m Low level programming in Ada95 Roger Johansson

Low level programming in Ada95

Useful type declarations
= Bit manipulations and conversions

Declaring Input/Output memory locations and volatile
entities

= Ada95 and the hardware — UART example

m Low level programming in Ada95 Roger Johansson

Useful type declarations

L5-EDA222 1
m Low level programming in Ada95 Roger Johansson
Useful type declarations cont’d Bitfields
type BIT_TYPE is range 0..1; -- Naned type and mn..nax val ues
for BIT_TYPE SI ZE use 1; -- Object type needs a bit
type BITFIELD8 is i
record i
b0: Bl T_TYPE; ¥
bl: Bl T_TYPE; ¥
b2: Bl T_TYPE; |
b3: Bl T_TYPE; ¥
b4: Bl T_TYPE; ¥
b5: Bl T_TYPE; |
b6: Bl T_TYPE; I
b7: Bl T_TYPE;
end record;

Note: This declaration doesn't specify neither the size of
Bl TFI ELD8, nor the representation (bit order)

L5-EDA222 3

C-type Description | Range Type definitions in Ada
unsi gned | 8-bit 0..255 type U NT8 is integer range 0..255;
char integer no for U NT8 size use 8;
sign
si gned 8 bit -128..+127 |type SINT8 is integer range -128..127;
char integer 2's for SINT8 size use 8;
conpl enent
unsi gned | 16- bi t 0..65535 type U NT16 is integer range 0..65535;
short integer no for U NT16 size use 16;
sign
si gned 16 bit -32768. . type SINT16 is integer
short integer 2's | 32767 range -32768..32767;
conpl ement for SINT16' size use 16;
L5-EDA222 2
m Low level programming in Ada95 Roger Johansson
. , .
Useful type declarations cont’d Representation clause
for BI TFI ELD8’ Sl ZE use 8; -- Object type needs 8 bits
record _
b0 at O range 0..0;
bl at 0 range 1..1; —
E; Z: 8 ;Zgg: g g: Bit position within actual byte
b4 at 0 range 4..4;
b5 at 0 range 5..5;
b6 at O range 6..6;
b7 at 0 range 7..7;
end record,

Little Endian bit numbering means that b0 refers to the least
significant bit (the rightmost) in the mathematical binary number.
Note: Called Low_Order_First representation in Ada 95

L5-EDA222 4

Roger Johansson

Useful type declarations cont’d

Representation clause

record
b7
b6
b5
b4
b3
b2
b1
b0

at
at
at
at
at
at
at
at

end record;

for BI TFI ELD8 use

[eleololeoloNeNelo)

for BITFI ELD8’ SI ZE use 8; -- Object type needs 8 bits

range
range
range
range
range
range
range
range

NegkrwnkRo

Nogh~wNREO

The interpretation of bit numbers can be set
through the BIT_ORDER attribute of a data type

Gnu Ada 95 can only use (and has therefore
as default) Big Endian representation

Big Endian bit numbering means that b0 refers to the most
significant bit (the leftmost) in the mathematical binary number.
Note: Called High_Order_First representation in Ada 95

L5-EDA222

Roger Johansson

Bit manipulations
A scary example:

statements?

if(agl)+=—

if(a&&l).+ _|

\

In C (or Java) what is the difference between the following

Bitwise AND

Logical AND

Suppose you made a "typo” error, estimate the time spent for
tracking down and correcting this error.

And even worse, what if your tests never exposed this error?

L5-EDA222

m Low level programming in Ada95
Bit manipulation cont’d

Roger Johansson

There are no BIT-operators in

the Ada language. Instead

the types should have been P (

declared to accomodate bit
operations.

Bl TFI ELDS;

if (a.b7==1) then ...

L5-EDA222

Roger Johansson

Data type conversions

There are no "implicit” conversions in Ada

int a; float b;
a = (int) b;

E i nteger;

b float;
a = integer (b);
b =float (a);

L5-EDA222

m Low level programming in Ada95 Roger Johansson

Easy (unchecked) conversions

The strong data typing in Ada can be overridden.

A single data copy between different types (of the same sizes) is allowed
presumed that you have already stated that it is legal. You do so by
creating new instances from the package "unchecked_conversion”..

function TO U NT8 is new
unchecked_conversi on(BI TFI ELD8, U NT8);

a : BI TFI ELDS;
b : UINTS;

b:= TOUNTS (a);

m Low level programming in Ada95 Roger Johansson
Easy (unchecked) conversions cont’d

Overloading is supported, we can use the same identifier for different
conversions...

wi t h Unchecked_Conver si on

function TO U NT8 is new
unchecked_conversi on(BI TFI ELD8, U NT8);

function TO U NT8 is new
unchecked_conversion(SINT8, U NT8);

function TO U NT8 is new
unchecked_conversi on(your _deci ded_nanme, U NT8);

... as long as the sizes match ...

