60

1.00 [.
0.98 |- |
0.96 _
0.94 | ‘ _
092 |- '

0.90 - i
0.88 -
0.86 -
0.84 - -
0.82 (l |

0

REAL-TIME SYSTEMS

€

FIGURE 3.11
Processor utilization when the processor is fully utilized.

From this, we find the minimum value of U under full utilization to be 2(«/5 — 1.
This is the least upper bound. Q.E.D.

Example 3.12. Consider a two-task set with P; = 5, and P, = 7. In Figure 3.11,
we plot the utilization as a function of e; when the processor is fully utilized (e, is
chosen for full utilization).

Let us now extend this to more than two tasks. We do so in two steps.

First we will consider the case P, < 2P;. In this case, the longest period, P,,
contains only two releases of each higher-priority task; this will greatly simplify
our analysis. We will show that the least upper bound for schedulability in this case
is given by n(21/" —1). Then we will consider the P, > 2P, case. For each set S of
n tasks for which P, > 2Py, we will construct a set S of n tasks for which P, <
2P| (where P! is the period of the ith task in set S") with the property that if S fully
utilizes the processor, so does S’. We will show that the utilization of the processor
under S is no greater than the utilization under S. As a result, the least upper bound
of the utilization for the P, > 2P; case cannot be less than that for the P, < 2P,
case. The overall least upper bound for schedulability is therefore n(2'/" — 1).

Lemma 3.2. Given n tasks in the task set S with execution times e; for task 7, if
e =P —P fori=1,...,n—1,and e, = 2P, — P,, with P, < 2P, then under
the RM algorithm

e the task set fully utilizes the processor,

e there does not exist any other task set that also fully utilizes the processor and
that has a lower processor utilization, and

e the processor utilization is at least U = n(24/" — 1).

Proof. As before, assume that the tasks are numbered so that P, < P, < ... < P,.
Let U denote the processor utilization under this task set. The task set fully utilizes
the processor.

TASK ASSIGNMENT AND SCHEDULING 61

We will show that the utilization is minimized when e; = P, — P; by checking
out the cases when e; > P, — Py and ¢; < P, — P;. A similar argument yields the
best values for the execution time of the other tasks.

Consider the case where ¢; > P, — P, that is,

eg=P,— P+ A A>0 (3.20)

Figure 3.12a illustrates this situation for the tasks 7i, 75. The first release of task T
must complete before time P; (since the interval [Py, P,] will be fully occupied by
the second release of task 77).

Now, define another task set S’ with task execution times

e'l = €1—A
eé = €2+A
/ —

€3 = €3

/ f—

€, = ¢,

Task set S will also fully utilize the processor. The additional slack created in the
interval [0, P;] by reducing the T; execution time is cancelled out by increasing the
execution time of task 7,. See Figure 3.12a.

If U’ denotes the processor utilization under task set S’, we have

U-U=—-=50 (3.21)

Now, suppose that instead of Equation (3.20), we have
eg=P,— P —A A>0 (3.22)

In such a case, to fully utilize the processor, tasks 7>, T3, ..., must fill the intervals
[Py, Py] and [Py + ey, P,].

0 Py P,
e;=P,—P +A
g Pl P2
e{=Py- P
FIGURE 3.12a

Lemma 3.2; the shaded portion indicates when 77 is executing.

62 REAL-TIME SYSTEMS
TASK ASSIGNMENT AND SCHEDULING 63

To obtain the minimum possible U so that S completely utilizes the processor, we

must therefore choose Py, P,, ..., P, to minimize

0 . P, P, P, | P b, 2P
61=P2*P1-A PI PZ . Pn—l Pn

(3.26)

subject to the constraint that P, < 2P;.

Constrained minimization is quite easy, but unconstrained minimization is
even simpler. Let us carry out the unconstrained minimization (i.e., by ignoring the
constraint that P, < 2P;), and see if the result that we obtain satisfies the constraint

0 P, P,
¢j =Py~ P, P, < 2Py
2 To find the unconstrained minimum of #, we must solve the equations
FIGURE 3.12b
Lemma 3.2; the shaded portion indicates when 7; is executing. 8_14 _ 3_“ L 3_14 _0
6P, 9P, 0P, .27
Define another task set S” with task execution times This results in the following equations:
el =e+A pi=b
_ 5 . ;
¢f = ey — 24 Pi=Sen HM3sisn (3.28)
1
"
e, = €
T P} =2P\P, (3.29)
These equations yield
e// = ¢
n n P = 2G—Dfn P, (3.30)

Task set S will also fully utilize the processor. Task 7} will consume an extra A

time units in the interval [0, P;], and an additional A time units in [Py, P + el
To make up for this, we reduce the execution time of task T» by 2A; otherwise 1>
cannot meet its deadline. See Figure 3.12b.

