
	

	

Chalmers University of Technology

#1 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Advanced Software Architecture���
���

Lecture #1 - Introduction	

Professor Jörgen Hansson	

Department of Computer Science and Engineering	

Chalmers University of Technology	

jorgen.hansson@chalmers.se	

	

	

Chalmers University of Technology

#2 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Brief Intro of Me	

Work Experience	

2010 - 	
 	
Professor at Chalmers in the area of software engineering	

2005-2010 	
Senior Member of Technical Staff ���

	
 	
Software Engineering Institute, Carnegie Mellon Univ.,
USA	

–  Focus on architectural descriptions and validation using the industry
standard AADL, which was created by the SEI.	

	

2000-2007 	
Professor at Linköping University in the area of real-time

	
 	
systems	

–  Focus on management of real-time data in embedded real-time systems,

including QoS/QoD, real-time component models, database systems	

	

	

	

Chalmers University of Technology

#3 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Brief Intro of Me	

Domain experience: 	

•  Governmental experience: Dept of Defense (DoD), Dept of Energy

(DoE), Dept of Interior (DoI), Veterans Administration (VA), National
Security Agency (NSA), U.S. Nuclear Regulatory Commission (NRC)	

Industrial experience: 	
	

•  Aviation: AVSI, including Boeing, Airbus, BAE, Rockwell-Collins	

•  Automotive: Toyota Research (Tokyo), Volvo CE, Saab Automobile,

Fiat/GM powertrain, Mecel	

Other:	

•  Worked as a consultant and advisor in the areas of embedded real-time

systems, networked systems, and software engineering	

•  Started a spin-off company in the area of real-time data management 	

	

	

Chalmers University of Technology

#4 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Outline	

•  What is an Architecture
•  What is the rationale and purpose of architecting
•  I.e., what are the problems architecting aims to address
•  Designing and Architecting next generation aircraft
•  Architectural Assessment
•  The SAE AADL architecture description language – An overview

	

	

Chalmers University of Technology

#5 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

CNN	

	

	

Chalmers University of Technology

#6 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

What are the problems? ���
���

And what do they have to do with architecture?	

	

	

Chalmers University of Technology

#7 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Late Discovery of System Problems	

•  Mismatched assumptions	

•  Units, range, delta, base value (Ariane)	

•  False promises of time partitioning	

•  DMA impact across partitions (JSF)	

•  Unmanaged resource sharing	

•  Overload of device bus (Daimler)	

•  Unexpected Latency variation 	
	

•  Unexpected latency jitter (F16)	

•  Trusting scheduling analysis	

•  Detection of priority inversion (Mars Rover)	

	

	

Chalmers University of Technology

#8 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

System Level Fault Root Causes	

Violation of data stream assumptions	

–  Stream miss rates, mismatched data representation, latency jitter & age	

Partitions as Isolation Regions	

–  Space, time, and bandwidth partitioning	

–  Isolation not guaranteed due to undocumented resource sharing	

–  Fault containment, security levels, safety levels, distribution	

Virtualization of time & resources	

–  Logical vs. physical redundancy	

–  Time stamping of data & asynchronous systems	

• Inconsistent System States & Interactions	

–  Modal systems with modal components	

–  Concurrency & redundancy management	

–  Application level interaction protocols	

	

	

Chalmers University of Technology

#9 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Observations and Facts	

•  Systems outlive their anticipated life expectancy	

•  Costly faults due to mismatch of assumptions between components and systems	

•  Tiny proportion of failures due to bugs *	

•  Largest proportion due to eliciting, recording, and analysis of requirements*	

•  Scientific evaluation of software failures hard due to lack of reliable data*	

•  Certification regimes and standards reliance on testing, not enough for high

dependability*	

•  Result:	

–  system integration – high risk; 	
 	
evolvability – very expensive	

–  life cycle support – very expensive; 	
leads to rapidly outdated components	

	

* Software for Dependable Systems: Sufficient Evidence? By Daniel Jackson et al.	

	

	

Chalmers University of Technology

#10 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

5x	

Software
Architectural

Design

System
Design

Component
Software
Design

Code
Development

Unit
Test

System
Test

Integration
Test

Acceptance
Test

Requirements
Engineering

30x	

Source: NIST Planning report 02-3, “The
Economic Impacts of Inadequate
Infrastructure for Software Testing”, May
2002.	

Where are faults introduced?	

Where are faults found?	

What is the estimated
nominal cost for fault

removal?	

