some instances that
Earliest Deadline cannot schedule. Both are optimal for scheduling a single resource but
not for multiple resources; in fact, there is no known optimal algorithm for this problem.
Our model may be viewed as a four-parameter model in which, for allx, x.s = 0 and
x.d = x.p. The general four-parameter model will not be addressed here.

Given a feasible instance of the periodic scheduling problem, aschedule generation
algorithm performs a (possibly empty)pre-processing phasefollowed by an infinite
execution phase. No output is produced during the pre-processing phase. During the
execution phase, the algorithm produces an infinite sequence of outputs〈Xi : i ≥ 0〉,
whereXi is the subset of up tom tasks scheduled (i.e., assigned one copy of the resource)
in slot i . (Note that any output-free prefix of the computation may be designated as
the pre-processing phase.) Letti denote the elapsed running time (in the usual RAM
model) between the beginning of the execution phase and the time at which outputXi

is produced,i ≥ 0. Also, lett−1 = 0. Then for any schedule generation algorithmA,
we define theper-slot time complexityof A as the maximum over all feasible instances
and over alli ≥ 0 of ti − ti−1. We further define thepre-processing time complexityof
A as the maximum running time of the pre-processing phase over all feasible instances.
A schedule generation algorithm ispolynomial timeif and only if both the per-slot time
complexity and the pre-processing time complexity are polynomial in the input size.
Prior to this paper, no polynomial-time schedule generation algorithm was known for
the periodic scheduling problem.

Because all of the scheduling algorithms considered in this paper are schedule genera-
tion algorithms, for the sake of brevity we hereafter use the term “scheduling algorithm”
to mean “schedule generation algorithm”. Furthermore, because the scheduling algo-
rithm that we consider has an empty pre-processing phase (i.e., pre-processing time
complexity 0), we will focus our attention on per-slot time complexity. Accordingly,
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throughout the paper, every time bound given for a scheduling algorithm should be
assumed to be a bound on the per-slot time complexity.

We solve the periodic scheduling problem by imposing an even stronger fairness
constraint. Our approach is based on maintaining proportionate progress: each task is
scheduled resources in proportion to its weight. Specifically, at every timet a taskx must
have been scheduled eitherbx.w ·tc ordx.w ·te times. We call thisproportionate fairness
or P-fairness. P-fairness is a strictly stronger condition than periodic scheduling, in that
any P-fair schedule is periodic while the converse is not generally true. P-fairness is a nat-
ural and desirable notion in certain practical applications. To the best of our knowledge,
none of the scheduling algorithms currently known generates P-fair schedules even in
the case of a single resource. We prove that any periodic scheduling problem instance for
which

∑n−1
x=0 x.w ≤ mhas a P-fair schedule. This proof makes use of certain results from

network flow theory. We then describe and prove correct a polynomial-time scheduling
algorithm that generates a P-fair schedule for any feasible instance. Since every P-fair
schedule is also periodic, this algorithm solves the periodic scheduling problem.

We consider the research described here to be significant for several reasons. First,
we introduce a new and potentially important notion of fairness in resource sharing,
prove that this notion of fairness is actually achievable, and demonstrate its practical
applicability. Second, as a corollary to our main results, we solve the periodic scheduling
problem.

The remainder of this paper is organized as follows. Section2 defines P-fairness and
some related concepts and gives examples of practical applications of P-fairness. Sec-
tion 3 establishes that P-fair schedules exist for the periodic scheduling problem. The
algorithm corresponding to the proof has exponential-time complexity, however. Sec-
tion 4 proves the correctness of a simple algorithm for producing such P-fair schedules.
The naive implementation of that algorithm schedules each slot in pseudopolynomial
time. Section5 presents an example execution of our algorithm on a particular input in-
stance. Section6 proves the correctness of a polynomial-time implementation. Section7
offers some concluding remarks.

2. P-Fairness. This section defines P-fairness and some related concepts. We start
with some conventions:

• Scheduling decisions occur at integral values oftime, numbered from 0. The real
interval between timet and timet + 1 (includingt , excludingt + 1) will be referred
to as slott , t ∈ N.
• For integersa andb, let [a, b) = {a, . . . ,b−1}. Furthermore, let [a, b] = [a, b+1),
(a, b] = [a+ 1, b+ 1), and(a, b) = [a+ 1, b).
• We consider an instance8 of the fair resource sharing problem withm resources and

n tasks. Specific tasks will be denoted by identifiersx andy, which range over0, the
set of all tasks.
• Each taskx has an integerperiod x.p, x.p > 1, an integerexecution requirement x.e,

x.e∈ (0, x.p), and a rationalweight x.w = x.e/x.p. Note that 0< x.w < 1. Without
loss of generality we confine our attention to the case where

∑
x∈0 x.w = m.

• Let σi denote thei th symbol of stringσ, i ∈ N.



Proportionate Progress: A Notion of Fairness in Resource Allocation 603

Now some definitions:

• A schedule Sfor instance8 is a function from0×N to {0, 1}, where
∑

x∈0 S(x, t) ≤
m, t ∈ N. Informally, S(x, t) = 1 if and only if taskx is scheduled in slott .
• A scheduleS is periodic if and only if

∀i, x : i ∈ N, x ∈ 0 :
∑

t∈[0,x.p·i )
S(x, t) = x.e · i .

• Thelag of a taskx at timet with respect to scheduleS, denotedlag(S, x, t), is defined
by

lag(S, x, t) = x.w · t −
∑

i∈[0,t)

S(x, i ).

• A scheduleS is P-fair if and only if

∀x, t : x ∈ 0, t ∈ N : −1< lag(S, x, t) < 1.

• A scheduleS is P-fair at time t if and only if a P-fair scheduleS′ exists such that

∀x : x ∈ 0 : lag(S, x, t) = lag(S′, x, t).

Informally, lag(S, x, t) measures the difference between the number of resource al-
locations that taskx “should” have received in the set of slots [0, t) and the number that
it actually received.

Periodic schedules can also be defined in terms of lag constraints. In particular, a
scheduleS is periodic if and only if

∀i, x : i ∈ N, x ∈ 0 : lag(S, x, x.p · i ) = 0.

from which it follows thatevery P-fair schedule is periodic. (Note that in the definition
of lag, the termx.w · t is independent ofS, and the term

∑
i∈[0,t) S(x, i ) is an integer.)

P-fairness is a very strict requirement. It demands that the absolute value of the
difference between the expected allocation and the actual allocation to every task always
be strictly less than 1. In other words, a task never gets an entire slot ahead or behind.
In general it is not possible to guarantee a smaller variation in lag. Considern identical
tasks sharing a single resource, where the weight of each task is 1/n. Forn sufficiently
large, we can make the lag of the first (resp. last) task scheduled come arbitrarily close
to−1 (resp. 1).

P-fairness is the natural notion of fairness for many resource-allocation problems.
Here are two examples:

EXAMPLE 1. An airline hasm airplanes andn flight crews,n > m, all of which are
based in the same city. Assume that exactlym flight crews are scheduled to work on
any given day. Due to seniority, job performance, or other factors, it may be desirable
to schedule some flight crews more often than others. For each flight crewx, setx.w to
the desired fraction of all days thatx should work, while ensuring that

∑
x∈0 x.w = m.

A P-fair scheduler will produce a schedule in which every flight crew works at a steady
rate: aftert days, flight crewx will have worked eitherbx.w · tc or dx.w · te days.
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EXAMPLE 2. Consider a node in a real-time communications network with a number of
incoming and outgoing edges. The weightx.w on an edgex corresponds to the relative
amount of traffic expected on that edge. A P-fairness requirement may be necessary to
maintain the real-time nature of the communications, and to prevent exceptionally long
queueing delays from building up along certain edges.

To see how the concepts of lag and P-fairness arise within our (as yet undefined)
scheduling algorithm for the periodic scheduling problem, the reader may now wish to
briefly examine Section5 before continuing with Section3.