In particular, if we set i = n in Equation (3.30), we have P, = 20" D/" P = P, <
2Py, which satisfies the constraint.
After a little algebra, the corresponding utilization can be shown to be equal to

If U’ denotes the processor utilization under task set S/, we have

U=n@"" -1 (3.31
A 2A 3D
U-U =—-——+ Q4) >0 (since Pr < 2Py) (3.23) Q.ED.
P, P,
From Equations (3.21) and (3.23), we have that if task set S minimizes the utilization
factor, %}? fact, we can do better than Lemma 3.2. We can prove the same result without
ep=P,— P (3.24) € constraint that P, < 2Py.
. . . . i Consider a task set S that satisfies all the conditions in the statement of
Using an identical argument, we can show that ¢; = P,y — P fori=2,...,n— 1. emma 3.2, except the one that P, < 2P;. Then, there exist tasks T; such that
. , :

{: n = Zf’i. Let O C S denote the set of such tasks. Construct another task set S’
Yy Starting with 7 and

To ensure that the set fully utilizes the processor, we must also have e, = 2P; — Py.
To see why, prepare a diagram showing the schedule that results when the execution
times are as chosen here. You will see that the only place left for the first iteration
of T, in the schedule is the interval between when the first iteration of T,,_; finishes
and the second iteration of 7, begins.

e replacing every task 7; € Q with a task 7/ that has P/ = |P,/P;] P; and

‘ The processor utilization under task set S is given by el{ =¢;, and
| - - ~ Py 2P-P, ~ : . . S
| g =B PPy P"P Ly P * rﬁplaemg task 7, with T, which has its execution time increased over
Py Py n—1 Py ;at of T, by the amount required to fully utilize the processor. Let A;
P, P P, 2P ¢ the amount of the increase that compensates for .
S ._3 _3 + + — + __1 —n (325) by T,/ i p the replacement of T;
e

64 REAL-TIME SYSTEMS

It is easy to see that A; < ([P,/Pi| —De;. Therefore, if U’ denotes the utilization
of task set T’, we have

/ SN e e
v=ue D {F 5 5]
ico n i

|_n € € €
U Ln)& a2
t2 (P,-J >Pn T Pi}

ieQ

- gl(B])e @)@ e

But, P, > P/. We therefore have from Equation (3.32) that
U <U (3.33)

So, task set S/, which satisfies the condition that P/ < 2P/ in Lemma 3.2, has a
lower utilization than S, which has the condition P, > 2P;. However, we know
from Lemma 3.2 that U’ > n(21/" — 1). It therefore follows that U > n(2'/" — 1)
for any periodic task set S that fully utilizes the processor. Hence, we have proved
the following theorem.

IA

Theorem 3.3. Any set of n periodic tasks that fully utilizes the processor under RM
must have a processor utilization of at least n(24/" — 1).

The necessary and sufficient conditions for schedulability are proved below.

Theorem 3.4. Given a set of n periodic tasks (with P; < P, < ... < P,), task T;
can be feasibly scheduled using RM iff L; < 1.

Proof. If L; < 1, then there exists t € [0, /], such that W;(z)/r < 1, that is,
W;(t) < t. Since ; = 0forali=1,....n (recall that we have shown that we
only need to check the case I} = ... = I, = 0), W;(r) < t implies that by time 7,
the computational needs of tasks 7 to T; have been met. As ¢ < P; task T; meets
its deadline.

Conversely, if W; () > ¢ for all ¢ € [0, P;], there is insufficient time to execute
task 7; before its deadline, P;. Q.E.D.

WHEN A TASK DEADLINE IS NOT EQUAL TO ITS PERIOD.* We have so far
assumed that the relative deadline of a task is equal to its period. Let us relax
this assumption. If we do so, the RM algorithm is no longer an optimum static-
priority scheduling algorithm. Consider first the case where the relative deadline
is less than the period. Then, a moment’s reflection shows that the necessary and
sufficient condition for task 7; to be RM-schedulable is

W (1) =t for some ¢t € [0, d;] (3.34)

The case d; > P; is much harder. Let us begin by considering again our result
that the worst-case response time of a task occurs when the task phasings are all

TASK ASSIGNMENT AND SCHEDULING 65

zero. When d; < P;, at most one initiation of the same task can be alive at any
one time. As a result, to check for schedulability it is sufficient to set the phasings
of all members of the task set to zero and to check that the first initiation of each
task meets its deadline. That is, in fact, the origin of RM-scheduling conditions
RM1 and RM2. When d; > P;, however, it is possible for multiple initiations of
the same task to be alive simultaneously, and we might have to check a number
of initiations to obtain the worst-case response time. To clarify this, consider the
Example 3.13.

Example 3.13. Consider a case where n = 2, e; = 28, e = 71, P; = 80, and
P, = 110. Set all task deadlines to infinity. The following table shows the response
times of task 7.

Initiation Completion time Response time

0 127 127
110 226 116
220 353 133
330 452 122
440 551 111
550 678 128
660 777 117
770 876 106

As we can see, the worst response time is not for the first initiation, but for the
third. This indicates that it is not sufficient just to consider the first initiation of all
the tasks.

We must do some additional work before we can write down the schedu-
lability condition for the d; > P; case. In this case, more than one iteration of
a task can be alive at any one time. As before, we assume that 7; has priority
over T; iff P; < P;; indeed, we number the tasks in the ascending order of their
periods (and thus in the descending order of their priorities).

