EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 2, 2011

CHALMERS

Real-Time Systems

A
: * Real-time kernels
Speciﬁcation « Task management
+ Memory management
A

Implementation

Verification

CHALMERS

Real-time kernels

Most real-time kernels contain the following minimal
set of functions:

Task management

Synchronization

Interrupt handling

e Memory management

Lecture #8

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

Task management

In the general case, the number of tasks is larger than
the number of processors available. This raises the
following questions:

1. How should the processor be shared?
— Serial execution (cyclic executive)
— Pseudo-parallel execution

2. When should task switches take place?
— At natural stops (e.g., at wait or delay operations)
— At changed system state (e.g., after signal operations)
— At clock or I/O interrupts

3. Which task should execute?
— Scheduling policy

Task management

Serial execution: (cyclic executive)

e The system contains a table describing a
predetermined (cyclic) execution order for the tasks.
o A task executes until it terminates; then, the next task in
the table is started.
e Properties:
— Works best for independent tasks that can execute in an
arbitrary order
— There is no need for semaphores or other synchronization to
guarantee mutual exclusion
— Requires short task code segments in order to provide short
response times for external events

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 2, 2011

CHALMERS

Task management

Pseudo-parallel execution:

e Multiple executable tasks compete over the processor.
e The execution of a task can be interrupted before it is
completed in favor of another task
— Based on task priorities (real-time kernels)
— Based on time quanta (time-shared multi-user systems)

e Properties:
— Works well for dependent as well as independent tasks

— Semaphores or other synchronization may be needed to to
guarantee mutual exclusion
— Response times for external events become very short

CHALMERS

Task management

Process context:

e The process context consists of the status information
that is stored in the processor, for example:
— General registers
— Program counter (PC)
— Stack pointer (SP)

¢ In the event of a task switch, the context must be stored
so that the current task can continue its execution when
it once again gains access to the processor.

e Consequently, a task switch will in practice also involve a
context switch.

Lecture #8

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

CHALMERS

Task management

Task states:

dispatch

Running: Currently executing task
Ready: Task that is available for execution
Waiting: Task that cannot execute because it is needs access to a

resource other than the processor

CHALMERS

Task management

Process control block: (PCB)

e A data structure in the real-time kernel that contains
information about a task in the system.

¢ PCB typically contains:
— Pointer to next PCB (linked list)

Task state

— Task identifier

Task priority and/or time quanta
— Pointer to the task’s stack area

Pointer to the task’s program code

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 2, 2011

CHALMERS

Task management

Process queue:

e A data structure in the real-time kernel that is used for
defining groups of PCBs.

¢ The following queues should exist in a real-time kernel:
— One queue for currently-executing task (Running)

— One queue for the remaining executable tasks (Ready). This
queue is sorted according to the chosen scheduling policy.

— One queue for tasks whose execution should be delayed until
a given time instant (Delay).

— One queue for tasks waiting for an interrupt (Interrupt).

— One queue per semaphore for tasks waiting for access to that
semaphore

CHALMERS

Task management

Process queue:
¢ The following operations manipulate the queues:

Insert add an element to the queue
Remove delete an element from the queue
Dispatch perform a task switch

Some examples of queue-based data structures:

PCB Queue Semaphore
Next o&—1— Head &—+—— Value
process Tail e+— Head e——
context
Size Tail &+—
Size

Lecture #8

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 2, 2011

Task management

Examples of process queues:

PCB
central
system table
id =2
_ running
Running
Ready
PCB PCB PCB
id =3 id=1 id =
ready ready ready

CHALMERS

Task management

Task switches are typically executed by a special code
in the real-time kernel, called the dispatcher, whose
functions are:

e Save context:

— Store the interrupted task’s context in its PCB

e Start a new task:
a) Select the task that is first in the Ready queue

b) Fetch the PCB for that task
c) Update the Running queue with the new PCB

d) Load the context for the task from its PCB
e) Start the execution of the new task

Lecture #8

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

Task management

Context for executing task:

processor
registers
task’s
data area
[s |
local
data

task’s
program code

Task management

Context for waiting task:

PCB

task’s

data area

task’s
saved SP program code

saved

registers

saved PC

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 2, 2011

CHALMERS

Task management

What system events may cause a task switch:

get access to a semaphore.

leaves a critical region.

Delay A task requests to be delayed.

execution due to an external event.