20.5%	

1x	

20%, 16%	

10%, 50.5%	

0%, 9%	
 15x	

70%, 3.5%	

10x	

20x	

1x	

	

	

Chalmers University of Technology

#11 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Defect Economics	

Phase	

Defects

originating in
phase (%)	

Relative defect removal cost ���
of each phase of origin	

Req’s	
 Design	
 Unit test	
 Integration	
 Documentation	

Requirements	
 15%	
 1	

Design	
 35%	
 2.5	
 1	

Unit coding	
 30%	
 6.5	
 2.5	
 1	

Integration 	
 10%	
 16	
 6.4	
 2.5	
 1	

Documentation	
 10%	
 1	

System/Accep-
tance test	
 -	
 40	
 16	
 6.2	
 2.5	
 2.5	

Operation	

	
 N/A	
 110	
 44	
 17	
 6.9	
 6.8	

	

Source: D. Galin, “Software Quality Assurance: From Theory to Implementation”, Pearson/Addison-Wesley (2004) & ���
B.W. Boehm, “Software Engineering Economics”, Prentice Hall (1981)	

	

	

	

Chalmers University of Technology

#12 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

0.0x	

200.0x	

400.0x	

600.0x	

800.0x	

1000.0x	

1200.0x	

1400.0x	

Req.eng	 	
-‐	
arch	 design	
 Code	 dev.	 &	 unit	 test	
 Integra>on	 &	 system	 test	
 Acceptance	 test	
 User	 	

Tradi>onal	 approach	
 Improved	 scenario	 1	
 Improved	 scenario	 2	
 Improved	 scenario	 3	

•  Req – Arch design phase: 45.5 (of 70) faults
introduced are detected (change from 3.5)	

•  Integration phase: Reduction in detection from 50.5
faults to 20 faults	

•  Number of faults detected by user is decreased from
20 to 10 faults	

Reduction of faults in
code development from
20 to 2 faults. 	

•  Req – Arch design phase: 60 (of 70) of faults
introduced are detected (change from 45.5)	

•  Integration phase: Reduction in detection from 50.5
to 10 (change from 20)	

•  Acceptance test: Reduction in detection from 9 faults
to 4.5 faults	

•  Number of faults detected by user is further decreased
from 20 to 5 (change from 10)	

Number of faults: 100���
Fault removal cost: x$ for one fault introduced in the same phase	

y-axis represents cumulative cost over the phases 	

46.8% reduction	

50.3% reduction	

71.8% reduction	

	

	

Chalmers University of Technology

#13 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Traditional Embedded System Engineering	

System Engineer	
 Control Engineer	

System	

Under 	

Control	

Control	

System	

	

	

Chalmers University of Technology

#14 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Software-Intensive Embedded Systems	

System Engineer	
 Control Engineer	

A
pplication D

eveloper	
H
ar

dw
ar

e
En

gi
ne

er
	

System	

Under 	

Control	

Control	

System	

Compute	

Platform	

Runtime	

Architecture	

Application	

Software	

Embedded SW System Engineer	

	

	

Chalmers University of Technology

#16 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	
16	

Mismatched Assumptions	

System Engineer	
 Control Engineer	

A
pplication D

eveloper	
H
ar

dw
ar

e
En

gi
ne

er
	

System���
Under ���
Control	

Control���
System	

Compute���
Platform	

Runtime���
Architecture	

Application ���
Software	

Embedded SW System Engineer	

Physical Plant
Characteristics	

Data Stream
Characteristics	

Precision
Units	

Concurrency
Communication	
Distribution

Redundancy	

	

	

Chalmers University of Technology

#18 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

About Time to Discuss What an Architecture is…	

	

	

Chalmers University of Technology

#19 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Group Discussion 	

Scenario: “Play it everywhere”.	

You work at the company Macrohard and you are
tasked to develop a networked computer game. The
theme for the game is heavily inspired by the latest
movie Spider-man 2.0 which was just released. In
order to maximize outreach, it is important that the
computer game can run on several platforms (personal
computers and some mobile phones).	

	

Your task is to architecture the system.	

Q1: Who do you believe your stakeholders are?	

Q2: What do you imagine their expectations of the
system are, or what the system requirements are?	

	

	

Chalmers University of Technology

#20 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

“Modern” Definitions	

ANSI/IEEE Std 1471-2000, Recommended Practice for Architectural
Description of Software-Intensive Systems 	

•  Architecture is defined by the recommended practice as the fundamental

organization of a system, embodied in its components, their relationships to
each other and the environment, and the principles governing its design and
evolution. 	