Let S; = {T1, ..., T;}. We define the level-i busy period as the interval [a, D]
such that

b>a

only tasks in S; are run in [a, b],

the processor is busy throughout [a, b], and

the processor is not executing any task from S; just prior to a or just after b.

Example 3.14. Define S; = {T1, ..., T;} for i = 1,..., 5. In the schedule in Fig-
ure 3.13 shows the five busy-period levels.

Theorem 3.5. Task 7; experiences its greatest response time during a level-i busy
period, initiated with phasings I) = ... = I; = 0.

66 REAL-TIME SYSTEMS

(wlnlaln [nlnlnln]
Level 1 busy period
& Level 2 busy period
Level 3 busy period
Level 4 busy period
Level 5 busy period
FIGURE 3.13

Busy periods.

Proof. The proof is immediate for the highest-priority task, task 7. So, consider
tasks T}, for i > 1 and, without loss of generality, assume that /; = 0. Suppose [0, b)
is a level-i busy period and I; > 0. By the definition of busy period, only tasks of
higher priority than 7; execute in the interval [0, ;). Decreasing I; will not change
the times at which these higher-priority tasks finish; all it will do is to increase the
response time of 7;. Similarly, if 7, > 0 for some k < i, reducing I, will either
increase or leave unchanged the processing demands of 7; over the interval [0, b).
That is, reducing I; will either increase or leave unchanged the finishing time of Tg.
This completes the proof. Q.E.D.

Thus, to determine RM-schedulability, we can continue to concentrate on
the case where all phasings are zero. However, to ensure that task 7; meets its
deadline, we must check that all its initiations in a level-i busy period beginning
at time O meet their deadlines.

Let #(k,i) be when the kth initiation (within the busy period) of task T;
completes execution. We leave for the reader to show that #(k, i) is the minimum
¢ for which the following expression holds:

i—1
t
I = é; {—‘l + ke; (3.35)
. P:
This kth initiation will meet its deadline if
tk,i) < (k—1P; +d; (3.36)

To what value of k should we check that the above condition holds to ensure that
all iterations of T; meet their deadline? We leave for the reader to show that it is
sufficient to check that iterations 1 to £; meet their deadlines, where

£; = min{m|mP; > t(m,1)} (3.37)
Task T; is thus RM-schedulable iff
tk,i) < (k—1P +di, Vk=¢ (3.38)

and the entire task set is RM-schedulable iff all the tasks in it are RM-schedulable.
Can we obtain a results similar to Theorem 3.3 for the case d; # P;? It is
surprisingly difficult to do this and few results are known. We will state some of

TASK ASSIGNMENT AND SCHEDULING 67

these without proof. Suppose we have a task set for which there exists a y such
that d; = v P;, for all the tasks. Then it is possible to show the following result.

Theorem 3.6. Any set of n periodic tasks that fully utilizes the processor under RM
must have a processor utilization of at least

n (2" —1) ify =1
1/(n—1)
y+1
_1 _—— _— 1 —_—
14 if0<y <05
log,Qy) +1—y if05<y=l1

HANDLING CRITICAL SECTIONS. In our discussions so far, we have assumed
that all tasks can be preempted at any point of their execution. However, some-
times tasks may need to access resources that cannot be shared. For example, a
task may be writing to a block in memory. Until this is completed, no other task
can access that block, either for reading or for writing. A task that is currently
holding the unsharable resource is said to be in the critical section associated with
the resource.

One way of ensuring exclusive access is to guard the critical sections with
binary semaphores. These are like locks. When the semaphore is locked (e.g., by
setting it to 1), it indicates that there is a task currently in the critical section. When
a task seeks to enter a critical section, it checks if the corresponding semaphore is
¥ocked. If it is, the task is stopped and cannot proceed further until that semaphore
is unlocked. If it is not, the task locks the semaphore and enters the critical section.
When a task exits the critical section, it unlocks the corresponding semaphore.
For convenience, we shall say that a critical section S is locked (unlocked) when
we mean that the semaphore associated with S is locked (unlocked).

_ We will assume that critical sections are properly nested. That is, if we have
sections Sy, S, on a single processor, the following sequence is allowed: Lock S -
Lock §5. Unlock S;. Unlock S;, while the following is not: Lock ;. Lock S.
Unlock S;. Unlock S,.

Everything in this section refers to tasks sharing a single processor. We
assume that once a task starts, it continues until it (a) finishes, (b) is preempted
by some higher-priority task, or (c) is blocked by some lower-priority task that
hOl.ds the lock on a critical section that it needs. We do not, for example, consider
4 situation where a task suspends itself when executing I/O operations or when it
encounters a page fault. The results of this section can easily be extended for this
Case, however (see Exercise 3.12).

It.is possible for a lower-priority task 7 to block® a higher-priority task,
Ty. This can happen when Ty needs to access a critical section that is currently

2
l;;fhen a lower-priority task is in the way of a higher-priority task, the former is said to block the
€r. ;

68 REAL-TIME SYSTEMS

T,
. N

l hn I3 Iy Is lg Iy I3

FIGURE 3.14
Priority inversion.

being accessed by 7. Although T has higher priority than 77, to ensure correct
functioning, 77, must be allowed to complete its critical section access before Ty
can access it.

