EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 30, 2011

CHALMERS

Real-Time Systems

A
» Monitors
Specification + Semaphores
* Implementation of
mutual exclusion
A

Implementation

Verification

CHALMERS

Monitors

Monitors:

e A monitor is a construct offered by some programming
languages, e.g., Modula-1, Concurrent Pascal, Mesa.

¢ A monitor encapsulates data structures that are shared
among multiple tasks and provides procedures to be
called when a task needs to access the data structures.

e Execution of monitor procedures are done under mutual
exclusion.

e Synchronization of tasks is done with a mechanism called
condition variables.

Lecture #7



EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #7
Updated January 30, 2011

Monitors

Monitors vs. protected objects:

e Monitors are similar to protected objects in Ada 95. Both
are passive objects that can guarantee mutual exclusion
during calls to procedures manipulating shared data.

¢ The difference between monitors and protected objects
are in the way they handle synchronization:
— Protected objects use entries with barriers
— Monitors use condition variables

e Java offers a monitor-like construct:
— Java’s synchronized methods correspond to monitor procedures

— However, Java has no mechanism that corresponds to condition
variables; a thread that gets woken up must check manually
whether the resource is available.

Monitors

Operations on condition variables:

wait (cond_var): the calling task is blocked and is inserted into
a FIFO queue corresponding to cond_var.

send (cond_var): wake up first task in the queue corresponding
to cond_var. No effect if the queue is empty.

Properties:

1. After a call to wait the monitor is released (e.g., other tasks may
execute the monitor procedures).

2. A call to send must be the last statement in a monitor procedure.

3. Queuing tasks that are awoken by a call to send has priority over
tasks waiting to enter the monitor.




EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 30, 2011

CHALMERS

Example: simple resource manager

monitor body Simple_Resource is

Resource_Max : constant := 8;
R - Integer_range O..Resource_Max := Resource_Max;
CR : condition_variable;

procedure Acquire is
begin
1T R = 0 then Wait(CR); end if;
R:=R -1;
end Acquire;
rocedure Release is
egin
R :=R + 1;
Send(CR);
end Release;

end Simple_Resource;

CHALMERS

Example: circular buffer

Problem: Write a monitor Circular Buffer that handles a circular
buffer with room for 8 data records of type Data.

— The monitor should have two entries, Put and Get.

— Producer tasks should be able to insert data records in the buffer
via entry Put. If the buffer is full, a task that calls Put should be
blocked.

— Consumer tasks should be able to remove data records from the

buffer via entry Get. If the buffer is empty, a task that calls Get
should be blocked.

We solve this on the blackboard!

Lecture #7



EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #7
Updated January 30, 2011

Semaphores

Semaphores:

e A semaphore is a passive synchronization primitive that is
used for protecting shared and exclusive resources.

e Synchronization is done using two operations, wait and
signal. These operations are atomic (indivisible) and
are themselves critical regions with mutual exclusion.

e Semaphores are used in real-time kernels and operating

systems to implement e.g. rendezvous, protected objects
or monitors.

e Semaphores were proposed by (Dutchman) E. W. Dijkstra.
It is therefore common to see the notation P and V for the
operations wait and signal, respectively.

Semaphores

A semaphore s is an integer variable with value domain = 0
Atomic operations on semaphores:

Init(s,n) : assign s an initial value n

Wait(s): if s > 0 then
s :(=s - 1;
else

"block calling task”;

Signal(s) : if ”any task that has called Wait(s) is blocked”

then

"allow one such task to execute”;
else

s :=s + 1;




EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #7
Updated January 30, 2011

CHALMERS

Example: semaphores in Ada 95

Problem: Write a package Semaphores that implements semaphores
in Ada 95.

— The package should define a protected object Semaphore.
— The object should receive an initial value when it is created.

— The object should have two entries, Wait and Signal, that work in
accordance with the definition of semaphores.

We solve this on the blackboard!

Using semaphores

Simple resource manager with critical regions

with Semaphores; use Semaphores;
Resource_Control : Semaphore(1);

task A;
task B;

task body A is
begin
loo;
Resource Control.Wait;

Resource Control.Signal;
end loop;
end A;
task body B is
begin
loop
Resource_Control.Wait;

Resource_Control.Signal;
end loop;
end B;




EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 30, 2011

CHALMERS

Mutual exclusion

Methods for implementing mutual exclusion:

e By disabling the processor’s interrupt service mechanism
— Only works for single-processor systems

e With atomic processor instructions
For example: the test-and-set instruction
— Variables can be tested and updated in one operation
— Necessary for systems with two or more processors

e With software
— Dekker’s algorithm, Peterson’s algorithm
— Requires no dedicated hardware support

Disabling interrupts

In single-processor systems, the mutual exclusion is guaranteed
by disabling the processor’s interrupt service mechanism
("interrupt masking”) while the critical region is executed.