3. Existence of a P-Fair Schedule. In Sections4 and6 we develop a polynomial-
time P-fair scheduling algorithm. The proof of correctness of that algorithm relies on the
existence of a P-fair schedule for the resource sharing problem. In this section we use
a network flow argument to prove the existence of such a P-fair schedule. In principle,
the network reduction could itself serve as the basis for a P-fair scheduling algorithm.
Unfortunately, the size of the network generated by our reduction is exponential in the
size of the given scheduling instance, and so the network reduction argument does not
by itself provide a polynomial-time algorithm.

With respect to instance8 of the resource sharing problem, letearliest(x, j ) (resp.
latest(x, j )) denote the earliest (resp. latest) slot during which taskx may be sched-
uled for the j th time, j ∈ N, in any P-fair schedule. We can easily derive closed
form expressions forearliest(x, j ) andlatest(x, j ). Note thatearliest(x, j ) = min t :
t ∈ N : x.w · (t +1)− ( j +1) > −1 andlatest(x, j ) = maxt : t ∈ N : x.w · t − j < 1.
Hence,

earliest(x, j ) = b j /x.wc,
and

latest(x, j ) = d( j + 1)/x.we − 1.

Note that earliest(x, j ) < latest(x, j ), x ∈ 0, j ∈ N. Furthermore,
earliest(x, j + 1)− latest(x, j ) is either 0 or 1. In other words, there is at most one slot
where either thej th or the( j + 1)st scheduling of taskx may occur.

The remainder of this section is devoted to proving the existence of a P-fair schedule
for any instance of the resource sharing problem8. Our proof strategy is as follows:
First, we describe a reduction from instance8 to a weighted digraphG with a designated
source and sink, such that certain flows inG correspond exactly (in a manner that will
be made precise) to a P-fair schedule for8. Then we prove the existence of such a flow
in G.

Throughout this section, letL denote the least common multiple of the task periods:
L = lcmx∈0 x.p.

LEMMA 3.1. Instance8 has a P-fair schedule if and only if a schedule S exists such
that

∀x, t : x ∈ 0, t ∈ (0, L] : −1< lag(S, x, t) < 1.
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PROOF. An infinite P-fair scheduleS′ may be obtained fromS by scheduling in slott
those tasks scheduled byS in slot t mod L.

THEOREM1. Instance8 has a P-fair schedule.

Before proving this theorem, we present some definitions and an important lemma.
Recall thatx.w = x.e/x.p. We describe below the construction of a weighted digraph

G. The vertex setV of G is the union of six disjoint sets of verticesV0, . . . ,V5, and
the edge setE of G is the union of five disjoint sets of edgesE0, . . . , E4, whereEi is a
subset of(Vi × Vi+1×N), 0≤ i ≤ 4. That is,G is a “six-layered” graph, with all edges
connecting vertices in adjacent layers. The sets of vertices are as follows:

V0 = {source},
V1 = {〈1, x〉 | x ∈ 0)},
V2 = {〈2, x, j 〉 | x ∈ 0, j ∈ [0, x.w · L)},
V3 = {〈3, x, t〉 | x ∈ 0, t ∈ [0, L)},
V4 = {〈4, t〉 | t ∈ [0, L)},

and

V5 = {sink}.
An edge is represented by a 3-tuple. Foru, v ∈ V andw ∈ N, the 3-tuple(u, v, w) ∈ E
represents an edge fromu to v of capacityw. The sets of edges inG are as follows:

E0 = {(source, 〈1, x〉, x.w · L) | x ∈ 0},
E1 = {(〈1, x〉, 〈2, x, j 〉, 1) | x ∈ 0, j ∈ [0, x.w · L)},
E2 = {(〈2, x, j 〉, 〈3, x, t〉, 1) | x ∈ 0,

j ∈ [0, x.w · L), t ∈ [earliest(x, j ), latest(x, j )]},
E3 = {(〈3, x, t〉, 〈4, t〉, 1) | x ∈ 0, t ∈ [0, L)},

and

E4 = {(〈4, t〉, sink,m) | t ∈ [0, L)}.

LEMMA 3.2. If there is an integral flow of size m· L in G, then a P-fair schedule exists
for 8.

PROOF. By Lemma3.1, it suffices to prove that the existence of an integral flow of size
m · L in G implies the existence of a scheduleS for 8 such that

∀x, t : x ∈ 0, t ∈ (0, L] : −1< lag(S, x, t) < 1.

Suppose there is an integral flow of sizem · L in G. The total capacity ofE0, the set
of edges leading out of thesource vertex, is equal to

∑
x∈0 x.w · L = m· L. Hence, each

edge inE0 is filled to capacity, and each vertex〈1, x〉 receives exactlyx.w · L units of
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flow. Since there arex.w · L vertices inV2 each connected (by an edge of unit capacity)
to vertex〈1, x〉, and no two vertices inV1 are connected to the same vertex inV2, it
follows that each vertex inV2 receives a unit flow. Accordingly, each vertex inV2 sends
a unit flow to some vertex inV3.

We construct the desired scheduleS from the given flow according to the following
rule: allocate a resource to taskx in slot t if and only if there is a unit flow from vertex
〈2, x, j 〉 to vertex〈3, x, t〉.

Because the total flow into thesink vertex ism · L, each of theL edges of capacity
m in E4 carriesm units of flow. Hence, for allt ∈ [0, L), vertex〈4, t〉 receives exactly
m unit flows from vertices inV3. Each vertex〈3, x, t〉 in V3 is connected (by an edge
of unit capacity) to vertex〈4, t〉, and is not connected to any other vertex inV4. Thus,
S schedules exactlym tasks in each time slott , for all t ∈ [0, L). To see that no lag
constraints are violated byS, observe that, for each taskx and for all j ∈ [0, x.w · L),
the j th scheduling of taskx occurs at a slot in the interval [earliest(x, j ), latest(x, j )].
(The j th scheduling corresponds to the unique unit flow out of vertex〈2, x, j 〉.)

We now show the existence of an integral flow.

PROOF OFTHEOREM1. Since all edges of the graph have integral capacity, if there is a
fractional flow of sizem · L in the graph, then there is an integral flow of that size [4].
It remains to be shown that such a fractional flow exists. We use the following flow
assignments:

• Each edge(source, 〈1, x〉, x.w · L) ∈ E0 carries a flow ofx.w · L.
• Each edge(〈1, x〉, 〈2, x, j 〉, 1) ∈ E1 carries a unit flow.
• Each edge(〈3, x, t〉, 〈4, t〉, 1) ∈ E3 carries a flow of sizex.w.
• Each edge(〈4, t〉, sink,m) ∈ E4 carries a flow of sizem.
• The flows through edges inE2 are as follows:
— Each edge(〈2, x, j 〉, 〈3, x, earliest(x, j )〉, 1) carries a flow of size

x.w − ( j − x.w · b j /x.wc),
which is less than 1, the capacity of the edge.

— Each edge (〈2, x, j 〉, 〈3, x, latest(x, j )〉, 1) such that latest(x, j ) =
earliest(x, j + 1) carries a flow of size

( j + 1)− x.w · b( j + 1)/x.wc,
which is also less than 1, the capacity of the edge.

— Every other edge(〈2, x, j 〉, 〈3, x, t〉, 1) ∈ E2 carries a flow of sizex.w.

We now prove that the flow just defined is a valid flow of sizem · L. The capacity
constraints have been met. The flow out of thesource vertex is

∑
x∈0(x.w · L) = m · L.

We now complete the proof by showing that flow is conserved at every interior vertex.
The flow into each vertex inV1 is x.w · L, and there arex.w · L edges leaving, each

carrying a unit flow. The flow into each vertex inV2 is 1. Below we prove that the flow
out of each vertex inV2 is 1, and that the flow into each vertex inV3 is x.w. Each vertex in
V3 has only one outgoing edge carrying a flow ofx.w. Each vertex inV4 hasn incoming
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edges each carrying a flow of sizex.w; since
∑

x∈0 x.w = m, the flow in ism, which
equals the flow out on the one outgoing edge.