Such blocking of a higher-priority task by a lower-priority task can have the
unpleasant side effect of priority inversion. This is illustrated in Example 3.15.

Example 3.15. Consider tasks 7j, T3, T3, listed in descending order of priority,
which share a processor. There is one critical section S that both Ti and Ty use.
See Figure 3.14. T3 begins execution at time fy. At time #;, it enters its critical
section, S. T; is released at time # and preempts 73. It runs until 73, when it
tries to enter the critical section S. However, S is still locked by the suspended
task 73. So, Ti is suspended and 75 resumes execution. At time 74, task 75 is re-
leased. T, has higher priority than 73, and so it preempts 73. 7> does not need S
and runs to completion at z5. After 7, completes execution at #5, 75 resumes and
exits critical section S at 5. 7} can now preempt 73 and enter the critical sec-
tion.

Notice that although 75 is of lower priority than 7}, it was able to delay
Ty indirectly (by preempting 73, which was blocking 7). This phenomenon is
known as priority inversion. Ideally, the system should have noted that 7; was
waiting for access, and so 7, should not have been allowed to start executing
at 14.

The use of priority inheritance allows us to avoid the problem of prior-
ity inversion. Under this scheme, if a higher-priority task Ty is blocked by a
lower-priority task 77 (because 77, is currently executing a critical section needed
by Ty), the lower-priority task temporarily inherits the priority of Tj. When
the blocking ceases, T; resumes its original priority. The protocol is described
in Figure 3.15. Example 3.16 shows how this prevents priority inversion from
happening.

Example 3.16. Let us return to Example 3.15 to see how priority inheritance pre-
vents priority inversion. At time 3, when 73 blocks 7j, T3 inherits the higher priority
of Ti. So, when T3 is released at t4, it cannot interrupt 73. As a result, 77 is not
indirectly blocked by T>.

TASK ASSIGNMENT AND SCHEDULING 69

1. The highest-priority task T is assigned the processor. T relinquishes the pro-
cessor whenever it seeks to lock the semaphore guarding a critical section that
is already locked by some other job.

2. If a task Ti is blocked by 7, (due to contention for a critical section) and
Ty = T, task T, inherits the priority of 7; as long as it blocks 7,. When
T, exits the critical section that caused the block, it reverts to the priority it
had when it entered that section. The operations of priority inheritance and the
resumption of previous priority are indivisible.

3. Priority inheritance is transitive. If 75 blocks T3, which blocks 7y (with T >
T, > T3), then T3 inherits the priority of 7; through 75.

4. A task 71 can preempt another task 75 if T; is not blocked and if the current
priority of 7; is greater than that of the current priority of 75.

FIGURE 3.15
The priority inheritance protocol.

Unfortunately, priority inheritance can lead to deadlock. This is illustrated
by Example 3.17.

Example 3.17. Consider two tasks 7; and 75, which use two critical sections Si
and S,. These tasks require the critical sections in the following sequence:

Ti: Lock S;. Lock S;. Unlock S,. Unlock Si.
T>: Lock S,. Lock §). Unlock S;. Unlock S, .

Let T\ > T5, and suppose 75 starts execution at fo. At time £y, it locks S,. At
time #, 7 is initiated and it preempts 7> owing to its higher priority. At time 3,
Ty locks Sy. At time 14, T} attempts to lock S, but is blocked because 7> has not
finished with it. 75, which now inherits the priority of 77, starts executing. However,
when at time 5 it tries to lock Sy, it cannot do so since T, has a lock on it. Both T}
and 7, are now deadlocked.

~ There is another drawback of priority inheritance. It is possible for the
hlghest—priority task to be blocked once by every other task executing on the
ts}allmf)i processor. (The reader is invited in Exercise 3.8 to construct an example of

is.

~ To get around both problems, we define the priority ceiling protocol. The
Priority ceiling of a semaphore is the highest priority of any task that may lock
It Let P(T) denote the priority of task T, and P(S) the priority ceiling of the
Semaphore of critical section S.

Example 3.18. Consider a three-task system Ty, T», T3, with T} > T» > Ts. There
are four critical sections, and the following table indicates which tasks may lock
Wwhich sections, and the resultant priority ceilings.

70 REAL-TIME SYSTEMS

Critical section Accessed by Priority ceiling

M I, T | P(Ty)
Y T, T, Tz P(Ty)
S T3 P(T3)
Sy T, T3 P(1y)

The priority ceiling protocol is the same as the priority inheritance protocol,
except that a task can also be blocked from entering a critical section if there
exists any semaphore currently held by some other task whose priority ceiling is
greater than or equal to the priority of 7.

Example 3.19. Consider the tasks and critical sections mentioned in Example 3.18.
Suppose that 75 currently holds a lock on S5, and task that 7} is initiated. T; will be
blocked from entering S| because its priority is not greater than the priority ceiling
of SQ.