This way, unwanted task switches in the critical region (caused
by e.g. timer interrupts) are avoided. However, all other tasks
are unable to execute during this time.

Therefore, critical regions should only contain such instructions
that really require mutual exclusion (e.g., code that handles
the operations wait and signal for semaphores).

This method does not work for multi-processor systems!

Lecture #7



EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #7
Updated January 30, 2011

CHALMERS

Disabling interrupts

procedure Main is

task A;
task B;

task body A is
be?in
oop
Disable_Interrupts;
éﬁéble_lnterrupts;
en&-ioop;
end A;

task body B is
begin

Toop
Disable_Interrupts;

Eﬁébleilnterrupts;
ena-ioop;
nd B;
begin

null;
end Main;

Test-and-set instruction

In multi-processor systems with shared memory, a test-and-set
instruction is used for handling critical regions.

A test-and-set instruction is a processor instruction that reads
from and writes to a variable in one atomic operation.

The functionality of the test-and-set instruction can be illustrated
by the following Ada procedure:

procedure testandset (lock, previous : in out Boolean) is
begin

previous := lock;

lock := true;
end testandset;

The combined read and write of lock must be atomic. In a multi-
processor system, this is guaranteed by locking (disabling
access to) the memory bus during the entire operation.




EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 30, 2011

CHALMERS

Test-and-set instruction

procedure Main is
lock : Boolean := false;

task A;
task B;

task body A is
previous : Boolean;

begin
oop

loop

testandset(lock, previous);

exit when not previous;

end loop;

lock := false;

en&-ioop;
end A;

CHALMERS

Test-and-set instruction

task body B is
previous : Boolean;
begin
oop
loop

exit when not previous;
end loop;
lock := false;
en&'ioop;
end B;

begin
null;
end Main;

testandset(lock, previous);

Lecture #7



EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 30, 2011

CHALMERS

Dekker’s algorithm

Accomplishes mutual exclusion with the aid of:

1. Shared memory
a) shared flags
b) shared counters

2. Busy-wait loops

Requires no dedicated hardware!

Fundamental assumption:
A task will not terminate in a critical region.

Peterson’s algorithm is a simplification of Dekker’s algorithm.

CHALMERS

Derivation of Dekker’s algorithm

(for two tasks)

Attempt 1: A counter variable indicates which task is next in
line to get access to the critical region.

— This guarantees mutual exclusion

— The execution order is fixed (P1 P2 P1 P2 ...) which is an

inefficient solution if the tasks request the critical region at
different intervals

— If a task terminates outside its critical region, deadlock occurs

Attempt 2a: Two flags are used to indicate which task is
currently within the critical region.

— Since testing and updating of the flags are non-atomic
operations, mutual exclusion cannot be guaranteed

Lecture #7



EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 30, 2011

CHALMERS

Derivation of Dekker’s algorithm

(for two tasks)

Attempt 2b: Each task first sets its own flag to "true” and then
examines the other flag.

— If the tasks arrive at the critical region at the same time,
deadlock can occur

Attempt 2c: If a task does not get access to the critical region, it
clears its own flag and a new attempt is made later.

— If the tasks request the critical region at exactly the same
interval, starvation can occur

Solution: Let the tasks take turns to try to get access to the
critical region. The combination of “turns” indicator and
“current-use” flags guarantees that the algorithm reaches
mutual exclusion and avoids both deadlock and starvation.

CHALMERS

Dekker’s algorithm

(for two tasks)

procedure Dekker is

inl : Boolean := false;
in2 : Boolean := false;
turn : Integer range 1..2 := 1;

task A;
task B;

task body A is
begin
loop
inl := true;
while in2 loop
if turn = 2 then
inl := false;
while turn = 2 loop
null;
end loop;
inl := true;
end if;
end loop;

turn := 2;
inl := false;
end loop;
end A;

10

Lecture #7



EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 30, 2011

CHALMERS

Dekker’s algorithm

(for two tasks)

task body B is
begin
loop
in2 = true;
while inl loop
if turn = 1 then
in2 := false;
while turn = 1 loop
null;
end loop;
in2 = true;
end if;
end loop;

turn := 1;
in2 := false;

en&-ioop;
end B;

begin
null;
end Dekker;

11

Lecture #7



