Example: scheduling using EDF

Problem: Assume a system with tasks according to the figure below. The timing properties of the tasks are given in the table.

- a) Determine, by analyzing the processor demand, whether the tasks are schedulable or not using EDF.
- b) Determine, by using simulation, whether the tasks are schedulable or not using EDF.

Task	C _i	D _i	T _i
$ au_1$	2	3	4
$ au_2$	2	7	8
τ_3	3	12	16

CHALMERS

Example: scheduling using EDF

a) Determine the LCM for the tasks:

$$LCM\{T_1, T_2, T_3\} = LCM\{4, 8, 16\} = 16$$

Determine the control points K:

$$K_{1} = \left\{ D_{1}^{k} \mid D_{1}^{k} = kT_{1} + D_{1}, D_{1}^{k} \le 16, k = 0, 1, 2, 3 \right\} = \left\{ 3, 7, 11, 15 \right\}$$

$$K_{2} = \left\{ D_{2}^{k} \mid D_{2}^{k} = kT_{2} + D_{2}, D_{2}^{k} \le 16, k = 0, 1 \right\} = \left\{ 7, 15 \right\}$$

$$K_{3} = \left\{ D_{3}^{k} \mid D_{3}^{k} = kT_{3} + D_{3}, D_{3}^{k} \le 16, k = 0 \right\} = \left\{ 12 \right\}$$

The processor demand must be checked at the following time points:

$$K = K_1 \cup K_2 \cup K_3 = \{3,7,11,12,15\}$$

11

12

15

15 - 3

CHALMERS **Example: scheduling using EDF** We define a table and examine every control point: $N_1^L \cdot C_1$ $N_2^L \cdot C_2$ $N_3^L \cdot C_3$ $C_{p}(0,L)$ $C_p(0,L) \leq L$ L3 - 12OK! 3 . 2 = 2 \cdot 3 = 0 2 16 7 \cdot 3 = 0 OK!

2 = 2

16 15-12 . 3 = 0

. 3 = 3

· 3 = 3

8

11

15

OK!

OK!

OK!

Example: scheduling using EDF

Problem: Assume a system with tasks according to the figure below. The timing properties of the tasks are given in the table.

Three resources R_1 , R_2 and R_3 have three, one, and three units available, respectively.

The parameters H_{R1} , H_{R2} and H_{R3} represent the longest time a task may use the corresponding resource.

The parameters μ_{R1} , μ_{R2} and μ_{R3} represent the number of units a task requests from the corresponding resource.

Task	Ci	D _i	T _i	H _{R1}	H _{R2}	H _{R3}	μ_{R1}	μ_{R2}	μ_{R3}
$ au_{_1}$	6	10	50	2	-	2	1	-	1
$ au_2$	7	17	50	1	2	2	2	1	3
$ au_3$	10	25	50	2	3	2	3	1	1

CHALMERS

Example: scheduling using EDF

Problem: (cont'd)

Task τ_1 first requests R₃ and then, while using R₃, requests R₁

Task τ_2 first requests R₃ and then, while using R₃, requests R₂;

then,-after releasing the two resources, τ , requests R₁

Task τ_3 first requests R₂ and then, while using R₂, requests R₁; then, after releasing the two resources, τ_3 requests R₃

Examine the schedulability of the tasks when the SRP (Stack Resource Policy) protocol is used.

- a) Derive the ceilings (dynamic and worst-case) of the resources.
- b) Derive the blocking factors for the tasks.
- c) Show whether the tasks are schedulable or not.

Example: scheduling using EDF

a) Preemption levels of the tasks:

 $\pi_1 = H$ (τ_1 has the shortest relative deadline)

 $\pi_2 = M$

 $\pi_3 = L$ (τ_3 has the longest relative deadline)

CHALMERS

Example: scheduling using EDF

Resource ceiling $C_R(a)$ as a function of available units a:

 $(\mathit{C_{\mathit{R}}(0)}$ is the worst-case ceiling used for calculating blocking factors)

	$C_R(3)$	$C_R(2)$	$C_R(1)$	$C_R(0)$
$R_{_1}$	0	Γ_{1} uses σ_{3} may block	L $ au_2$ uses $ au_3$ may block	H $ au_3$ uses $ au_1$ may block
R_2	-	-	0	$rac{ au_3}{ au_2}$ uses $rac{ au_2}{ au_2}$ may block
R_3	0	M	${f M}$ ${f au_1}$ and ${f au_3}$ use ${f au_2}$ may block	$egin{array}{c} H & & & & & & & & & & & & & & & & & & $

Example: scheduling using EDF

b) Observe that nested blocking is used by all tasks. This could lead to accumulated critical region blocking times in the final blocking factor.