The priority ceiling protocol is specified in Figure 3.16. The key properties
of the priority ceiling protocol are as follows:

P1. The priority ceiling protocol prevents deadlocks.

P2. Let B; be the set of all critical sections that can cause the blocking of task
T: and t(x) be the time taken for section x to be executed. Then, 7: will be
blocked for at most maxyep, £(x).

1. The highest-priority task, T, is assigned the processor. T relinquishes the pro-
cessor (i.e., it is blocked) whenever it seeks to lock the semaphore guarding a
critical section which is already locked by some other task Q (in which case it
is said to be blocked by task Q), or when there exists a semaphore S’ locked
by some other task, whose priority ceiling is greater than or equal to the pri-
ority of T'. In the latter case, let S* be the semaphore with the highest priority
among those locked by some other tasks. We say that 7" is blocked on S*, and
by the task currently holding the lock on S*.

2. Suppose T blocks one or more tasks. Then, it inherits the priority of the highest-
priority task that it is currently blocking. The operations of priority inheritance
and resumption of previous priority are indivisible.

3. Priority inheritance is transitive.

4. A task T) can preempt another task 7 if 7> does not hold a critical section
which T; currently needs, and if the current priority of 77 is greater than that
of the current priority of 7>.

FIGURE 3.16
The priority ceiling protocol.

TASK ASSIGNMENT AND SCHEDULING 71

priority ceiling property P2 allows us to conduct a schedulability analysis on
systems using the priority ceiling protocol. Take, for example, the rate-monotonic
scheduling algorithm that we discussed earlier in this section. We can revise
Theorem 3.6 as follows (here we use 7; to denote both the task and its period—
which one it represents is obvious from the context):

Theorem 3.7. Any set of n periodic processes that fully utilizes the processor under
RM must have, for each i € {1, ..., n}

€] + €2 + i €; T b; < ~(21/i i
L2 _
PI ol T
P pTa fiT(/i

where b; = maXyep, 1 (x).
Proof. The proof is left to the reader as an exercise.

As a result of Theorem 3.7, we know that task 7; can be scheduled under
the RM algorithm to meet its deadline if

Qe a8y ouy
) g le A~ ’

. PR

The necessary and sufficient conditions for RM-schedulability can be similarly
written.

MATHEMATICAL UNDERPINNINGS OF THE PRIORITY CEILING ALGO-
RITHM.* To prove that priority ceiling properties P1 and P2 hold, we will need
the following series of results.

L(.emma 3.3. Task Ty can only be blocked by a lower-priority task 75 if 7, is in a
critical section at the time that 77 arrives.

PI.‘OO‘]‘: If 7, is not in a critical section when T; arrives, it will be preempted and
will never regain the processor until after 7 leaves. QE.D.

Lemma 3.4. Task T, can only be blocked by a lower-priority task T> if the priority

of T} is no greater than the greatest priority of all the semaphores currently locked
by all lower-priority tasks.

Proof. This follows immediately from the definition of the priority ceiling protocol.
Q.E.D.

'Lf?mma 3.5. Suppose that task 75 is currently executing critical section S,, and that
it is preempted by a higher-priority task 7 that then executes critical section Si. It

is i}npossible for T» to inherit a priority greater than or equal to that of Ty, until 7}
finishes execution.

Proof. T can only execute S; if

P(Ty) > ceil(S,) (3.40)

72 REAL-TIME SYSTEMS

T, can only inherit the priority of some task 7 if T is being blocked on S,. But

then,
. ceil(S,) = P(T) (3.41)
It follows from Equations (3.40) and (3.41) that
P(Ty) > P(T) (3.42)
Q.E.D.

Lemma 3.6. The priority ceiling protocol prevents transitive blocking.

Proof. Again, we prove the result by contradiction. Let the lemma be false. Then
there must exist tasks Ty, T», T3 such that 77 > T, > T3 and where T3 blocks T,
which blocks T;. But this would mean that T3 would inherit the priority of Ty. This
contradicts Lemma 3.5. Q.E.D.

We now have the means to prove property P1.
Theorem 3.8. The priority ceiling protocol prevents deadlocks.

Proof. Deadlock can only occur if we have a cycle of n tasks each blocking on
the one in front of it; see the example in Figure 3.17. (We are assuming that a task
never deadlocks with itself.) Since we have shown in Lemma 3.6 that transitive
blocking is impossible, the largest cycle we can have consists of just two tasks (i.e.,
n = 2). Assume that T» is preempted by 71 when T is in a set of critical sections
0. Suppose that then T; enters some critical section S;. This can only happen if
no member S, € o, is ever required by T; itself (otherwise S, would have priority
equal to that of 71 and 7; would not be allowed to enter any critical section as long
as T» was holding S»). Thus there is no possibility of a deadlock. Q.E.D.

In the following, let 7y > T>, and Bi be the set of critical sections of T2
that can block Tj. Let by be the critical section in Bj , that takes the longest
time to execute.

Lemma 3.7. T; can be blocked by 7, by at most by 2.