•  This definition is intended to encompass a variety of uses of the term
architecture by recognizing their underlying common elements. Principal
among these is the need to understand and control those elements of system
design that capture the system’s utility, cost, and risk. In some cases, these
elements are the physical components of the system and their relationships. In
other cases, these elements are not physical, but instead, logical components.
In still other cases, these elements are enduring principles or patterns that
create enduring organizational structures. 	

	

	

Chalmers University of Technology

#21 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

“Modern” Definition of a Software Architecture	

The software architecture of a program or computing system is the
structure or structures of the system, which comprise software
components, the externally visible properties of those components,
and the relationships between them. 	

•  "Externally visible” properties: refers to those assumptions other elements can
make of an element, e.g., such as its provided services, performance
characteristics, fault handling, shared resource usage, and so on. 	

The term also refers to documentation of a system's software architecture.
Documenting software architecture facilitates communication between
stakeholders, documents early decisions about high-level design, and
allows reuse of design components and patterns between projects.	

	

Bass, Len; Paul Clements, Rick Kazman (2003). Software Architecture In Practice, Second Edition.

Boston: Addison-Wesley. pp. 21–24. ISBN 0-321-15495-9. 	

	

	

Chalmers University of Technology

#22 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Implications of Previous Definition	

Implication #1: Architecture defines elements. 	

•  The architecture embodies information about how the elements relate

to each other. This means that architecture specifically omits certain
information about elements that does not pertain to their interaction. 	

•  Thus, an architecture is foremost an abstraction of a system that
suppresses details of elements that do not affect how they use, are used
by, relate to, or interact with other elements. 	

•  In nearly all modern systems, elements interact with each other by
means of interfaces that partition details about an element into public
and private parts. Architecture is concerned with the public side of this
division; private details of elements—details having to do solely with
internal implementation—are not architectural	

	

	

Chalmers University of Technology

#23 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Implications of Previous Definition	

Implication #2: Systems can and do comprise more than one structure . 	

•  No single structure holds the irrefutable claim to being the architecture. 	

	

Comment: For example, all non-trivial projects are partitioned into
implementation units; these units are given specific responsibilities, and
are the basis of work assignments for programming teams. This kind of
element will comprise programs and data that software in other
implementation units can call or access, and programs and data that are
private. In large projects, the elements will almost certainly be subdivided
for assignment to sub-teams. This is one kind of structure often used to
describe a system. It is a very static structure, in that it focuses on the way
the system’s functionality is divided up and assigned to implementation
teams. 	

	

	

Chalmers University of Technology

#24 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Implications of Previous Definition	

Implication #3: Every software system has an architecture because every
system can be shown to be composed of elements and relations among
them. 	

	

Comment: In the most trivial case, a system is itself a single element
(monolith)—an uninteresting and probably non-useful architecture, but an
architecture nevertheless. Even though every system has an architecture, it
does not necessarily follow that the architecture is known to anyone.
Unfortunately, an architecture can exist independently of its description or
specification, which raises the importance of architecture documentation
and architecture reconstruction.	

	

	

Chalmers University of Technology

#25 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Implications of Previous Definition	

Implication #4: The behavior of each element is part of the architecture 	

•  Behavior (fully or partially) can be observed or discerned from the point
of view of another element. 	

	

Comment: This behavior is what allows elements to interact with each
other, which is clearly part of the architecture. This does not mean that the
exact behavior and performance of every element must be documented in
all circumstances; but to the extent that an element’s behavior influences
how another element must be written to interact with it or influences the
acceptability of the system as a whole, this behavior is part of the software
architecture. 	

	

	

Chalmers University of Technology

#26 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Implications of Previous Definition	

Implication #5: Definition is indifferent as to whether the architecture for
a system is a good one or a bad one, 	

•  Architecture will allow or prevent the system from meeting its

behavioral, performance, and life-cycle requirements. 	

•  Architecture Evaluation is important	

–  Assuming that we do not accept trial and error as the best way to
choose an architecture for a system—that is, picking an
architecture at random, building the system from it, and hoping for
the best—this raises the importance of architecture evaluation.	

	

	

Chalmers University of Technology

#27 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

IMPLEMENT AND EVOLVE	

SATISFY	

Architecture Design and Analysis

DESIGN	
 IMPLEMENT	

SATISFY	
 CONFORM	

ARCHITECTURE	
 SYSTEM	
BUSINESS AND	

MISSION GOALS	

!
!
!

A software architecture is a  
“first cut” at solving the problem !

and designing the system!