It remains to prove that:

(i) The flow out of each vertex inV2 is 1.
(ii) The flow into each vertex inV3 is x.w.

For (i), consider an arbitrary vertex〈2, x, j 〉 in V2. There arelatest(x, j ) −
earliest(x, j ) + 1, or d( j + 1)/x.we − b j /x.wc, outgoing edges from〈2, x, j 〉. If
earliest(x, j + 1) = latest(x, j ) (equivalently,d( j + 1)/x.we − 1 = b( j + 1)/x.wc),
then the flow out of〈2, x, j 〉 is

x.w − ( j − x.w · b j /x.wc)+ x.w · (d( j + 1)/x.we
− b j /x.wc − 2)+ ( j + 1)− x.w · b( j + 1)/x.wc,

which simplifies to 1. Otherwise,earliest(x, j + 1) = latest(x, j ) + 1 (equivalently,
d( j + 1)/x.we = b( j + 1)/x.wc = ( j + 1)/x.w), and the flow out of〈2, x, j 〉 is

x.w − ( j − x.w · b j /x.wc)+ x.w · (d( j + 1)/x.we − b j /x.wc − 1),

which also simplifies to 1.
For (ii), consider an arbitrary vertex〈3, x, t〉 in V3. If t = latest(x, j ) =

earliest(x, j + 1) for some j ∈ N, then there are two incoming edges to〈3, x, t〉,
namely(〈2, x, j 〉, 〈3, x, t〉, 1) and(〈2, x, j + 1〉, 〈3, x, t〉, 1). These edges carry flows
of size ( j + 1) − x.w · b( j + 1)/x.wc and x.w − (( j + 1) − x.w · b( j + 1)/x.wc),
respectively, for a total incoming flow ofx.w. Otherwise, there is only one incoming
edge to〈3, x, t〉, and it carries a flow ofx.w.

4. A P-Fair Scheduling Algorithm. In this section, we present our scheduling algo-
rithm, Algorithm PF, and prove that it produces a P-fair schedule. Algorithm PF has the
following high-level structure: At each timet ≥ 0, a dynamic priority is assigned to each
task and them highest-priority tasks are scheduled in slott (ties are broken arbitrarily).
An example execution of our scheduling algorithm is presented in Section5. The reader
may wish to briefly examine that example before continuing with the formal presentation
that follows.

First, some definitions:

• Thecharacteristic stringof taskx, denotedα(x), is an infinite string over{−, 0,+}
with

αt (x) = sign(x.w · (t + 1)− bx.w · tc − 1), t ∈ N.

• Thecharacteristic substringof taskx at timet is the finite string

α(x, t)
def= αt+1(x)αt+2(x) · · ·αt ′(x),

wheret ′ = min i : i > t : αi (x) = 0.
• With respect to P-fair scheduleS at timet , we say that taskx is aheadif and only if

lag(S, x, t) < 0, that taskx is behindif and only if lag(S, x, t) > 0, and that taskx
is punctualif and only if it is neither ahead nor behind.
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• With respect to P-fair scheduleSat timet , we say that taskx is tnegruif and only if x
is ahead andαt (x) 6= +, that taskx is urgentif and only if x is behind andαt (x) 6= −,
and that taskx is contendingif and only if it is neither tnegru nor urgent.

Lemmas 4.1–4.5 provide the logical machinery that we need in order to reason about
the terms introduced above.

LEMMA 4.1. If task x is ahead at time t under P-fair schedule S, then:

(a) If αt (x) = −, then S(x, t) = 0 and task x is ahead at time t+ 1.
(b) If αt (x) = 0, then S(x, t) = 0 and task x is punctual at time t+ 1.
(c) If αt (x) = + and S(x, t) = 1, then task x is ahead at time t+ 1.
(d) If αt (x) = + and S(x, t) = 0, then task x is behind at time t+ 1.

PROOF. Assuming that taskx is ahead at timet under P-fair scheduleS, we have∑
i∈[0,t) S(x, i ) = dx.w · te, wherex.w · t 6∈ N; hence,dx.w · te = bx.w · tc + 1 and
bx.w · tc =∑i∈[0,t) S(x, i )− 1.

We now deal with each part in turn. For part (a) we have

αt (x) = − ∧
∑

i∈[0,t)

S(x, i ) = dx.w · te

H⇒ x.w · (t + 1)− bx.w · tc − 1< 0 ∧
∑

i∈[0,t)

S(x, i ) = dx.w · te

H⇒ x.w · (t + 1)−
∑

i∈[0,t)

S(x, i ) < 0

H⇒ lag(S, x, t + 1)+ S(x, t) < 0.

Because scheduleS is P-fair,lag(S, x, t + 1) > −1, and the inequality

lag(S, x, t + 1)+ S(x, t) < 0

implies thatS(x, t) = 0. Hence,lag(S, x, t + 1) < 0 and taskx is ahead at timet + 1,
as required. For part (b) we have

αt (x) = 0 ∧
∑

i∈[0,t)

S(x, i ) = dx.w · te

H⇒ x.w · (t + 1)− bx.w · tc − 1= 0 ∧
∑

i∈[0,t)

S(x, i ) = dx.w · te

H⇒ x.w · (t + 1)−
∑

i∈[0,t)

S(x, i ) = 0

H⇒ lag(S, x, t + 1)+ S(x, t) = 0.

Note thatlag(S, x, t + 1)+ S(x, t) = 0 implies thatS(x, t) = 0 and taskx is punctual
at timet + 1, as required. For part (c), note that ifS(x, t) = 1, thenlag(S, x, t + 1) <
lag(S, x, t). Finally, for part (d) we have

αt (x) = + ∧
∑

i∈[0,t)

S(x, i ) = dx.w · te ∧ S(x, t) = 0
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H⇒ x.w · (t + 1)− bx.w · tc − 1> 0 ∧
∑

i∈[0,t)

S(x, i ) = dx.w · te

∧ S(x, t) = 0

H⇒ x.w · (t + 1)−
∑

i∈[0,t)

S(x, i ) > 0 ∧ S(x, t) = 0

H⇒ lag(S, x, t + 1) > 0.

LEMMA 4.2. If task x is behind at time t under P-fair schedule S, then:

(a) If αt (x) = − and S(x, t) = 1, then task x is ahead at time t+ 1.
(b) If αt (x) = − and S(x, t) = 0, then task x is behind at time t+ 1.
(c) If αt (x) = 0, then S(x, t) = 1 and task x is punctual at time t+ 1.
(d) If αt (x) = +, then S(x, t) = 1 and task x is behind at time t+ 1.

PROOF. Assuming that taskx is behind at timet under P-fair scheduleS, we have∑
i∈[t ] S(x, i ) = bx.w · tc, wherex.w · t 6∈ N. Again, we deal with each part in turn. For

part (a) we have

αt (x) = − ∧
∑

i∈[0,t)

S(x, i ) = bx.w · tc ∧ S(x, t) = 1

H⇒ x.w · (t + 1)− bx.w · tc − 1< 0 ∧
∑

i∈[0,t)

S(x, i ) = bx.w · tc

∧ S(x, t) = 1

H⇒ x.w · (t + 1)−
∑

i∈[0,t)

S(x, i )− 1< 0 ∧ S(x, t) = 1

H⇒ lag(S, x, t + 1) < 0.

For part (b), note that ifS(x, t) = 0, thenlag(S, x, t + 1) > lag(S, x, t). For part (c)
we have

αt (x) = 0 ∧
∑

i∈[0,t)

S(x, i ) = bx.w · tc

H⇒ x.w · (t + 1)− bx.w · tc − 1= 0 ∧
∑

i∈[0,t)

S(x, i ) = bx.w · tc

H⇒ x.w · (t + 1)−
∑

i∈[0,t)

S(x, i )− 1= 0

H⇒ lag(S, x, t + 1)+ S(x, t)− 1= 0.