Proof. Since Ty > T», Ty can only be blocked by T» if T, is executing a critical
section in Bj », deadlock is not possible (by Theorem 3.8). T2 (which will inherit the
priority of T7) will exit that critical section within at most by unless it is preempted
by some task T > Tj. If such a preemption happens, 77 will no longer be blocked
by T>. If no such preemption occurs, T2 will exit 7, within at most by > and not
resume execution until 7} has completed execution. Q.E.D.

We are now ready to prove that property P2 holds. To facilitate this, define §; as
the set of all critical sections used by tasks 7; such that 7; > T;. Define b; as the
greatest execution time of any critical section in Bi.

FIGURE 3.17
r Six-task deadlocked system; the arrows
Ty T, T; T, Ts — T indicate a “waiting-for” relationship.

TASK ASSIGNMENT AND SCHEDULING 73

Theorem 3.9. Task 7; can be blocked by at most one lower-priori
i -pr
duration of at most b;. priority task, and for a

Proof. We prove this result by contradiction. Suppose task 7; can be blocked b
more than b;. This can only happen if it is blocked by n > 1 distinct tasks (since .
know from Lemma 3.7 that 7; can be blocked at most once by any one lower-pri i
task). priority
Suppose that T; is blocked by 71 and 7>. Assume, without lo i
that T; e T,. Of course, T; > T7 and T; > T». Suppose T; is blockedsliyog"lgier?e;alggd’
by T, in S,. (If either or both of these tasks is in a nested set of semaphores %ocus
on the outer;nost one). Then, 77 and 7, must have been in S; and S, respec’tivel
when T; arrived. Furthermore, 7, must have been in S, when T} arri\:ed v
Since T; enters S; with 75 in S,, we must have .

P(T7) > ceil($,) (3.43)
Since T; is blocked by T} on §;, we must have

P(T;) < ceil(Sy) (3.44)
Similarly, since 7; is blocked by 7> on S,

P(T;) < ceil($) (3.45)
But, this implies that

P(Ty) > P(T;) (3.46)
which is a contradiction. Q.ED

3.2.2 Preemptive Earliest Deadline First
(EDF) Algorithm

Alprocessor. foll.owing thg EDF algorithm always executes the task whose ab-
tsl? ute dead.hn.e. is the earliest. EDF is a dynamic-priority scheduling algorithm;
e task priorities are not fixed but change depending on the closeness of their

absolute deadline. EDF is also called the deadline-monotonic scheduling algo-
rithm,

Example 3.20. Consider the following set of (aperiodic) task arrivals to a system.

Arrival Execution Absolute

Task time time deadline
Ty 0 10 30
T, 4 3 10
T3 5 10 25

Whep T arrives,.it is the only task waiting to run, and so starts executing im-
mediately. 7, arrives at time 4; since d» < dj, it has higher priority than 7; and

74 REAL-TIME SYSTEMS

preempts it. 75 arrives at time 5; however, since ds > d,, it has lower priority than
T, and must wait for 75 to finish. When 75 finishes (at time 7), T3 starts (since it
has higher priority than 77). 75 runs until},l’S’: at which point 77 can resume and run
to completion. . I

In our treatment of the EDF algorithm, we will make all the assumptions we made
for the RM algorithm, except that the tasks do not have to be periodic.

EDF is an optimal uniprocessor scheduling algorithm. That is, if EDF can-
not feasibly schedule a task set on a uniprocessor, there is no other scheduling
algorithm that can.

If all the tasks are periodic and have relative deadlines equal to their periods,
the test for task-set schedulability is particularly simple:

If the total utilization of the task set is no greater than 1, the task set can be
feasibly scheduled on a single processor by the EDF algorithm.

There is no simple schedulability test corresponding to the case where the rela-
tive deadlines do not all equal the periods; in such a case, we actually have to
develop a schedule using the EDF algorithm to see if all deadlines are met over
a given interval of time. The following is a schedulability test for EDF under this
case.

Define u = Y '_;(&;/P;), dmax = MaX|<ij<,{d;} and P = lem(Py, ... P,).
(Here “lcm” stands for least common multiple.) Define k7 (¢) to be the sum of
the execution times of all tasks in set 7" whose absolute deadlines are less than 7.
A task set of n tasks is not EDF-feasible iff

e u>1or
e there exists

t < min {P + dmax. rnax{Pi — dl}}

— U 1<i<n

such that A7 (t) > t.

MATHEMATICAL UNDERPINNINGS.* As we said earlier, EDF is an optimal
uniprocessor scheduling algorithm (i.e., if a set of tasks cannot be feasibly sched-
uled under EDF, there is no other uniprocessor algorithm that can feasibly schedule
them).

Theorem 3.10. EDF is optimal for uniprocessors.

Proof. The proof is by contradiction. Assume that the theorem is not true and that
there is some other algorithm ¥ that is optimal. Then, there must exist some set of
tasks S such that S is X-schedulable but not EDF-schedulable. Let us focus on this
set S.