	

	

Chalmers University of Technology

#28 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Software Processes and Architecture Business Cycle	

•  Creating the business case for the system	

•  Understanding the requirements	

•  Creating or selecting the architecture	

•  Documenting and communicating the architecture	

•  Analyzing or evaluating the architecture	

•  Implementing the system based on the architecture	

•  Ensuring that the implementation conforms to the architecture	

	

	

Chalmers University of Technology

#29 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

“If a project has not achieved a system  
architecture, including its rationale, the project  

should not proceed to full-scale system development.”  
-- Barry Boehm, 1995"

"
"

The quality and longevity of a software system"
 is determined by its architecture!!"

	

	

Chalmers University of Technology

#30 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Why is an Architecture Important���
	
The Technical Perspective	

•  Communication among stakeholders	

–  Software architecture represents a common abstraction of a system that

most if no all of the system’s stakeholders can use as a basis for mutual
understanding, negotiation, consensus, and communication	

•  Early design decisions	

–  Software architecture manifests the earliest design decisions about a

system, and these early bindings carry weigh far out of proportion to their
individual gravity with respect to the system’s remaining development, its
deployment, and its maintenance life.	

•  Transferable abstraction of a system	

–  Software architecture constitutes a relatively small, intellectually

graspable model for how a system is structured and how its elements work
together. 	

–  The model is transferable across systems, e.g., it can be applied to other
systems exhibiting similar quality attribute and functional requirements,
thus promoting large-scale reuse.	

	

	

Chalmers University of Technology

#31 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Architecture Stakeholders	

•  An architecture is the result of business and technical decisions
among stakeholders	

•  Architectures are influenced by	

–  System stake holders include: Customer, end users, project manager,

maintainers, system owners, marketers (e.g., think of cloud, iPhone, SOA,
WWW, etc)	

–  Developing organization	

–  Background and experience of architects	

–  Technical environment (e.g., WWW, Middleware, SOA)	

	

	

Chalmers University of Technology

#32 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Functional vs. Non-Functional behavior	

(i)   Functional behavior	

(ii)   Non-functional behavior (aka quality attributes, extra-functional behavior)	

–  Performance: real-time	

–  Security	

–  Reliability	

–  Availability	

–  Maintainability	

–  Evolvability	

–  X-ility....	

Observation #1: Functional behavior gives the “uniqueness” of the software/
system…. Non-functional behavior drives the perceived quality of the software/
system	

Observation #2: Many quality attributes are system attributes, i.e., it involves
software and hardware. 	

Observation #3: Quality attributes are not independent…	

	

	

	

Chalmers University of Technology

#33 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Multi-Dimensional Analysis	

Increased confidentiality

requirement
•  change of encryption policy

Key exchange frequency changes	

Message size increases	

•  increases bandwidth utilization	

•  increases power consumption	

Increased computational complexity 	

•  increases WCET	

•  increases CPU utilization	

•  increases power consumption	

•  may increase latency	

	

	

Chalmers University of Technology

#34 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Architecture Manifests Earliest Set of Design
Decisions	

Architecture 	

•  defines constraints on implementation	

•  dictates organizational structure	

•  inhibits or enables a system’s quality attributes	

•  is analyzable and a vehicle for predicting system qualities	

•  makes it easier to reason about and manage change	

•  helps in evolutionary prototyping	

•  enables more accurate cost and schedule estimates	

	

	

Chalmers University of Technology

#35 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Process recommendations	

•  Architecture should be the product of a single architect or a small
group of architects with an identified leader	

•  Architect team should have functional requirements for the system and
an articulated prioritized list of quality attributes that the architecture is
expected to satisfy	

•  Architecture should be well documented, and circulated and reviewed
by system stakeholders	

•  Architecture should be analyzed for applicable quantitative measures
and formally evaluated for quality attributes before it is too late to
make changes to it.	

•  Architecture should lend itself to incremental refinement and
implementation	

 	

	

	

Chalmers University of Technology

#36 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Architectural Patterns	

•  Blackboard	

•  Client-server (2-tier, n-tier, peer-to-

peer, Cloud Computing all use this
model)	

•  Database-centric architecture
(broad division can be made for
programs which have database at
its center and applications which
don't have to rely on databases, E.g.
desktop application programs,
utility programs etc.)	

