EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011

Updated March 5, 2011

Example: circular buffer

Problem: Write a monitor Circular Buffer that handles a circular
buffer with room for 8 data records of type Data.

— The monitor should have two entries, Put and Get.

— Producer tasks should be able to insert data records in the buffer
via entry Put. If the buffer is full, a task that calls Put should be
blocked.

— Consumer tasks should be able to remove data records from the
buffer via entry Get. If the buffer is empty, a task that calls Get
should be blocked.

CHALMERS

Example: circular buffer

[Free
monitor body Circular_Buffer is
N : constant :=_8; A Busy
A : arra¥ (1..N) of Data;
1,J : Inteder range 1..N := 1;
Count : Integer range O0..N := O; } ! | | | ! I ['
Not_Full, Not_Empty : condition_variable;
procedure Put(D : in Data) is T T
begin
1T Count = N then Wait(Not_Full); end if; 1 J

A(l) := D;

1 := (1 mod N) + 1;
Count := Count + 1;
Send(Not_Empty);

end Put;

procedure Get(D : out Data) is

begin) .
1T Count = 0 then Wait(Not_Empty); end if;
D := AQJ);

J = (J mod N) + 1;
Count := Count - 1;
Send(Not_Full);

end Get;

end Circular_Buffer;

Solutions to examples, Lecture #7

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated March 5, 2011

Solutions to examples, Lecture #7

CHALMERS

Example: semaphores in Ada 95

Problem: Write a package Semaphores that implements semaphores
in Ada 95.

— The package should define a protected object Semaphore.
— The object should receive an initial value when it is created.

— The object should have two entries, Wait and Signal, that work in
accordance with the definition of semaphores.

CHALMERS

Example: semaphores in Ada 95

package Semaphores is

protected type Semaphore (Initial : Natural := 0) is
entry Wait;
procedure Signal;

private
Value : Natural := Initial;
end Semaphore;

end Semaphores;

package body Semaphores is
protected body Semaphore is
entry Wait when Value > 0 is
begin
Value := Value - 1;
end Wait;

procedure Signal is
begin
Value := Vvalue + 1;
end Signal;
end Semaphore;

end Semaphores;

