EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

CHALMERS

Real-Time Systems

. . + Low-level programming
Specification « Resource management
+ Deadlock and starvation

Implementation

Verification

CHALMERS

Low-level programming

Low-level programming in Ada 95 enables writing device
drivers for I/O circuits directly in a high-level language.

For systems programmed in a high-level language without
support for low-level programming, device drivers must
be written in the processor’s assembly language.

Calling a device driver facilitates reading or writing data to/
from external units, e.g., hard disks, displays and
keyboards.

A device driver conceals the details in the cooperation
between software and hardware.




EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 24, 2011

CHALMERS

Low-level programming

The programming language should make it possible to:

Declare data types that enables manipulation of individual bits
and bit strings.

Define how declared variables are represented in the hardware.

Read and write from/to hardware addresses where data and
control registers of 1/0 circuits are located.

Implement interrupt controlled I/O (i.e., associate hardware
interrupts with high-level procedures for servicing the interrupt).

CHALMERS

Interrupt controlled I/O

Interrupt controlled I/O has the following advantages:

Program controlled I/O uses "polling”, which means that the
processor spends most of its time in a "busy-wait” loop.

In many systems, one cannot afford to let the processor waste
capacity in busy-wait loops. Interrupt controlled I/O avoids this.

By activating the I/O handling code only when it is actually
needed, it is easy to model a system event as a task.

Depending on the activation pattern of the system event, it can
be modeled as a periodic (e.g., interrupt from real-time clock)
or aperiodic (e.g., network communication) task.

Lecture #6



EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 24, 2011

CHALMERS

Interrupt handling in Ada 95

Important guidelines for interrupt handling in Ada 95:

¢ Interrupts must be handled using protected objects.

e The interrupt service routine must be written as a procedure
in the protected object.

e Data being handled by the interrupt service routine must be
stored in local variables in the protected object.

e Reading and writing such data from the program code must
be done via calls to functions, entries or procedures in the
protected object.

CHALMERS

Interrupt handling in Ada 95

Procedure for implementing the interrupt handler:

1. Declare a protected object and write the interrupt service
routine as a procedure in the protected object.

2. Inform the compiler that the procedure is an interrupt service
routine, by adding the statement

pragma Interrupt_Handler(procedure_name);

in the specification of the protected object.

3. Declare a variable and assign to it the logical number of
the hardware interrupt signal. For example:

Int_ID : constant := Ada.lInterrupts.Names.int_name;

Lecture #6



EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

CHALMERS

Interrupt handling in Ada 95

Procedure for implementing the interrupt handler (cont’'d):

4. Associate the interrupt service routing with the logical number
of the hardware interrupt signal, by calling the procedure

Attach_Handler(procedure_name’access, Int_ID);

5. Inform the compiler about the ceiling priority of the protected
object, by adding the statement
pragma Interrupt_Priority(priority);

in the specification of the protected object.

The ceiling priority must be identical to the priority of the
corresponding hardware interrupt signal.

Interrupt handling in Ada 95

Why is it important that a ceiling priority is defined for
the protected object?

¢« When an interrupt is requested, the processor hardware
causes the interrupt service routine to be executed at a priority
level associated with the interrupt signal.

« Functions, entries, and procedures in the protected object
must execute at the same priority level as the interrupt service
routine in order to preserve the mutual exclusion properties of
the protected object.

e Atask that calls a function, entry or procedure in the protected
object temporarily assumes the ceiling priority while executing
code in the protected object.




EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 24, 2011

CHALMERS

Gnu Ada 95 M68K

Package System contains the following declarations:
subtype Any Priority is Integer range 1..105;
subtype Priority is Any Priority

range Any_Priority’First .. 100;
subtype Interrupt Priority is Any Priority

range Priority’Last .. Any Priority’Last;
The priority of a protected object can be defined with

pragma Interrupt_Priority[(expression)];

Priority levels that are so high that they will mask (block) one or

more hardware interrupt signals are of type Interrupt_Priority.

In Gnu Ada 95 M68K, the priority levels 101..105 correspond to
the processor’s (Motorola 68340) hardware priorities 1..5.

CHALMERS

Gnu Ada 95 M68K

Package Ada.Interrupts contains the following declarations:

package Ada.Interrupts is
type Interrupt ID is 64..80;

end Ada.Interrupts;

Package Ada.Interrupts.Names contains the following declarations:

package Ada.Interrupts.Names is

TIMEINT : constant Interrupt ID := 64;
ITIMERINT : constant Interrupt ID := 65;
PORTBINT : constant Interrupt ID := 66;

end Ada.Interrupts.Names;

Lecture #6



EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

CHALMERS

Resource management

Resource management is a general problem that exists
at several levels in a real-time system.

e The run-time system manages internal resources in the
computer, e.g., CPU time, memory space, disks and
communication channels.

e The application program manages other resources, that
represents the controlled system, e.g., track sections in a
train control system or robots in a manufacturing system:

— Data structures and files
— Sensors and actuators
— Monitors and keyboards.

CHALMERS

Resource management

Classification of resources:

e Shared resources can be accessed by multiple users at the
same time.

e Exclusive (non-shared) resources can only be accessed by
one user at a time.

— can be guaranteed with mutual exclusion
— program code that is executed while mutual exclusion applies
is called a critical region




EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

Resource management

Operations for resource management:

e acquire: to request access to a resource
¢ release: to release a previously acquired resource

The acquire operation can be either blocking or non-blocking:

e Blocking: the task that calls acquire is blocked until the
requested resource becomes available.

¢ Non-blocking: acquire returns a status code that indicates
whether access to the resource was granted or not.

The acquire operation can be generalized so that the calling
task can provide a priority. The task with the highest priority
will then be granted access to the resource in case of
simultaneous requests.