•  Distributed computing	

•  Event Driven Architecture	

•  Front-end and back-end	

•  Implicit invocation	

•  Monolithic application	

•  Peer-to-peer	

•  Pipes and filters	

•  Plugin	

•  Representational State Transfer	

•  Rule evaluation	

•  Search-oriented architecture (A

pure SOA implements a service for
every data access point)	

•  Service-oriented architecture	

•  Shared nothing architecture	

•  Software componentry (strictly

module-based, usually object-
oriented programming within
modules, slightly less monolithic)	

•  Space based architecture	

•  Structured (module-based but

usually monolithic within modules)	

•  Three-tier model (An architecture

with Presentation, Business Logic
and Database tiers)	

	

	

Chalmers University of Technology

#37 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Outline	

•  What is an Architecture
•  What is the rationale and purpose of architecting
•  I.e., what are the problems architecting aims to address
•  Designing and Architecting next generation aircraft
•  Architectural Assessment
•  The SAE AADL architecture description language – An overview

	

	

Chalmers University of Technology

#38 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	
 38	

Does Model-Based Development Scale?	

Systems Developed Using MBD	

•  Flight Control	

•  Auto Pilot	

•  Flight Warning	

•  Cockpit Display	

•  Fuel Management	

•  Landing Gear	

•  Braking	

•  Steering	

•  Anti-Icing	

•  Electrical Load Management	

Airbus A380
Length 	
 	
 	
239 ft 6 in	

Wingspan 	
 	
261 ft 10 in	

Maximum Takeoff Weight 	
1,235,000 lbs	

Passengers 	
 	
Up to 840 	

Range 	
 	
 	
9,383 miles	

	

	

Chalmers University of Technology

#39 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

The Problem
• Airbus and Boeing have data that support Systems

doubling in size and complexity every 2 years.
• Growing use of Integrated Modular Electronics and COTS
• Requirements continue to be refined throughout product

lifecycle
• Integration costs increasing as systems do not function as

“specified”
– Unanticipated Interactions (Emergent behavior)

• Desire to design a new airplane every year or 2 instead of
every 10.

• Desire to substitute subsystems on the airplane from
different vendors. (Airline can make choice as is currently
done on Engines)

• Desire to support incremental certification

	

	

Chalmers University of Technology

#40 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

���
���
���
���

System and Software Integration Verification	

Texas Engineering 	

Experiment Station	

Aerospace Vehicle Systems Institute

	

	

Chalmers University of Technology

#41 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Participants	

–  Active – BAE, Boeing, DoD (Army, Navy), FAA, GE Aerospace

(Smiths), Honeywell, Lockheed Martin, Rockwell Collins, Airbus,
Dassault-Aviation, JPL/NASA	

–  General Dynamics, Raytheon, Thales	

–  Software Engineering Institute, Carnegie Mellon	

Version	

	

	

Chalmers University of Technology

#42 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Project Overview	

•  Overall Concept of Operations	

–  Design and production based on early and continuous integration
(virtual => physical)	

–  Integrate, then build	

•  Objective	

–  Shift architecting, design, and production activities to explicitly
address integration issues early, reducing program execution risks,
cycle time and cost	

•  Approach	

–  Adopt/develop “integration-based” software and system

development processes with emphasis on integrating component-
based, model-based and proof-based development	

	

	

Chalmers University of Technology

#43 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Expanded Objectives	

•  Integrate system, software, and hardware integration models in one framework	

–  Support component-based system assurance through analysis of functionality,
performance, safety and security	

–  Increase the degree of standardization and commonality for technical data
exchanged between airframers, suppliers, and regulatory authorities	

•  Integrate – then build	

–  Predict system behavior through analysis to ensure it is acceptable 	

–  Build to the requirements determined through the analysis	

•  Reduce the cost of developing avionic systems	

–  Maintain or improve existing levels of safety and security	

•  Start with the aerospace industry	

–  Leverage capabilities developed in related domains	

–  Coordinate with related domains when advantageous	

•  Foster U.S. Government and Aerospace industry Cooperation	

–  Complement the large, government/industry funded European R&D efforts 	

August 7, 2007

	

	

Chalmers University of Technology

#44 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Single Information and Relationships
Repository	

Multi-Aspect Model Repository

“Model Bus”

File Sharing

Configuration Management

Supplier 1 IDE/Tools

Models

Models
Import/Export

Supplier N IDE/Tools

Multi-Aspect Model
Repository

Multi-Aspect Model
Repository

Assembly Models Assembly Models

Components Assemblies Components Assemblies

“Model Bus”

System Integrator

Models

“Model Bus”

Configuration
Management

Configuration
Management

File Sharing File Sharing

...
Models Models

IDE
Modeling

Simulation
Analysis

Virtual Integration

Multi-Aspect Model
Repository

“Model Bus”

Components Assemblies

Configuration
Management

File Sharing

•  Integrate information and
relationships in a single repository
with a “model bus”	

u Better requirements
u Better integration
u Better communication
u Better consistency

	

	

Chalmers University of Technology

#45 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Overview of Multi-Aspect Model
Repository & Model Bus 	

Model
Repository

MatLab

Esterel

TOPCASED

SCADE

SimuLink

Eclipse

Rhapsody

DOORS

OSATE

?