Suppose that 7, is the earliest absolute deadline that is missed by the EDF
algorithm. Define 7, as the last instant, prior to f>, at which EDF had the processor

TASK ASSIGNMENT AND SCHEDULING 75

working on a task whose absolute deadline exceeded #,. If no such instant exists,
set t; = 0. Since only tasks with absolute deadlines < t, are scheduled by EDF in
the interval [},], any task executing in that interval must have been released at or
after 7;. The reason is that at #,, the processor was executing a task with an absolute
deadline > %, which would only have been possible under EDF if there was no
pending task at #; with an absolute deadline < 1,.

Define

A = {T;|T; is released in [ty, ;] and D; < fp}
B = {T;|T; is released in [t1,] and D; > 1}

By the definition of #, B is nonempty. Also by the definition of the 7, all the
deadlines of the tasks in A are met by both EDF and X. We have two cases.

Case 1. Under EDF, the processor is continuously busy over [, 1;].
Let EEPF(A), EFPY(B), E¥(A), E¥(B) be the execution time over
(t1, 1] allocated by EDF and ¥ to the tasks in A and B, respectively. Then,

EFPP(A) + EFF(BY =1, — 1y (3.47)
Since all the deadlines of the tasks in A are met by both EDF and X,
EEPF(A) = EF(A) (3.48)

However, since at least one task in B misses its deadline under EDF, we must
have

EFPY(B) < EX(B) (3.49)
Hence, in the interval (¢, #,], under X, the processor is used for
E¥*(A) + EX(B) > E®PF(A) + EFPF(B) [from (3.48) and (3.49)]
=t—1 [from (3.47)] (3.50)

But that is plainly impossible, and we have a contradiction.

Case 2. Under EDF, the processor is idle over some part of (1, f].

Let 73 be the last instant in (7,] at which the processor is idle under
the EDF discipline. Since EDF causes a deadline to be missed at £, 3 < f2.

The processor can only be idle at 13 if there are no pending requests for
execution, that is, if every task released prior to 73 has been executed. The
argument we made in Case 1 over the interval (¢;, t,] now applies over the
interval (zs, 1;], and so here too we have a contradiction. This completes the
proof. Q.E.D.

Let us now turn to periodic task sets. We will first consider the case where
for every task the relative deadline equals the task period, and show that the nec-
ESsary and sufficient condition for a task set to be schedulable is Y\, ¢;/P; < 1.
To begin with, as with the RM algorithm, it is sufficient to consider the case
Where all the task phasings are zero. We then proceed in two steps. First, we
show that if a deadline is indeed missed under EDF, the processor will be
continuously busy from time O to when it missed the deadline. This tells us

76 REAL-TIME SYSTEMS
TASK ASSIGNMENT AND SCHEDULING 77

\ the amount. of work that the processor.has Sompleted up to that tn.ne. W.e can it will be missed at time ¢ < #. Also, the processor cannot be idle at any time i
then use this information to show that if Y :_,e;/P; < 1, all deadlines will in- (#1, t'] under this new task phasing. (Why?) n
deed be satisfied. In what follows, we will assume that all task phasings are Now, compare the situation under the new task phasing over the interval

(#1, tr] with the situation under the zero task phasing over the interval (0, ¢]. The
load presented to the processor at time #; is the same under the new task’ plh.asin

as it was at Fime 0 under the zero task phasing. But, we have argued that unde%
the new phasing, the processor will be busy throughout (z;, #'], and miss a deadline

Z€ro.

Lemma 3.8. If a deadline is missed for the first time at f7, the processor is contin-

uously busy throughout the interval [0, 7r].
! at ¢'. Therefore, under the zero task phasing the processor cannot have been idle
before the deadline was missed. We therefore have a contradicti
} Proof. We proceed by contradiction. Suppose this lemma is not true and that the is proved. ontradiction and the lginll)a

processor was idle at some time within the interval [0, #;] when all the task phas-
ings are O (ie., the first iteration of each task is released at time 0). Let #; be

the last such time; that is, the processor was idle at #;, but busy in the interval Now, we are ready to prove Theorem 3.11, which contains the necessary and

sufficient condition:

(t, l‘f].
If the processor was idle at 7;, it must be that all the tasks released prior to

#; have been completed by #;. Therefore, all tasks executing in the interval (¢1, #f] Theorem 3.11. Suppose we have t of .
\ must have been released in that interval and no task released prior to 7 will affect B line eql.lals. it I;ri od. Th 2 %e of n periodic tasks, each of whose relative

the scheduling in (7, ;] (since all such tasks have completed and left the system). p - They can be feasibly scheduled by EDF iff
‘ Now, construct a new task phasing so that every task has one iteration released at n
| f1. (See Figure 3.18). Under this case, also, a deadline will be missed; in particular, Z(ei /Py < 1

i=1

Proof. Proving that scheduling is impo.ssibI.e if Z?zl(ei/P,«) > 1 is the easy part—
we sunply show that the processor utilization would have to exceed 1, which is
) impossible. Suppose that) . (¢;/P;) > 1. Let P be the least common multi-
ple (dem) of {Py, ..., P,} and ¢; = P/P;. Then, over the interval [kP, (k + 1)P]
k=0,1,..., the processor will receive requests for a total of ’

n

Z;EfeFP Z% > P (3.51)
i

i=1

'f
} t |
%

units of work. Reque§ts for processor time thus arrive at a higher rate than they can
be met and the unfinished work will pile up without limit as time goes on. Hence,
the task set cannot be feasibly scheduled if) ;_ (e;/P;) > 1.