CHALMERS

Example: scheduling using EDF

Blocking factors for the tasks:

$$B_1 = \max\{1,4,2,2\} = 4$$

$$\tau_2 \text{ uses } R_1$$

$$T_3 \text{ uses } R_3$$

$$B_{_{3}}=0$$
 $au_{_{3}}$ has lowest preemption level, and cannot be blocked

Example: scheduling using EDF

c) Determine the LCM for the tasks:

$$LCM\{T_1, T_2, T_3\} = LCM\{50, 50, 50\} = 50$$

Determine the control points K:

$$K_1 = \left\{ D_1^k \mid D_1^k = kT_1 + D_1, D_1^k \le 50, k = 0 \right\} = \left\{ 10 \right\}$$

$$K_2 = \left\{ D_2^k \mid D_2^k = kT_2 + D_2, D_2^k \le 50, k = 0 \right\} = \left\{ 17 \right\}$$

$$K_3 = \left\{ D_3^k \mid D_3^k = kT_3 + D_3, D_3^k \le 50, k = 0 \right\} = \left\{ 25 \right\}$$

The processor demand must be checked at the following time points:

$$K = K_1 \cup K_2 \cup K_3 = \{10,17,25\}$$

CHALMERS

Example: scheduling using EDF

Processor demand calculations for each task:

$$C_P^1 = \left(\left\lfloor \frac{L - D_1}{T_1} \right\rfloor + 1 \right) C_1 + \left(\left\lfloor \frac{L - D_1}{T_1} \right\rfloor + 1 \right) B_1$$

$$C_P^2 = \left(\left\lfloor \frac{L - D_1}{T_1} \right\rfloor + 1 \right) C_1 + \left(\left\lfloor \frac{L - D_2}{T_2} \right\rfloor + 1 \right) C_2 + \left(\left\lfloor \frac{L - D_2}{T_2} \right\rfloor + 1 \right) B_2$$

$$\begin{split} C_p^3 &= \left(\left\lfloor \frac{L - D_1}{T_1} \right\rfloor + 1 \right) C_1 + \left(\left\lfloor \frac{L - D_2}{T_2} \right\rfloor + 1 \right) C_2 + \left(\left\lfloor \frac{L - D_3}{T_3} \right\rfloor + 1 \right) C_3 + \left(\left\lfloor \frac{L - D_3}{T_3} \right\rfloor + 1 \right) B_3 = \\ &= \left\{ B_3 = 0 \right\} = \left(\left\lfloor \frac{L - D_1}{T_1} \right\rfloor + 1 \right) C_1 + \left(\left\lfloor \frac{L - D_2}{T_2} \right\rfloor + 1 \right) C_2 + \left(\left\lfloor \frac{L - D_3}{T_3} \right\rfloor + 1 \right) C_3 \end{split}$$

CHALMERS Example: scheduling using EDF $C_p^2(0,17) > 17 \text{ (FAIL!)}$ We define a table and examine every control point: $C_p^1(0,L)$ $C_p^2(0,L)$ L $C_P^3(0,L)$ $\left(\left\lfloor \frac{10 - 10}{50} \right\rfloor + 1 \right) 6 + \left(\left\lfloor \frac{10 - 17}{50} \right\rfloor + 1 \right) 7 +$ $\left(\left\lfloor \frac{10-10}{50} \right\rfloor + 1 \right) 6 + \left(\left\lfloor \frac{10-17}{50} \right\rfloor + 1 \right) 7 +$ 10 = 6 + 4 = 10 $\left(\left\lfloor \frac{17 - 10}{50} \right\rfloor + 1 \right) 6 + \left(\left\lfloor \frac{17 - 17}{50} \right\rfloor + 1 \right) 7 + \\$ 17 $\left(\left\lfloor \frac{25 - 10}{50} \right\rfloor + 1 \right) 6 + \left(\left\lfloor \frac{25 - 10}{50} \right\rfloor + 1 \right) 4 =$ = 6 + 4 = 1025 $+\left(\left[\frac{25-25}{50}\right]+1\right)10=6+7+10=23$