Example: resource handler

Problem: Write a protected object one_Resource that handles an
exclusive resource.

— The protected object should have two entries, Acquire and Release.

— Via entry Acquire a task should be able to request access to the
resource. If the resource is already being used, the task calling
Acquire should be blocked.

— Via entry Release a task should be able to notify that it no longer
needs the resource.

We solve this on the blackboard!




EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

CHALMERS

Resource management

Problems with resource management:

e Deadlock: tasks blocks each other and none of them can
use the resource.

— Deadlock can only occur if the tasks require access to more than
one resource at the same time

— Deadlock can be avoided by following certain guidelines

e Starvation: Some task is blocked because resources are
always assigned to other (higher priority) tasks.
— Starvation can occur in most resource management scenarios

— Starvation can be avoided by granting access to resources in
FIFO order

In general, deadlock and starvation are problems that must be
solved by the program designer!

Deadlock

Example: Assume that two tasks, A and B, use two resources, R1 and R2.
Each resource is handled by protected object One Resource.

R1, R2 : One_Resource;

task A;

task body A is

begin
R1.Acquire;
R2.Acquire;

R2_Release;
R1.Release;
end A;

task B;

task body B is

begin
R2.Acquire;
R1.Acquire;

R1.Release;
R2 _Release;
end B;




EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

Deadlock

Conditions for deadlock to occur:

1. Mutual exclusion
— only one task at a time can use a resource
2. Hold and wait

— there must be tasks that hold one resource at the same time
as they request access to another resource

3. No preemption
— aresource can only be released by the task holding it
4. Circular wait

— there must exist a cyclic chain of tasks such that each task
holds a resource that is requested by another task in the chain

Deadlock

Guidelines for avoiding deadlock:

e Tasks should be either pure clients or pure servers

e Pure client tasks make calls to entries but do not have any
entries themselves

e Pure server tasks have entries but do not make any calls
to entries themselves

e Calls to entries during a rendezvous should be avoided




EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 24, 2011

CHALMERS

Deadlock

Guidelines for avoiding deadlock (cont’d):

1. Task should, if possible, only use one resource at a time.

2. 1f (1) is not possible, all tasks should request resources in

the same order.

3. If (1) and (2) are not possible, special precautions should

be taken to avoid deadlock. For example, resources could
be requested using non-blocking calls.

CHALMERS

Example: dining philosophers

The dining philosophers problem:

Five Chinese philosophers sit at a round table.

The philosophers alternate between eating and thinking. To be
able to eat, a philosopher needs two sticks.

There are only five sticks available: one stick between every pair
of philosophers.

Sticks are a scarce resource: only two philosophers can eat at
the same time.

How is deadlock and starvation avoided?

10

Lecture #6



EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

Example: dining philosophers

The following solution will cause deadlock if all philosophers
should take the left stick at exactly the same time:

loop
Think;
Take left stick;
Take right stick;
Eat;
Drop left stick;
Drop right stick;
end T1;

One way to avoid deadlock and starvation is to only allow four
philosophers at the table at the same time.

CHALMERS

Example: dining philosophers

with Text_l10; use Text_I0;
procedure Philosopher_Demo is

package Int_10 is new Integer_l10(Integer);
use Int_I0;

Max : constant Integer := 5;
subtype Phil_No is Integer range 1..Max;

protected type Room_t is
entry Enter;
procedure Leave;
private
Places : Integer := Max - 1;
end Room_t;

Room : Room_t;

11



EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

CHALMERS

Example: dining philosophers

protected type Stick t is
procedure Set_ID(ID : in Phil_no);
entry Take;
entry Drop;
private
MyID : Phil_no;
Taken : BooTean := false;
end Stick_t;

Stick : array(Phil_No) of Stick_t;
task type Philosopher_t is

entry Start(ID : in Phil_no);
end Philosopher_t;

Philosopher : array(Phil_No) of Philosopher_t;

CHALMERS

Example: dining philosophers

protected body Stick t is
procedure Set_ID(ID : in Phil_no) is

MyID := 1D;
end Set_ID;

entry Take when not Taken is
begin

Taken := true;
Put(**Stick™); Put(MyID, Width => 1); Put_Line(* taken”);
end Take;
entry Drop when Taken is
begin
Taken := false;
Put(“Stick™); Put(MyID, Width => 1); Put_Line(* dropped”);
end Drop;
end Stick_t;

12



EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

CHALMERS

Example: dining philosophers

protected body Room_t is

entry Enter when Places > 0 is

begin
Places := Places - 1;
Put_Line(“One phllosopher came™);
end Enter;

rocedure Leave is

egin
Places := Places + 1;
Put_Line(“One philosopher left”);
end Leave;

end Room_t;

CHALMERS

Example: dining philosophers

task body Philosopher_t is
MyID : Phil_No;

rocedure Think is

egin
Put(“PhlIosopher") Put(MyID, Width => 1); Put_Line(* thinks”);
delay 3.0;

end Think;

procedure Eat is

begin
Put(“PhlIosopher") Put(MyID, Width => 1); Put_Line(* eats”);
delay 2.0;

end Eat;

begin

accept Start(ID : in Phil_No) do
MyID := 1D;

end Start;

loo
Think;
Room.Enter
Stlcks(Mle) Take; Sticks((MyID mod Max)+1).Take;

Stlcks(Mle) Drop; Sticks((MyID mod Max)+1).Drop;
Room.Leave
end loop;
end Phllosopher t;

13



EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #6
Updated January 24, 2011

CHALMERS

Example: dining philosophers

begin

for 1 in Phil_No loop
Stick(i).Set_ID(i);
end loop;

for i in Phil_No loop
Philosopher(i).Start(i);
end loop;

end Philosopher_Demo;

14