Note thatlag(S, x, t + 1)+ S(x, t)− 1= 0 impliesS(x, t) = 1 and taskx is punctual
at timet + 1, as required. For part (d) we have

αt (x) = + ∧
∑

i∈[0,t)

S(x, i ) = bx.w · tc

H⇒ x.w · (t + 1)− bx.w · tc − 1> 0 ∧
∑

i∈[0,t)

S(x, i ) = bx.w · tc
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H⇒ x.w · (t + 1)−
∑

i∈[0,t)

S(x, i )− 1> 0

H⇒ lag(S, x, t + 1)+ S(x, t)− 1> 0.

Note thatlag(S, x, t + 1)+ S(x, t)− 1> 0 impliesS(x, t) = 1 and taskx is behind at
time t + 1, as required.

LEMMA 4.3. If task x is tnegru at time t under P-fair schedule S, then S(x, t) = 0.

PROOF. Follows from Lemma4.1(a) and (b).

LEMMA 4.4. If task x is urgent at time t under P-fair schedule S, then S(x, t) = 1.

PROOF. Follows from Lemma4.2(c) and (d).

LEMMA 4.5. If task x is contending at time t under P-fair schedule S, then:

(a) If S(x, t) = 1, then x is ahead at time t+ 1.
(b) If S(x, t) = 0, then x is behind at time t+ 1.

PROOF. If x is ahead at timet , this follows from Lemma4.1(c) and (d) and ifx is behind
at timet it follows from Lemma4.2(a) and (b). Forx punctual we have the following:

lag(S, x, t) = x.w · t −
∑

i∈[0,t)

S(x, i ) = 0

H⇒ x.w · (t + 1)−
∑

i∈[0,t)

S(x, i ) = x.w

H⇒ lag(S, x, t + 1) = x.w − S(x, t).

Because 0< x.w < 1, if S(x, t) = 1, thenx is ahead at timet + 1, and ifS(x, t) = 0,
thenx is behind at timet + 1, as required.

Given the preceding definitions and lemmas, it is now straightforward to present our
scheduling algorithm, which is referred to asAlgorithm PF. At any timet the task of
Algorithm PF is to determine whichm-subset of then tasks to schedule. By Lemma4.4,
every urgent task must be scheduled in the current time slot in order to preserve P-fairness.
Symmetrically, Lemma4.3 implies that no tnegru task can be scheduled in the current
time slot without violating P-fairness. Since our goal is to prove that Algorithm PF
produces a P-fair schedule, it must be that Algorithm PF schedules all of the urgent tasks
and none of the tnegru tasks. It remains to define the behavior of Algorithm PF on the
set of contending tasks.

Before doing so, however, we should pause to address two possible pitfalls. Let
n0, n1, andn2 denote the number of tnegru, contending, and urgent tasks at timet ,
respectively. Ifn2 > m, then it would be impossible for Algorithm PF to schedule
all of the urgent tasks. Symmetrically, ifn0 > n − m, then Algorithm PF would be
forced to schedule some tnegru task. (Because

∑
x∈[0,n) x.w = m, we cannot hope to
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schedule instance8 correctly unless allm resources are allocated in every slot.) An
immediate consequence of Theorem2, stated below, is that neither of these pitfalls will
ever arise under Algorithm PF. Thus, in defining the behavior of Algorithm PF on the
set of contending tasks, we can assume thatn0 ≤ n − m andn2 ≤ m. The task of
Algorithm PF is to determine which subset (of sizem− n2 ≤ n1) of then1 contending
tasks to schedule.

At each timet , we can define a total orderº on the set of contending tasks as follows:
x º y if and only if α(x, t) ≥ α(y, t), where the comparison between characteristic
substringsα(x, t) andα(y, t) is resolved lexicographically with− < 0 < +. Ties can
be broken arbitrarily; for example, we could assume that ties are broken in favor of the
lower-numbered task.

Algorithm PF schedules them− n2 highest-priority contending tasks according to
this total order. Algorithm PF is summarized in its entirety below:

1. Schedule all urgent tasks.
2. Allocate the remaining resources to the highest-priority contending tasks according

to the total orderº.

Throughout the remainder of this section, letSPF denote the schedule produced by
Algorithm PF on instance8.

LEMMA 4.6. If schedule SPF is P-fair at time t, then it is P-fair at time t+ 1, t ∈ N.

PROOF. Assume that scheduleSPF is P-fair at timet for somet ∈ N. Hence, a P-fair
scheduleS exists such thatlag(SPF, x, t) = lag(S, x, t), x ∈ [0, n). Let X (resp.Y)
denote them-subset of tasks scheduled byS (resp.SPF) in slot t . If X = Y, thenSPF is
P-fair at timet + 1 becauseS is P-fair at timet + 1. If X 6= Y, tasksx ∈ X andy ∈ Y
exist such thatx ∈ X \ Y andy ∈ Y \ X. In the argument that follows we demonstrate
the existence of a P-fair scheduleS′ such that:

(i) lag(SPF, x, t) = lag(S′, x, t), x ∈ [0, n).
(ii) S′ schedules them-subsetX \ {x} ∪ {y} in slot t .

By repeating this argument|X \ Y| times, we can obtain a sequence of P-fair schedules
such that the last P-fair schedule in the sequence,S∗, satisfieslag(SPF, x, t + 1) =
lag(S∗, x, t + 1). Hence, scheduleSPF is P-fair at timet + 1, proving the lemma.

Accordingly, it is sufficent to prove the existence of a P-fair scheduleS′ as defined
above. We begin by claiming thatS(x, i ) 6= S(y, i ) for somei > t . (If not, it follows
easily thatx.w = y.w, lag(S, x, t) = lag(S, y, t) + 1, and hence that Algorithm PF
would have given priority to taskx over tasky at timet , a contradiction.) We transform
scheduleS into S′ as follows. Let

t ′ def= min i : i > t : S(x, i ) 6= S(y, i ).

We prove below that in factS(x, t ′) = 0 andS(y, t ′) = 1. ScheduleS′ is defined to be
identical toS except that we “swap” the allocations to tasksx and y at slotst and t ′,
settingS′(x, t) = 0, S′(y, t) = 1, S′(x, t ′) = 1, andS′(y, t ′) = 0.

In the arguments that follow, all statements “categorizing” tasksx andy (e.g., “task
x is not urgent at timet”) are made with respect to the P-fair scheduleS. (Note that,
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at timet , it makes no difference whether our claims are made with respect toSPF or S,
sincelag(SPF, x, t) = lag(S, x, t), x ∈ [0, n).)

Consider the following predicates:

P0(i )
def= taskx is ahead at timei ,

P1(i )
def= tasky is behind at timei ,

P2(i )
def= αj (x) = αj (y) 6= 0, j ∈ (t, i ),

and

P(i )
def= P0(i ) ∧ P1(i ) ∧ P2(i ).

We prove by induction oni thatP(i ) holds,i ∈ (t, t ′]. For the base case, seti = t+1.
SinceSPF(x, t) = 0 (resp.S(y, t) = 0), taskx (resp.y) is not urgent at timet . Similarly,
sinceS(x, t) = 1 (resp.SPF(y, t) = 1), taskx (resp.y) is not tnegru at timet . Hence,
tasksx andy are both contending at timet . We can now use Lemma4.5(a) to establish
P0(t + 1). Similarly, Lemma4.5(b) impliesP1(t + 1). Note thatP2(t + 1) is vacuously
true. This completes the base case of the induction.

For the induction step, we assume thatP(i ) holds over the interval(t, i ], and prove
that it holds over(t, i + 1], wherei ∈ (t, t ′). By the definition oft ′, we have

S(x, i ) = S(y, i ).(1)

Given thatP2(i ) is part of our induction hypothesis,P2(i + 1) will follow if we can
establish that

αi (x) = αi (y) 6= 0.(2)

Assuming that (2) fails to hold, there are four cases to consider:

(i) αi (x) = − andαi (y) = 0,
(ii) αi (x) = − andαi (y) = +,

(iii) αi (x) = 0 andαi (y) = +, and
(iv) αi (x) = 0 andαi (y) = 0.