AADL

SysML

Requirements	

Design	

Verification	

Integration/Deployment	

	

	

Chalmers University of Technology

#46 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Modified Business Model	

New SM
New SM

Repository

Parse &
Process Modify Create

Virtually
Integrate

Existing CM/SM

Modified CM/SM

New CM/SM

CM/SM

Issues
New SM

Repository

Parse &
Process Modify Create

Virtually
Integrate

Existing CM/SM

Modified CM/SM

New CM/SM

CM/SM

Issues
New SM

Repository

Parse &
Process Modify Create

Virtually
Integrate

Existing CM/SM

Modified CM/SM

New CM/SM

CM/SM

Issues
New SM

Repository

Parse &
Process Modify Create

Virtually
Integrate

Existing CM/SM

Modified CM/SM

New CM/SM

CM/SM

Issues

New SM

Virtually
Integrate

New Product Definition
New SM

Issues

Specs

•  System Integrator defines a new product using internal repository of virtual “parts”	

•  Specifications for virtual subcomponents sent to suppliers	

	

	

Chalmers University of Technology

#47 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Modified Business Model (continued)	

•  Virtual parts returned for virtual integration into a virtual product	

–  Cost savings realized by finding problems early on virtual parts	

•  Once the virtual product is satisfactory, the actual product is developed	

–  Cycle-time reduction realized since re-work on physical parts virtually eliminated	

New SM
New SM

Repository

Parse &
Process Modify Create

Virtually
Integrate

Existing CM/SM

Modified CM/SM

New CM/SM

CM/SM

Issues
New SM

Repository

Parse &
Process Modify Create

Virtually
Integrate

Existing CM/SM

Modified CM/SM

New CM/SM

CM/SM

Issues
New SM

Repository

Parse &
Process Modify Create

Virtually
Integrate

Existing CM/SM

Modified CM/SM

New CM/SM

CM/SM

Issues
New SM

Repository

Parse &
Process Modify Create

Virtually
Integrate

Existing CM/SM

Modified CM/SM

New CM/SM

CM/SM

Issues

New SM

Virtually
Integrate

New Product Definition
New SM

Issues

Specs

	

	

Chalmers University of Technology

#48 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Software
Architectural

Design

System
Design

Component
Software
Design

Code
Development

Unit
Test

System
Test

Integration
Test

Acceptance
Test

Top-Level 	

Verification Items	

High-level
ADL Model

Detailed
ADL Model

Specify Model-
Code Interfaces

Low fidelity	

Adequate confidence	

High fidelity	

Strong confidence	

Requirements
Engineering

Virtual System Integration	

M
od

el-
dr

ive
n a

rti
fa

ct
ge

ne
ra

tio
n	

Con
fo

rm
an

ce
 of

 m
od

els
 an

d s
ys

tem
s	

Predictive Architecting	

→ generation of test cases
← updating models with actual data

	

	

Chalmers University of Technology

#49 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Predictable System Integration Through Model-Based
Engineering	

•  Reduce the risks 	

–  Analyze system early and throughout life cycle	

–  Understand system wide impact	

–  Validate assumptions across system	

•  Increase the confidence	

–  Validate models to complement integration testing	

–  Validate model assumptions in operational system	

–  Evolve system models in multiple fidelity	

•  Reduce the cost	

–  Fewer system integration problems	

–  Tool-based engineering support	

–  Simplified life cycle support	

	

	

Chalmers University of Technology

#50 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

AADL in the Life Cycle	

	

	

Chalmers University of Technology

#51 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Model-Based Engineering Benefits	

•  Benefits of modeling and architecture standards	

Analyzable models drive development	

Prediction of runtime characteristics at different fidelity	

Bridge between control & software engineer	

Prediction early and throughout lifecycle	

Reduced integration & maintenance effort	

Common modeling notation across organizations	

Single architecture model augmented with properties	

Interchange & integration of architecture models	

Tool interoperability & integrated engineering environments	

	

	