Next we must prove that if Z:’:l(ei /P;) < 1, EDF will indeed schedule
su.ccessfully. This is a little harder and we proceed by contradiction. Suppose that
this theorem is not true and that there exists some task set S of 7 tasks that are not
EDF-_sche?dulable, despite Z?:I(ei /P;) < 1. Let t; be the earliest time at which a
deadline is missed. Since the set of tasks is finite, such an earliest time does exist
?él(;l tr > 0. Let S denote the set of tasks in S with an absolute deadline equal

f .
A From Lemma 3.8, we know that the processor must be busy throughout the
interval [0, tr]. There are now two cases to consider:

f Case 1. None of the tasks executed in [0, t¢] have absolute deadlines beyond

B Is. The num_ber of iterations of task I; that have to be completed in [0, 7]

] }35 L7/ P;], since all other iterations have absolute deadlines expiring after 7.

IGURE 3.18 ut the processor is busy throughout the inte i
‘ . o TV 1.
Lemma 3.8: (a) schedule with zero phasing; (b) schedule with new phasing. The processor is idle that the tasks whose absoylute deidlines were 16821&[12;16;; ii;rg;z’dlg I;l;lriltagz
N i
over the shaded portions of an execution time of more than #; on the processor. In other words, we

78 REAL-TIME SYSTEMS

must have:

N Z ey (3.52)

which contradicts the assumption that ¥ ;_, (e;/P:) < 1.

Case 2. Some tasks executed in the interval [0, 7] have absolute deadlines
beyond 7¢. We handle this much as we handled Lemma 3.8. Let T be the last
time before #; that a task with absolute deadline greater than 7 was executed.
Since we are using the EDF algorithm, if such a task was being executed
at 7, there must be, at time 7, no tasks awaiting service that have absolute
deadlines expiring at or before #;. Thus, all the tasks that are executed in
the interval [z, z;] must be released in that interval. But since a deadline was
missed, we must have that the total demand upon the processor during that
interval was greater than the length of that interval. In other words, we must

have:
L(tf;lr)Je“LL(tfz;t)JeﬁerLE%L)J% P

N [([fljlf)}el_‘_[([fP;r):\ez_F..._}_[(tfp_nf)}en>tf—T

. (3.53)

which is a contradiction.

This completes the proof. Q.E.D.

Theorem 3.11 allows us to quickly check the feasibility of any allocation
when the relative task deadlines equal their periods. Unfortunately, there is no
efficient way to check feasibility if the relative deadlines do not all equal their
periods or if there are sporadic tasks. In order to verify schedulability, we have
to actually schedule the task set using EDF and then check if all the deadlines
have been satisfied. Since we can’t check schedulability for an infinite number
of cases, we must obtain a finiteness result, which says that if deadlines are ever
missed the time of the earliest missed deadline will have a known upper bound.
Then we only need to check feasibility up to that point.

Just as with the RM algorithm, it is easy to show that the worst-case exe-
cution time of a task occurs when all the task phasings are zero. So, if we verify
schedulability for this case, it will hold for all task phasings.

TASK ASSIGNMENT AND SCHEDULING 79

For the finit =
| lcm(Pl enes; r)es%lt,ﬁwe }(lleﬁne u=2y " (e/Pi), dmax = Maxi<i<,{d;}
an (P, ... Py). Define 7(¢) to be the sum of the execution times of
all the tasks in set 7" whose absolute deadlines are less than or equal to .

Theorem 3.12. A task set of n tasks is not EDF-feasible iff

e uu>1or

e there exists

. u
t<mln{P + dinax., 7 maX{Pi~di}}
— U 1<i<n

such that 27 (1) > t.

Under this theorem, we only need to check for feasibilit ite ti
.) y up to some finite time.
We can build the proof of Theorem 3.12 using the following series of lemmas.

Lemnla 3.9. A g]VeIl set Z ()t peIl()dlC taSkS 1S not EDI —SChedlﬂal)le 111 thele €X1Sts
some time ¢ such that]’lz (l) > 1.

Proof. This has been left to the reader.

Lemma 3.10. Given a set 7 of n periodic tasks, if u < 1,

hr(t+P)>1t4+ P = hr(t) >t for all ¢ > dpax

Proof

hr(t)+ P = ZE;
i=1

v
A
P N N
I I
Mo |
2 T8
’ I
+
N
+
~
iM-
e

since P is a multiple of P;

Hence,

hr(t+P)>t+ P = hr(t) >t (3.54)
Q.E.D.

Lelllllla 3.11. I§i taSk set Z 1S not EDI “feaslble and u < 1, [hen thele €X1Sts 7
dmax SuCh that h] (Z) > 1.)

Proof. Follows immediately from Lemma 3.10.

Q.ED.

