
EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

1

Implementation

Specification
•  Low-level programming
•  Resource management
•  Deadlock and starvation

Low-level programming in Ada 95 enables writing device
drivers for I/O circuits directly in a high-level language.

For systems programmed in a high-level language without
support for low-level programming, device drivers must
be written in the processor’s assembly language.

Calling a device driver facilitates reading or writing data to/
from external units, e.g., hard disks, displays and
keyboards.

A device driver conceals the details in the cooperation
between software and hardware.

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

2

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

3

1. Declare a protected object and write the interrupt service
routine as a procedure in the protected object.

2. Inform the compiler that the procedure is an interrupt service
routine, by adding the statement

pragma Interrupt_Handler(procedure_name);

in the specification of the protected object.

3. Declare a variable and assign to it the logical number of
the hardware interrupt signal. For example:

Int_ID : constant := Ada.Interrupts.Names.int_name;

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

4

4. Associate the interrupt service routing with the logical number
of the hardware interrupt signal, by calling the procedure

Attach_Handler(procedure_name’access, Int_ID);

5. Inform the compiler about the ceiling priority of the protected
object, by adding the statement

pragma Interrupt_Priority(priority);

in the specification of the protected object.

 The ceiling priority must be identical to the priority of the
corresponding hardware interrupt signal.

•  When an interrupt is requested, the processor hardware
causes the interrupt service routine to be executed at a priority
level associated with the interrupt signal.

•  Functions, entries, and procedures in the protected object
must execute at the same priority level as the interrupt service
routine in order to preserve the mutual exclusion properties of
the protected object.

•  A task that calls a function, entry or procedure in the protected
object temporarily assumes the ceiling priority while executing
code in the protected object.

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

5

Package System contains the following declarations:
subtype Any_Priority is Integer range 1..105;
subtype Priority is Any_Priority
 range Any_Priority’First .. 100;

subtype Interrupt_Priority is Any_Priority
 range Priority’Last .. Any_Priority’Last;

The priority of a protected object can be defined with
 pragma Interrupt_Priority[(expression)];

Priority levels that are so high that they will mask (block) one or
more hardware interrupt signals are of type Interrupt_Priority.

In Gnu Ada 95 M68K, the priority levels 101..105 correspond to
the processor’s (Motorola 68340) hardware priorities 1..5.

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

6

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

7

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

8

 R1, R2 : One_Resource;
 task A; task body A is begin
 R1.Acquire; -- task switch from A to B after this line causes deadlock
 R2.Acquire;
 ... -- statements using the resources
 R2.Release;
 R1.Release;
 end A;
 task B;
 task body B is begin
 R2.Acquire;
 R1.Acquire;
 ... -- statements using the resources
 R1.Release;
 R2.Release; end B;

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

9

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

10

1. Task should, if possible, only use one resource at a time.

2. If (1) is not possible, all tasks should request resources in
the same order.

3. If (1) and (2) are not possible, special precautions should
be taken to avoid deadlock. For example, resources could
be requested using non-blocking calls.

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

11

with Text_IO; use Text_IO;
procedure Philosopher_Demo is
 package Int_IO is new Integer_IO(Integer); use Int_IO;
 Max : constant Integer := 5; -- five philosophers
 subtype Phil_No is Integer range 1..Max;

 protected type Room_t is -- room type entry Enter;
 procedure Leave;
 private Places : Integer := Max - 1; -- no more than four philosophers
 end Room_t; -- at the table simultaneously

 Room : Room_t; -- the room

 .
 .
 .

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

12

 .
 .
 .

 protected type Stick_t is -- stick type
 procedure Set_ID(ID : in Phil_no); entry Take;
 entry Drop;
 private
 MyID : Phil_no;
 Taken : Boolean := false;
 end Stick_t;
 Stick : array(Phil_No) of Stick_t; -- the five sticks

 task type Philosopher_t is -- philosopher type
 entry Start(ID : in Phil_no); end Philosopher_t;
 Philosopher : array(Phil_No) of Philosopher_t; -- the five philosophers

 .
 .
 .

 . .
 .
 protected body Stick_t is
 procedure Set_ID(ID : in Phil_no) is
 begin MyID := ID;
 end Set_ID;
 entry Take when not Taken is
 begin Taken := true;
 Put(“Stick”); Put(MyID, Width => 1); Put_Line(“ taken”); end Take;
 entry Drop when Taken is
 begin
 Taken := false;
 Put(“Stick”); Put(MyID, Width => 1); Put_Line(“ dropped”); end Drop;
 end Stick_t;
 .
 .
 .

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

13

 .
 .
 .
 protected body Room_t is
 entry Enter when Places > 0 is begin Places := Places - 1;
 Put_Line(“One philosopher came”); end Enter;
 procedure Leave is begin
 Places := Places + 1;
 Put_Line(“One philosopher left”); end Leave;
 end Room_t;
 .
 .
 .

 task body Philosopher_t is MyID : Phil_No;
 procedure Think is begin
 Put(“Philosopher”); Put(MyID, Width => 1); Put_Line(“ thinks”);
 delay 3.0;
 end Think;
 procedure Eat is
 begin
 Put(“Philosopher”); Put(MyID, Width => 1); Put_Line(“ eats”);
 delay 2.0;
 end Eat;
 begin
 accept Start(ID : in Phil_No) do MyID := ID; end Start;
 loop Think;
 Room.Enter
 Sticks(MyID).Take; Sticks((MyID mod Max)+1).Take;
 Eat;
 Sticks(MyID).Drop; Sticks((MyID mod Max)+1).Drop;
 Room.Leave;
 end loop; end Philosopher_t;

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

14

begin
 for i in Phil_No loop Stick(i).Set_ID(i); end loop;
 for i in Phil_No loop
 Philosopher(i).Start(i); end loop;
end Philosopher_Demo;