Chalmers University of Technology

#52 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Outline	

•  What is an Architecture
•  What is the rationale and purpose of architecting
•  I.e., what are the problems architecting aims to address
•  Designing and Architecting next generation aircraft
•  The SAE AADL architecture description language – An

overview

	

	

Chalmers University of Technology

#55 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

SAE Architecture Analysis & Design Language
(AADL) Standard	

•  Notation for specification of task and communication architectures of
Real-time, Embedded, Fault-tolerant, Secure, Safety-critical, Software-
intensive systems, of hardware platforms, and deployment	

•  Fields of application: Avionics, Automotive, Aerospace, Autonomous
systems, …	

•  Based on 15 Years of DARPA funded technologies	

•  Standard approved & published Nov 2004	

•  www.aadl.info	

	

	

Chalmers University of Technology

#57 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

UML Profile

AADL in Context	

Research ADLs	

•  MetaH	

–  Real-time, modal, system family	

–  Analysis & generation	

–  RMA based scheduling	

•  Rapide, Wright, ..	

–  Behavioral validation	

•  ADL Interchange	

–  ACME	

	

Industrial Strength	

•  UML 2.0, UML-RT	

•  HOOD/STOOD	

•  SDL	

Extensible
Real-time
Dependable

Basis

Influence

Alignment

Enhancement

Airbus & ESA

Extension

DARPA Funded
Research since 1990

	

	

Chalmers University of Technology

#59 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Key Elements of SAE AADL Standard	

•  Core AADL language standard	

–  Textual & graphical, precise semantics, extensible	

•  AADL Meta model & XMI/XML standard	

–  Model interchange & tool interoperability	

•  Error Model Annex as standardized extension	

–  Fault/reliability modeling, hazard analysis	

•  UML 2.0 profile for AADL	

–  Transition path for UML practitioner community	

http://www.aadl.info	

	

	

Chalmers University of Technology

#60 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

AADL: The Language	

•  Precise execution semantics for components & interactions	

–  Thread, process, data, subprogram, system, processor, memory, bus, device	

•  Continuous control & event response processing	

–  Data and event flow, synchronous call/return, shared access	

–  End-to-End flow specifications	

•  Operational modes & fault tolerant configurations	

–  Modes & mode transition	

•  Modeling of large-scale systems	

–  Component variants, packaging of AADL models	

•  Accommodation of diverse analysis needs	

–  Extension mechanism, standardized extensions	

	

	

Chalmers University of Technology

#62 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Focus Of SAE AADL	

•  Component View	

–  Model of system composition & hierarchy	

–  Software, execution platform, and physical components	

–  Well-defined component interfaces	

•  Concurrency & Interaction View	

–  Time ordering of data, messages, and events	

–  Dynamic operational behavior 	

–  Explicit interaction paths & protocols	

•  Deployment view	

–  Execution platform as resources	

–  Binding of application software	

–  Specification & analysis of runtime properties	

•  timeliness, throughput, reliability, graceful degradation, …	

	

	

Chalmers University of Technology

#63 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Predictable System Integration Through Model-Based
Engineering	

•  Reduce the risks 	

–  Analyze system early and throughout life cycle	

–  Understand system wide impact	

–  Validate assumptions across system	

•  Increase the confidence	

–  Validate models to complement integration testing	

–  Validate model assumptions in operational system	

–  Evolve system models in multiple fidelity	

•  Reduce the cost	

–  Fewer system integration problems	

–  Tool-based engineering support	

–  Simplified life cycle support	

	

	

Chalmers University of Technology

#66 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

System Type	

system GPS
features
 speed_data: in data port metric_speed
 {SEI::BaseType => UInt16;};
 geo_db: requires data access real_time_geoDB;
 s_control_data: out data port state_control;
flows
 speed_control: flow path

 speed_data -> s_control_data;
properties SEI::redundancy => Dual;
end GPS;

System	

GPS	
speed_data	

geo_db	

s_control_data	

	

	

Chalmers University of Technology

#67 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

System Implementation 	

system implementation GPS.secure
subcomponents
 decoder: system PGP_decoder.basic;
 encoder: system PGP_encoder.basic;
 receiver: system GPS_receiver.basic;
connections
 c1: data port speed_data -> decoder.in;
 c2: data port decoder.out -> receiver.in;
 c3: data port receiver.out -> encoder.in;
 c4: data port encoder.out -> s_control_data;
flows
 speed_control: flow path speed_data -> c1 -> decoder.fs1
 -> c2 -> receiver.fs1 -> c3 -> encoder.fs1
 -> c4 -> s_control_data;
modes none;
properties SEI::redundancy_scheme => Primary_Backup;
end GPS.secure;