(The symmetric versions of the first three cases are impossible sincey º x at timet and
P2(i ) holds.) Assume that case (i) holds. Lemma4.1(a) andP0(i ) imply thatS(x, i ) = 0.
Lemma4.2(c) andP1(i ) imply thatS(y, i ) = 1, contradicting (1). Assume that case (ii)
holds. Lemma4.1(a) andP0(i ) imply that S(x, i ) = 0. Lemma4.2(d) andP1(i ) imply
thatS(y, i ) = 1, contradicting (1). Assume that case (iii) holds. Lemma4.1(b) andP0(i )
imply that S(x, i ) = 0. Lemma4.2(d) andP1(i ) imply that S(y, i ) = 1, contradicting
(1). Finally, assume that case (iv) holds. Lemma4.1(b) andP0(i ) imply thatS(x, i ) = 0.
Lemma4.2(c) andP1(i ) imply thatS(y, i ) = 1, contradicting (1). Hence, (2) holds and
P2(i + 1) holds. It remains to establishP0(i + 1) andP1(i + 1).

By Lemma4.1 and P0(i ), if S(x, i ) = 1, thenαi (x) = +. Conversely,αi (x) = +
and (2) implyαi (y) = +; P1(i ) and Lemma4.2(d) then implyS(y, i ) = 1; finally, (1)
impliesS(x, i ) = 1. Hence, we have proven that

S(x, i ) = 1 ⇐⇒ αi (x) = +.(3)
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By (1)–(3), at timei we either had:

(i) S(x, i ) = S(y, i ) = 0 andαi (x) = αi (y) = −, or
(ii) S(x, i ) = S(y, i ) = 1 andαi (x) = αi (y) = +.

Consider case (i). By Lemma4.1(a) andP0(i ), P0(i + 1) holds. By Lemma4.2(b) and
P1(i ), P1(i+1)holds. Similarly, consider case (ii). By Lemma4.1(c) andP0(i ), P0(i+1)
holds. By Lemma4.2(d) andP1(i ), P1(i + 1) holds. Hence,P0(i + 1) and P1(i + 1)
hold. This completes our proof by induction.

Given thatP(i ) holds, i ∈ (t, t ′], it is now quite easy to prove the two remaining
claims that we need, namely:

(i) S(x, t ′) = 0 andS(y, t ′) = 1, and
(ii) S′ is P-fair.

Because our algorithm schedules tasky,

αt ′(x) ≤ αt ′(y),(4)

and, by the definition oft ′,

S(x, t ′) 6= S(y, t ′).(5)

If αt ′(x) = − orαt ′(x) = 0, thenP0(t ′) and (5) impliesS(y, t ′) = 1. If αt ′(x) = +, then
(4) impliesαt ′(y) = +; Lemma4.2(d) then impliesS(y, t ′) = 1; finally, (5) implies
S(x, t ′) = 0. Thus claim (i) holds.

For claim (ii), it is sufficient to prove that

∀i : i ∈ (t, t ′] : −1< lag(S′, x, i ) < 1(6)

and

∀i : i ∈ (t, t ′] : −1< lag(S′, y, i ) < 1.(7)

since all other lags are the same as under scheduleS. Note thatlag(S′, x, i ) = lag(S, x, i )
+ 1, i ∈ (t, t ′]. SinceS is P-fair, (6) will hold if we can show thatlag(S, x, i ) < 0,
i ∈ (t, t ′]. This is immediate, sinceP0(i ) holds for all i ∈ (t, t ′]. Thus, (6) holds. A
symmetric argument proves that (7) holds. Hence, claim (ii) holds, and our proof is
complete.

THEOREM2. Schedule SPF is P-fair.

PROOF. By Theorem1, scheduleSPF is P-fair at time 0. Hence, Lemma4.6implies that
scheduleSPF is P-fair at timet , t ∈ N.

5. An Example Execution of Algorithm PF. In this section we trace in considerable
detail the execution of Algorithm PF on a particular input instance. The input instance is
presented in Table1. There are four tasks:v,w, x, andy. The tasks are to be scheduled
on three resources. Values of the relevant task parameters are given in Table1. Each
task is characterized by an execution requirement (see the second column of Table1)
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Table 1.An example instance of the periodic scheduling problem.

Execution
Task requirement Period Weight

v 1 3 1/3 = 0.3
w 2 4 2/4 = 0.5
x 5 7 5/7 = 0.714285
y 8 11 8/11= 0.72
z 335 462 335/462= 0.7251082

and a period (see the third column). The weight of a task is defined to be the ratio of
its execution requirement to its period (see the fourth column). Since the weights of the
four tasks sum to less than the number of copies of the resource, a fifth “dummy” task
z has been added with weight such that the weights of all tasks, including the dummy,
together sum to 3.

A couple of remarks concerning the input instance are in order. First, we have repre-
sented the weights of the tasks in Table1 in decimal as well as fractional form; since the
tasksx, y, andz have weights that are very close to each other, the decimal expansion
is useful to make the relative ordering of these weights more obvious. Second, observe
that the dummy taskz has a very large period relative to those of the other tasks. (In
general, the period of the dummy task can be as large as the least common multiple of
the other task periods.) We would like to emphasize that the inclusion of a dummy task
does not degrade the per-slot time complexity of Algorithm PF by more than a constant
factor. (Algorithm PF requires time linear in the size of the input instance to schedule
each slot, and the inclusion of taskz increases the input size by no more than a constant
factor.) In Table2, we trace the execution of Algorithm PF on the above input instance
for the first twenty time units.

• The first column of the table indicates the time associated with each row.
• In the next set of five columns we list, for each of the five tasks, the product of the

task’s lag and its period at each time slot. Since all lags are initially zero, and the
lag of a given tasku changes by either subtracting(1− u.w) (whenu is allocated a
resource), or by addingu.w (whenu is not allocated a resource), representing the lag
in this manner (i.e., as a product of lag and period) ensures that all entries are integers.
• In the next set of five columns we list the first twenty symbols in the characteristic

string of each task. The characteristic string of any task may be obtained from the
table by reading down the appropriate column. (For example, the characteristic string
of task v is of the form “− − 0 − −0 . . .”, and that of the dummy taskz begins
“−++−+++−++ . . .”.)
• The last three columns list, respectively, the sets of urgent, contending, and tnegru

tasks at each time. As defined in Section4, the urgent tasks at any timet are those
with a strictly positive lag and a+ or 0 in positiont of the characteristic string, while
the tnegru tasks are those with a strictly negative lag and a− or a 0 inpositiont of
the characteristic string. All remaining tasks are contending. The contending tasks
are listed in Table2 by order of priority, according to the total orderº defined in
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Section4. More specifically, an expression of the form(x > y) in Table2 indicates
that(x º y) holds, but(y º x) does not, while an entry of the form(x = y) indicates
that both(x º y) and(y º x) hold.

The schedule generated by Algorithm PF can easily be determined from Table2.
(Below we describe how Algorithm PF computes the table entries.) At each timet , all
of the urgent tasks, and none of the tnegru tasks, are allocated copies of the resource.
Any remaining resources are allocated to the highest-priority contending tasks, with
ties broken arbitrarily. (Theorem2 establishes that such a schedule is always possible by
proving that: (i) the number of urgent tasks does not exceed the number of resources, and
(ii) the number of non-tnegru tasks is greater than or equal to the number of resources.)
At time 2, for example, the three copies of the resource are allocated to tasksv, x, and
w; similarly, at time 14, the resources are allocated to tasksy, z, andx.

Before proceeding to describe how Algorithm PF computes the entries in Table2,
we remark that the schedule of Table2 is easily seen to be P-fair. To verify this claim,
observe that all lags in the table lie in the real interval(−1,+1), that is, the absolute
value of each “lag× period” entry is strictly smaller than the corresponding period.

