
EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

1

Implementation

Specification
•  Real-time kernels
•  Task management
•  Memory management

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

2

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

3

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

4

Running: Currently executing task
Ready: Task that is available for execution
Waiting: Task that cannot execute because it is needs access to a

 resource other than the processor

running

waiting ready signal

interrupt

dispatch wait

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

5

process
context

PCB
Next

Queue
Head

Tail

Size

Semaphore

Head

Tail

Size

Value

Some examples of queue-based data structures:

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

6

id = 2
running

PCB

id = 3
ready

PCB

id = 1
ready

PCB

id = 4
ready

PCB

Running
Ready

central
system table

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

7

task’s
 program code

task’s
data area

local
data

processor
registers

PC

SP

task’s
data area

PCB

saved PC

task’s
program code saved

registers
saved SP

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

8

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

9

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

10

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

11

•  Memory mapping requires special hardware in the form
of a memory management unit (MMU).

•  The MMU translates the addresses issued by the user
tasks (virtual addresses) to real (physical) addresses in
primary memory.

•  Through memory mapping, a user task can only access
the part of the primary memory that it has been assigned
by the real-time kernel.

•  The real-time kernel itself resides in the physical address
space, and is therefore protected from the user tasks.

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

12

virtual
memory

kernel
0

N

task 1
0
n

task 2
0
m

physical
memory

kernel

task 1

task 2

0

k

memory mapping

•  The processor has a privileged state (kernel mode)
and one non-privileged state (user mode).

•  The real-time kernel executes in kernel mode, and
user tasks in user mode. The memory mapping
hardware can only be manipulated in kernel mode.

•  Before the dispatcher starts a user task, it configures
the MMU so that the user task can only access its
assigned part of the primary memory.

•  Kernel mode can only be entered via hardware
interrupts or trap instructions (software interrupts).
–  The services of the real-time kernel is then called via trap

instructions (or via subroutine calls for systems without
memory protection)