	

	

Chalmers University of Technology

#68 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Application Components	

•  System: hierarchical organization of components	

•  Process: protected address space	

•  Thread group: organization of threads in processes	

•  Thread: a schedulable unit of concurrent execution	

•  Data: potentially sharable data	

•  Subprogram: callable unit of sequential code	

process	

Thread	

data	

Subprogram	

Thread group	

System	

	

	

Chalmers University of Technology

#69 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Execution Platform Components	

•  Processor – provides thread scheduling and execution services	

•  Memory – provides storage for data and source code	

•  Bus – provides physical connectivity between execution platform
components	

•  Device – interface to external environment	

Processor	

Device	

Bus	

Memory	

	

	

Chalmers University of Technology

#70 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Bus	

Processor	

Some Standard Properties	

•  Dispatch_Protocol => Periodic;	

•  Period => 100 ms;	

•  Compute_Deadline => value (Period);	

•  Compute_Execution_Time => 10 ms .. 20 ms; 	

•  Compute_Entrypoint => “speed_control”;	

•  Source_Text => “waypoint.java”;	

•  Source_Code_Size => 12 KB;	

•  Thread_Swap_Execution_Time => 5 us.. 10 us;	

•  Clock_Jitter => 5 ps;	

•  Allowed_Message_Size => 1 KB;	

•  Propagation_Delay => 1ps .. 2ps; 	

•  bus_properties::Protocols => CSMA;	

File containing the
application code	

Code to be executed
on dispatch	

Thread	

Protocols is a user
defined property	

Dispatch execution
properties	

	

	

Chalmers University of Technology

#71 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Component Interactions & Modes	

Completely defined interfaces & interactions	

–  Port-based flows	

•  State data, events, messages	

•  Flow specifications & connections	

•  End-to-end flows	

–  Synchronous call/return	

–  Shared access	

	

Modal & dynamically configurable systems	

–  Modeling of operational modes	

–  Modeling of fault tolerant configurations	

–  Modeling of different levels of service	

	

	

Chalmers University of Technology

#73 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

AADL Language Extensions 	

•  Model annotation through properties and sublanguages	

•  New properties defined through property sets	

•  Standard compliant sublanguage syntax in annex subclauses	

•  Project-specific language extensions	

•  Language extensions as approved SAE AADL standard annexes	

•  Examples	

–  Error Model	

–  Concurrency Behavior	

–  System partitions (e.g., ARINC 653)	

	

	

Chalmers University of Technology

#74 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Airbus Annex Extension	

THREAD t	

 FEATURES	

 sem1 : DATA ACCESS semaphore;	

 sem2 : DATA ACCESS semaphore;	

END t;	

	

THREAD IMPLEMENTATION t.t1	

 PROPERTIES	

 Period => 13.96ms;	

 cotre::Priority => 1;	

 cotre::Phase => 0.0ms;	

 Dispatch_Protocol => Periodic;	

ANNEX cotre.behavior {**	

 STATES	

 s0, s1, s2, s3, s4, s5, s6, s7, s8 : STATE;	

 s0 : INITIAL STATE;	

 TRANSITIONS	

 s0 -[]-> s1 { PERIODIC_WAIT };	

 s1 -[]-> s2 { COMPUTATION(1.9ms, 1.9ms) };	

 s2 -[sem1.wait ! (-1.0ms)]-> s3;	

 s3 -[]-> s4 { COMPUTATION(0.1ms, 0.1ms) };	

 s4 -[sem2.wait ! (-1.0ms)]-> s5;	

 s5 -[]-> s6 { COMPUTATION(2.5ms, 2.5ms) };	

 s6 -[sem2.release !]-> s7;	

 s7 -[]-> s8 { COMPUTATION(1.5ms, 1.5ms) };	

 s8 -[sem1.release !]-> s0;	
	

 **};	

END t.t1;	

	

COTRE thread	

properties	

COTRE behavioral annex	

Courtesy of	

	

	

Chalmers University of Technology

#79 	
Jörgen Hansson, 2010	
DAT 220/DIT 542	

Summary	

•  What is an Architecture ✔
•  What is the rationale and purpose of architecting ✔
•  I.e., what are the problems architecting aims to address ✔
•  Designing and Architecting next generation aircraft ✔
•  Architectural Assessment ✔
•  The SAE AADL architecture description language ✔