At time 0, the lags of all tasks are, by definition, zero; furthermore, all tasks are
contending. The total ordering of the tasks according to the relationº is as given in
the next-to-last column of Table2. This is determined by lexicographically comparing
the characteristic substrings of the tasks, with+ having priority over 0, and 0 over
−. (For example, in comparing tasksx andw, the characteristic substringsα(x, 0) =
“ + + − + + 0” andα(w, 0) = “0” are compared, and taskx is determined to have
greater priority.) Algorithm PF therefore allocates the three resources to tasksy, z, and
x. The lags for time 1 are now computed as follows. For each tasku that was allocated
a resource at time 0, the quantity “lag× period” is decremented by(u.p− u.e). (This
corresponds to decrementing the lag by(1−u.w).) For each tasku that was not allocated
a copy of the resource at time 0, the quantity “lag× period” is incremented byu.e. (This
corresponds to increasing the lag byu.w). Given these lags at time 1, Algorithm PF now
determines which three tasks to schedule in slot 1 (the urgent taskw and the highest-
priority contending tasksy andzare selected), computes the lags corresponding to time 2,
and so on.

Note that Algorithm PF does not need to store the entire schedule prior to timet in
order to allocate the resources at timet . In fact, the schedule at timet can be determined
from the set of task execution requirements, periods, and lags at timet . The space required
by Algorithm PF is therefore linear in the size of the input instance.

We conclude our example by discussing how, given the lags at time 11, Algorithm PF
allocates the three resources at time 12 and updates Table2. At time 11, taskw is urgent
since it has a positive lag and a 0 in itscharacteristic string. Similarly, taskv is tnegru
since it has a negative lag and a 0 in itscharacteristic string. The remaining three tasks
are contending, and, by comparing the characteristic substringsα(x, 11) = “ + 0”,
α(y, 11) = “ ++−+++ . . . ”, andα(z, 11) = “ ++−+++ . . . ”, we find that task
y has the highest priority, followed byz andx in that order. (Observe that the entries in
Table2 are not, in themselves, sufficient to determine thaty º z, since the characteristic
substrings are tied in the first eight places.) Algorithm PF therefore allocates the three
resources to tasksw, y, andz. The lags are now updated in the manner discussed earlier;
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for example, the “lag× period” entry of taskw for time 12 is decreased by(w.p−w.e)
to (2− (4− 2)) = 0, while that of taskx is increased byx.e to (−1+ 5) = 4.

6. The Comparison Algorithm. We now present two implementations of the char-
acteristic substring comparison function required by Algorithm PF. The first, which we
call NaiveCompare, we prove correct. The second,Compare, we prove equivalent to
the first and show that it runs in polynomial time. Both subroutines use only integer
variables, and the integer operations{−,+, ·,mod}. We prove that the number of inte-
ger operations performed byCompare on tasksx andy is at most linear in the size of
the binary representation of min{x.p, y.p}. (Furthermore, all intermediate values can be
represented indlg(max{x.p, y.p})e bits.)

SubroutineCompare can be used as the basis for an implementation of Algorithm PF
that requires at most linear time (in the size of instance8) to decide whichm-subset of the
n tasks to schedule in a given slot. A detailed sketch of this linear-time implementation
is given in Section6.3.

6.1. A Naive Implementation. This subsection presents a naive implementation of the
characteristic substring comparison algorithm. Given contending tasksx andy at time
t , our goal is to determine whether:

(i) α(x, t) < α(y, t),
(ii) α(x, t) > α(y, t), or
(iii) α(x, t) = α(y, t).
The naive approach is to compare the two substrings one symbol at a time. Note that for
any P-fair scheduleSandi ∈ [0, |α(x, t)|):
αi (x, t) = αt+i+1(x)

= sign(x.w · (t + i + 2)− bx.w · (t + i + 1)c − 1)

= sign(lag(S, x, t)+ x.w · (i + 2)− blag(S, x, t)+ x.w · (i + 1)c − 1)

= sign(x.p · lag(S, x, t)+ x.e · (i + 2)

− x.p · b(x.p · lag(S, x, t)+ x.e · (i + 1))/x.pc − x.p)

= sign(x.e− x.p+ (x.p · lag(S, x, t)+ x.e · (i + 1)) modx.p),

where the last equation follows from the identitya · bb/ac = b− b moda, for positive
integersa andb. If task x is contending at timet under P-fair scheduleS, we have
(x.p · lag(S, x, t)+ x.e) ∈ (0, x.p). Hence

α0(x, t) = sign(x.p · lag(S, x, t)+ 2 · x.e− x.p).

Let

a0
def= x.p− x.e,

b0
def= x.e,

and
c0

def= x.p · lag(S, x, t)+ 2 · x.e− x.p.
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Note thata0 ∈ (0, x.p), b0 ∈ (0, x.p), and c0 ∈ (−a0, b0). Define a1, b1, and c1

similarly with respect to tasky. Givena0, b0, andc0, it is straightforward to compute
α(x, t) one symbol at a time, using a constant number of integer operations per symbol.
Of course,α(y, t) can be computed in a similar fashion. This is the approach taken in
subroutineNaiveCompare below. Note that in thei th iteration of thedo loop, we have
sign(c0) = αi (x, t) and sign(c1) = α(y, t).

(1) NaiveCompare(a0, b0, c0,a1, b1, c1)

(2) int a0, b0, c0,a1, b1, c1;
(3) {
(4) do c0 > 0 ∧ c1 > 0 −→ c0, c1 := c0− a0, c1− a1

(5) [] c0 < 0 ∧ c1 < 0 −→ c0, c1 := c0+ b0, c1+ b1

(6) od;
(7) if c0 = 0 ∧ c1 = 0 −→ return TIE fi;
(8) if c0 ≥ 0 ∧ c1 ≤ 0 −→ return 0
(9) [] c0 ≤ 0 ∧ c1 ≥ 0 −→ return 1

(10) fi
(11) }

The return values ofNaiveCompare are 0, 1, and TIE. The return value 0 indicates
that the task corresponding to the triple(a0, b0, c0) should be given priority over the one
corresponding to the triple(a1, b1, c1). Conversely, the return value 1 indicates that the
triple (a1, b1, c1) should have priority. The return value TIE indicates that either can be
scheduled ahead of the other. As mentioned in Section4, such a tie could be broken
using the task numbers.

DEFINITION 6.1. A triple(a, b, c) is admissibleif and only if:

(i) a andb are positive integers.
(ii) c is an integer in the interval(−a, b) such that gcd{a, b} | c.

We say that a 6-tuple(a0, b0, c0,a1, b1, c1) is admissibleif and only if (a0, b0, c0) and
(a1, b1, c1) are admissible triples.

It is immediate from the foregoing discussion that every input 6-tuple passed to
NaiveCompare by our scheduling algorithm is admissible. Condition (ii) implies that
NaiveCompare will eventually terminate. Unfortunately, the running time ofNaive-
Compare is not very good; it is pseudopolynomial in the input size. This deficiency will
be addressed in the next section.

6.2. An Efficient Implementation. In this section we present a polynomial-time sub-
routineCompare with the same input-output behavior as theNaiveCompare subroutine
of Section6.1. The algorithm is recursive. As argued in Section6.1, we can assume
that any 6-tuple of arguments passed to theNaiveCompare subroutine is admissible.
Correspondingly, the arguments of any top-level call toCompare may be assumed to
be admissible. Lemma6.1 below proves that this assumption can be extended to any
nontrivial depth of recursion.
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LEMMA 6.1. If algorithm Compare is called with an admissible6-tuple, then every
resulting recursive call will also involve an admissible6-tuple.

PROOF. Assume thatCompare is called with admissible 6-tuple(a0, b0, c0,a1, b1, c1).
Note that, for 0≤ i ≤ 1, ai andbi are not changed withinCompare but thatci is
assigned a new value at line 8. For the sake of clarity, letCi represent the value passed
to ci in the call toCompare and letC′i represent the value ofci after Line 8. To prove
the lemma we establish the following pair of claims, for 0≤ i ≤ 1:

(i) If the recursive call in line 4 ofCompare is executed, then(bi ,ai ,−Ci ) is an
admissible triple.

(ii) If the recursive call in line 16 is executed, then(a′i , b
′
i , c
′
i ), defined as

(ai − (bi modai ), bi modai , C′i + (bi modai )),

is an admissible triple.