Wait The executing task is blocked when trying to

Signal A task with high priority becomes ready for
execution because a task with lower priority

Clock interrupt A task with higher priority becomes ready for
execution after a delay, or currently executing
task has consumed its allotted time quantum.

I/O interrupt A task with higher priority becomes ready for

CHALMERS

Task management

What happens at a call to Wait?

1. Interrupts are disabled.
is updated.
the wait queue of the semaphore

4. Interrupts are enabled.
5. Dispatcher is called to start a new task.

2. The context of the calling task is saved and its PCB
3a. If semaphore = 0, the calling task’s PCB is moved to

3b. If semaphore > 0, its value is decreased by one and
the calling task’s PCB is moved to the Ready queue.

Lecture #8

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 2, 2011

CHALMERS

Task management

What happens at a call to Signal?

1. Interrupts are disabled.

2. The context of the calling task is saved and its PCB
is updated.

3a. If there are tasks in the wait queue of the semaphore,
the first task in that queue is moved to the Ready queue.

3b. If no tasks are waiting for the semaphore, the value of
the semaphore is increased by one.

4. The calling task’s PCB is moved to the Ready queue.
5. Interrupts are enabled.
6. Dispatcher is called to start a new task.

CHALMERS

Task management

What happens at an I/O interrupt?

1. The processor’s interrupt mechanism automatically
stores selected parts of the interrupted task’s context,
and its PCB is updated.

2. The I/O unit that requested the interrupt is served.

3. The interrupt service routine checks whether any task in
the Interrupt queue has become ready for execution.
If so, that task’s PCB is moved to the Ready queue.

4. The interrupted task’s PCB is moved to the Ready queue.

5. Dispatcher is called to start a new task.

Lecture #8

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

Task management

What happens at a clock interrupt?

1. The processor’s interrupt mechanism automatically
stores selected parts of the interrupted task’s context,
and its PCB is updated.

2. The variables that represent calendar time is updated.

3. The interrupt service routine checks whether any task in
the Delay queue has become ready for execution.

If so, that task’s PCB is moved to the Ready queue.
4. The interrupted task’s PCB is moved to the Ready queue.
5. Dispatcher is called to start a new task.

Task management

What happens at a clock interrupt?

¢ All real-time systems have a real-time clock that generates
an interrupt at regular intervals, e.g., each 10 ms.

e The real-time clock is used for:

— Keeping track of how long a task has executed. This function is
often used in "watchdogs” whose purpose is to abort tasks that
do not behave as expected.

— Scheduling periodic tasks.
— Keep track of the delay time for tasks that has called delay.
— Keep track of calendar time.

10

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #8
Updated February 2, 2011

CHALMERS

Memory management

In a real-time system it is useful to have large flexibility as
regards the utilization of the primary memory.

e The real-time kernel should be able to decide the addresses
in which the code and data of user tasks are placed.

It is also useful to have a protective interface (firewall)
between the real-time kernel and the user tasks.

o A faulty or malicious user task should not be able to write to
and possibly corrupt the data structures in the real-time
kernel, e.g., queues and PCBs.

These system properties can be achieved with the aid of
memory mapping and memory protection.

Memory mapping

< Memory mapping requires special hardware in the form
of a memory management unit (MMU).

< The MMU translates the addresses issued by the user
tasks (virtual addresses) to real (physical) addresses in
primary memory.

< Through memory mapping, a user task can only access
the part of the primary memory that it has been assigned
by the real-time kernel.

= The real-time kernel itself resides in the physical address
space, and is therefore protected from the user tasks.

11

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 2, 2011

CHALMERS

physical
memory

kernel

task 1

task 2

Memory mapping
virtual memory mapping
memory I
R e [Sane e
kernel
N] [A"
0 B
task 1
S — —
task 2
m_

CHALMERS

Memory protection

memory protection)

» The processor has a privileged state (kernel mode)
and one non-privileged state (user mode).

« The real-time kernel executes in kernel mode, and
user tasks in user mode. The memory mapping
hardware can only be manipulated in kernel mode.

» Before the dispatcher starts a user task, it configures
the MMU so that the user task can only access its
assigned part of the primary memory.

« Kernel mode can only be entered via hardware
interrupts or trap instructions (software interrupts).

— The services of the real-time kernel is then called via trap
instructions (or via subroutine calls for systems without

12

Lecture #8