The proof of claim (i) is straightforward;(ai , bi ,Ci ) is admissible if and only if
(bi ,ai ,−Ci ) is admissible.

We now address claim (ii). First, note that ifai | Ci , then the recursive call at line 16
is not reached. Thus we can assume thatai 6 | Ci , which easily impliesai 6 | bi andai 6 | C′i .
Line 8 setsC′i to−ai + (Ci modai ) and hencec′i = −ai + (Ci modai )+ (bi modai ).
If a0 ≥ b0 or a1 ≥ b1, then again the recursive call at line 16 is not reached. Thus we can
assume that(bi modai ) ∈ (0,ai )and botha′i = (ai−(bi modai ))andb′i = (bi modai )

are positive integers. It remains to prove that gcd{a′i , b′i } | c′i and thatc′i ∈ (−a′i , b
′
i ).

The identities gcd{m, n} = gcd{m,m−n} and gcd{m, n} = gcd{m,m modn},m>

n > 0, are easily verified. (Note that two common versions of Euclid’s GCD algorithm
depend on these identities.) The second identity implies that gcd{ai , b′i } = gcd{ai , bi }.
The first identity implies that gcd{a′i , b′i } = gcd{ai , b′i } and therefore gcd{a′i , b′i } =
gcd{ai , bi }. For convenience, letgi = gcd{ai , bi } = gcd{a′i , b′i }. Because(ai , bi ,Ci )

is an admissible triple,gi | Ci . Sincegi | ai we havegi | (Ci modai ). Note that
(bi modai ) = b′i , and sogi | (bi modai ). Thus,c′i = −a+ (Ci modai )+ (bi modai )

is a sum of multiples ofgi and therefore is itself a multiple ofgi .
Finally, because(bi modai ) and(Ci modai ) are both in(0,ai ), it follows that−ai +

(bi modai ) < −ai + (Ci modai )+ (bi modai ) < (bi modai ). Hence,c′i ∈ (−a′i , b
′
i ),

completing the proof of claim (ii).

THEOREM3. Let d= min{`(a0), `(b0), `(a1), `(b1)} where`(i ) = blg(i + 1)c. Then
algorithmCompare performs O(d) integer operations.

PROOF. Since algorithmCompare does not contain any loops and uses only tail re-
cursion, it is sufficient to prove that the maximum depth of recursion isO(d). More
precisely, we prove by induction that the maximum depth of recursion is 2d − 2 if
min{a0,a1} ≤ min{b0, b1}, and 2d − 1 otherwise.

The base of our induction isd = 1. (By Lemma4.1, d > 0.) Note that if(a, b, c)
is an admissible triple, thena+ b ≥ 2. Thus, using Lemma6.1, we haveai + bi ≥ 2,
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0≤ i ≤ 1. If d = 1, thena0 = a1 = b0 = b1 = 1, which impliesc0 = c1 = 0. Thus the
depth of recursion is 2d − 2= 0, as claimed.

For the induction step, assume thatd ≥ 2 and that the claim holds for smaller values
of d. We consider two cases:

1. If min{a0,a1} ≤ min{b0, b1} (and the depth of recursion is greater than 0), line 16 of
Compare must be executed. Leta′i , b′i , andc′i be defined as in the proof of Lemma6.1,
and assume without loss of generality thata0 ≤ a1. Thus,`(a0) = d ≥ 2. Since
a′0 + b′0 = a0, min{`(a′0), `(b′0)} < d. The claim then follows by the induction
hypothesis.

2. If min{a0,a1} > min{b0, b1}, then the recursive call in line 4 ofCompare will be
executed. That call will terminate within at most 2d−2 additional levels of recursion
by the argument of the preceding case. Thus, the maximum depth of recursion is at
most 2d − 1, as claimed.

(1) Compare(a0, b0, c0,a1, b1, c1)

(2) int a0, b0, c0,a1, b1, c1;
(3) {
(4) if min{a0,a1} > min{b0, b1} −→

return Compare(b1,a1,−c1, b0,a0,−c0) fi;
(5) if dc0/a0e > dc1/a1e −→ return 0
(6) [] dc0/a0e < dc1/a1e −→ return 1
(7) fi;
(8) c0, c1 := c0− a0 · dc0/a0e, c1− a1 · dc1/a1e;
(9) if c0 = 0 ∧ c1 = 0 −→ return TIE

(10) [] c0 6= 0 ∧ c1 = 0 −→ return 0
(11) [] c0 = 0 ∧ c1 6= 0 −→ return 1
(12) fi;
(13) if bb0/a0c > bb1/a1c −→ return 0
(14) [] bb0/a0c < bb1/a1c −→ return 1
(15) fi;
(16) return Compare(a0− (b0 moda0), b0 moda0, c0+ (b0 moda0),

(17) a1− (b1 moda1), b1 moda1, c1+ (b1 moda1))

(18) }
It remains to argue that:

(i) Compare never executes a division by 0.
(ii) Compare always returns the correct value.

Claim (i) is easy to justify: all divisions are bya0 or a1, which are strictly positive.
Claim (ii) is addressed by the following theorem.

THEOREM4. On any admissible input6-tuple, algorithmsNaiveCompare andCom-
pare return the same value.

PROOF. In the following, letσi denote the characteristic substring associated with the
admissible triple(ai , bi , ci ), 0≤ i ≤ 1.
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We prove the theorem by induction on the depth of recursion used by algorithm
Compare. By Theorem3, this depth is finite. For the base case, assume thatCompare
does not call itself recursively, i.e., that the maximum depth of recursion is 0. Thus, one
of the nonrecursivereturn statements is executed (the two recursivereturn statements
are in lines 4 and 16). In the argument that follows we deal with each of the nonrecursive
return statements in turn.

Since the recursive call on line 4 is not executed, we can assume that min{a0,a1} ≤
min{b0, b1}. Now consider the two quantities,dc0/a0e anddc1/a1e, being compared in
lines 5 and 6. Note that the stringσi must begin withdci /ai e +’s, followed by either a
− or a 0. Thus, thereturn statements of lines 5 and 6 correctly handle any case where
dc0/a0e 6= dc1/a1e.

If execution proceeds beyond line 7, lett = dc0/a0e(= dc1/a1e). Note that line 8 then
setsc0 andc1 to the values these variables would have attained inNaiveCompare after
processing the common prefix oft +’s in σ0 andσ1 (i.e., after exiting thedo loop). Letσ ′i
denote the stringσi with this common prefix removed, 0≤ i ≤ 1. It remains to compare
stringsσ ′0 andσ ′1.

Note that after executing line 8, we haveci ∈ (−ai , 0], 0 ≤ i ≤ 1. If eitherc0 or c1

is equal to 0, we can immediately determine the outcome of the comparison between
stringsσ ′0 andσ ′1. For example, ifc0 = 0 andc1 6= 0, thenσ ′0 > σ ′1 becauseσ0 = +t0,
whereas the firstt + 1 symbols of the stringσ1 are+t−. Reasoning in this manner, we
can see that the threereturn statements of lines 9–11 correctly handle any case where
eitherc0 or c1 is equal to 0.

If execution proceeds beyond line 12, we haveci ∈ (−ai , 0), 0≤ i ≤ 1. For eachi ,
0≤ i ≤ 1, we now consider three cases:

Case1: ci = −(bi modai ). In this case it is easy to verify thatσ ′i = − +bbi /ai c 0. In
what follows, let̄ i denote the string−+bbi /ai c 0.

Case2: ci ∈ (−ai ,−(bi modai )). In this case the firstbbi /ai c + 1 symbols ofσ ′i
form the stringªi

def= −+bbi /ai c. Let c′i denote the new value ofci after processing these
symbols as inNaiveCompare. Then

c′i = ci + bi − ai · bbi /ai c
= ci + (bi modai ).

Note thatc′i ∈ (−ai , 0).

Case3:ci ∈ (−(bi modai ), 0). In this case the firstdbi /ai e+1 symbols ofσ ′i form the

string⊕i
def= −+dbi /ai e. Let c′i denote the new value ofci after processing these symbols

as inNaiveCompare. Then

c′i = ci + bi − ai · dbi /ai e
= ci − (ai − (bi modai )).

Note thatc′i ∈ (−ai , 0).
In Case 1 above we completely characterize the stringσ ′i . In Cases 2 and 3 we identify

a prefix ofσ ′i and find that after processing that prefix, the new value ofci remains in
the interval(−ai , 0), meaning that the preceding case analysis can be repeated on the
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remaining suffix ofσ ′i . In other words, the stringσ ′i may be viewed as a sequence ofªi ’s
and⊕i ’s, followed by a single occurrence of̄i . Wheneverbb0/a0c 6= bb1/a1c, we can
immediately determine which of the stringsσ ′0 andσ ′1 is lexicographically greater. In
particular, thereturn statements of lines 13 and 14 correctly handle any case in which
bb0/a0c 6= bb1/a1c.

We have now completed the base case of the induction, that is, we have proven
thatCompare works correctly (i.e., returns the same value asNaiveCompare) on any
admissible input for which no recursive call is generated. It remains to consider the
induction step. Accordingly, we assume that algorithmCompare works correctly on
any admissible input leading to a maximum depth of recursion strictly less thand,
d > 0. It remains to prove thatCompare works correctly on any admissible input
(a0, b0, c0,a1, b1, c1) with associated maximum depth of recursiond > 0. There are
two cases to be considered:

(i) The top-level recursive call is made in line 4.
(ii) The top-level recursive call is made in line 16.

The case in which the top-level recursive call occurs in line 4 is quite easy to handle. Let
τi denote the characteristic substring associated with the admissible triple(bi ,ai ,−ci ),
0 ≤ i ≤ 1. Note that the stringsσi andτi are closely related. In particular, they are
“complementary” strings in the sense that one can be obtained from the other by changing
−’s to+’s,+’s to−’s, and leaving the 0 symbol unchanged. With this observation, it is
easy to see thatNaiveCompare will return the same result on(b1,a1,−c1, b0,a0,−c0)

as it would on(a0, b0, c0,a1, b1, c1). By the induction hypothesis, the recursive call of
line 4 will function correctly, completing the analysis of this case.

It remains to consider the case in which the top-level recursive call occurs in line 16.
Our base case analysis implies that when line 16 is executed:

(i) c0 ∈ (−a0, 0),
(ii) c1 ∈ (−a1, 0),

(iii) ª def= ª0 = ª1,
(iv) ⊕ def= ⊕0 = ⊕1,
(v) ¯ def= ¯0 = ¯1,

(vi) stringsσ ′0 andσ ′1 (as defined in the base case analysis) can be viewed as strings of
ª’s and⊕’s terminated by ā .

Furthermore, it is straightforward to prove thatσ ′i , viewed as a string over{ª,¯,⊕},
corresponds to the characteristic substring of the admissible triple

(ai − (bi modai ), bi modai , ci + (bi modai )),

0 ≤ i ≤ 1. (To make the correspondence, replaceª by−,¯ by 0, and⊕ by+.) Thus,
the induction hypothesis implies that the recursive call of line 16 correctly compares
stringsσ ′0 andσ ′1.

6.3. A Linear-Time Implementation of Algorithm PF. In this section we describe how
subroutineCompare can be used as the basis for a linear-time (in the size of instance
8) implementation of Algorithm PF.
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A single call to subroutineCompare can be used to determine the relative priority of
any two contending tasks. Thus, by applying subroutineCompare within any optimal
comparison-based selection algorithm (e.g., [2]), we can obtain an implementation of
Algorithm PF that makesO(n) calls to subroutineCompare to decide whichm-subset of
then tasks to schedule in any given slot. This simple approach yields a polynomial-time
scheduling algorithm, but unfortunately does not yield the desired linear-time bound.
The problem is that the cost of individual calls to subroutineCompare can vary widely,
since the cost depends on the number of bits in the arguments passed toCompare.
For example, if a significant fraction of theO(n) calls toCompare happen to involve
pairs of tasks with a substantially greater-than-average number of bits in the binary
representations of their periods, then the overall running time of this implementation
of Algorithm PF could be super-linear. In the remainder of this section, we sketch the
details of a slightly more complicated implementation of Algorithm PF that achieves the
desired linear-time bound. Our approach is based on generalizing subroutineCompare
to examine the entire set of contending tasks at once, rather than two at a time.

Note that subroutinesNaiveCompare andCompare both have the following high-
level structure: For two given input tasks, successive “tie-breakers” are applied (i.e., an
integer is calculated for each task and these integers are compared) until either the tie is
broken (i.e., the relative priority of the two tasks has been determined) or it is determined
that the two tasks have identical characteristic substrings (i.e., the two tasks have equal
priority). Furthermore, the complexity of either of these subroutines is given by the
worst-case length of the sequence of tie-breakers, since each tie-breaker requires only a
constant number of integer operations. In the case of subroutineCompare, Theorem3
implies that the length of the sequence of tie-breakers isO(d), whered is as defined in
the statement of the theorem. (For the purposes of the present analysis, it is sufficient to
observe thatd is no larger than the minimum number of bits in the binary representations
of the two task periods.)

Assume without loss of generality that: (i) we are in the process of scheduling slott ,
t ≥ 0, (ii) m′ ≤ m tasks are urgent at timet , and (iii)n′ ≤ n−m′ tasks are contending at
timet . Thus, it remains to select the highest-priority(m−m′)-subset of then′ contending
tasks. We now describe a generalized version of subroutineCompare to accomplish this
objective. The generalized subroutine works by applying a sequence of tie-breakers to
successive subsetsC0 ⊇ · · · ⊇ Ck = ∅ of the set of contending tasks. (These tie-
breakers correspond to the tie-breakers performed by the two-task version of subroutine
Compare.)

Tie-breaker 0 is applied to the entire set of contending tasks (i.e.,C0 is the set of con-
tending tasks). In general, tie-breakeri behaves as follows. First, an integer is calculated
for each task inCi . (The integer associated with a given taskx in Ci is the same as the
integer that would be assigned tox by tie-breakeri in a call to the two-task version of
Compare involving x and any other tasky in Ci .) Second, a linear-comparison selec-
tion algorithm is applied to this set of integers to partitionCi into the following three
uniquely-determined subsets: (i) the subsetC′i of tasks which must be scheduled in slot
t on the basis of tie-breakeri , (ii) the subsetC′′i of tasks which must not be scheduled in
slot t on the basis of tie-breakeri , and (iii) the remaining contending tasksCi+1. Note
that every task inCi+1 has the same associated integer in tie-breakeri (as well as in all
previous tie-breakers).
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The preceding discussion can be formalized in a straightforward fashion by using
induction over the sequence of tie-breakers. Now observe that a given taskx cannot
belong toCi unlessi is Big-Oh of the number of bits in the binary representation ofx.p.
The linear-time bound follows immediately.

7. Conclusions. We have defined a new notion of fairness, called P-fairness, which
we believe to be quite useful in a variety of resource allocation problems. We have
shown that P-fair schedules exist for the resource sharing problem, which is a slight
generalization of the periodic scheduling problem. Furthermore, we have provided an
efficient algorithm for computing a P-fair schedule.

The swapping argument of Lemma4.6captures the essence of P-fairness by modeling
exchanges that are permissible in P-fair schedules. An interesting problem for future
research is to identify generalizations of the periodic scheduling problem that can be
handled within the same framework.

TheCompare subroutine appears to be closely related to Euclid’s GCD algorithm,
as well as to various algorithms that have been proposed for 2-ILP, that is, integer linear
programming with two variables [6], [8], [13], [14]. (ILP is NP-complete in general,
but can be solved in polynomial time for any fixed number of variables [9].) Deng has
extensively studied the relationship between GCD and 2-ILP [3].

Our P-fair scheduling algorithm produces schedules with a large number of preemp-
tions. It would be interesting to investigate algorithms for solving the periodic scheduling
problem which minimize the number of preemptions.
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