L5-EDA222 9

L5-EDA222 10

m Low level programming in Ada95 Roger Johansson

Declaring a "variable” for an 10 register

1. Create a type definition that represents the register bits.
2. Declare an object ("variable”) of this type

3. Use an address clause, to tell the compiler where this object resides

10 port : Bl TFI ELDS;

-- address clause for this object:
for 10 port’address use constant System address :=
System St orage_el ements. to_address(nmenory address);

m Low level programming in Ada95 Roger Johansson

Volatile entities

The volatile pragma tells the compiler that an object can be changed
independently of program control.

The generic example is |0 interface registers (in the hardware).

10 port : Bl TFI ELDS;
pragnmae Vol atile(10 Port);
-- address clause for this object:
for 10 port’address use constant System address :=
System St orage_el ements. to_address(menory address);

L5-EDA222 11

L5-EDA222 12

CHALMERS Low level programming in Ada95 Roger Johansson

Why is "Volatile” important?

Consider the following example, a decent compiler should reduce the
loop into a single statement (test only once, or perhaps even remove it)
unless the test value couldn’t change between the loop iterations.

-- wait for device ready ...

while (IO Port.b7 /=0) |oop
NULL;

end | oop;

The
pragma Vol atile(10 Port);

tells the compiler to do NO such optimizations here.

L5-EDA222

CHALMERS Low level programming in Ada95 Roger Johansson

Ada 95 and the hardware — UART example

= The train simulator target computer MC68340.

m The serial interface — UART (Universal Asynchronous
Receiver/Transmitter)

= Serial communication principles
m Programming the device — interpretation of the data

CHALMERS Low level programming in Ada95 Roger Johansson

The train simulator control computer "MC68”

ry

512 kByte Read Only Memory

512 kByte Read/Write Memory

L5-EDA222

sheet.
L5-EDA222 14
Low level programming in Ada95 Roger Johansson
CHALMERS prog 9 g

The train simulator target computer "G1”

256 kByte Read Only Memory

14 kByte Read/Write Memory

L5-EDA222 16

HAM ERS Low level programming in Ada95

Roger Johansson

Motorola MC68340

SYSTEM
INTEGRATION
MODULE

(SIMA0) CcPUT WO

CHANNEL
68020~ BASED
SERIAL
PROTECTION PROCESSOR o

CHIP SELECTS

AND
WAIT STATES

INTERMODULE BUS

TWO-CHANNEL DMA
CONTROLLER TIMER (| TMER

Port A 68term

Port B

"WAI TI NG FOR
CONFI GURATI ON

Low level programming in Ada95 Roger Johansson
CHALMERS

Serial communication module

Address FC Regisier Read W - 1) Rngistor Whits (RO = 0}
o s WCR HIGH BYTE) MCR {HIGH BYTE;

Control registers

Status registers

Data registers

COMMAND REGISTER A (CRA)
TRANSMITTER BUFFER A (TBA)
TER JACR)

su MOOE REGISTER 1 (MAZ

L5-EDA222 18

L5-EDA222 17
CHALMERS Low level programming in Ada95 Roger Johansson

Interrupt vector

IVR $705
7 [5 4 3 2 1 o
| WRT | VRE I RS { VR4 | MR3 | VR2 | IVR1 I VRO I
RESET:
0 o o 1] 1 1 1 1
Read /Write Supervisor Only

put IRQ
number (IVR)

serial

if acknowledged..

cpu32 calculates
vector
(4*IVR)

and then fetch
address to the
interrupt routine

L5-EDA222

Low level programming in Ada95 Roger Johansson
CHALMERS

Interrupt level

BASE for serial module is
progranmabl e i n MC68340.

ILR 5704 .

[T S T N S A In this system we use
| Y S S S e el | 16#FFFFFO00#
e L LI 0 o

Read/\Write Supervisor Only

Useful definitions...

I LR address : constant System address := to_address(16#FFFFF704#);
DILR bits;

for D ILR address use |LR address;

EXAMPLE:
D ILR : = 16#5#; -- IRQ Level 5 for serial nodule

L5-EDA222 20

CHALM ERS Low level programming in Ada95 Roger Johansson

Use of interrupts ER $715
7 [= 4 3 2 1 1]
cos [cos | oss |rerove|nerove] o [pea |removalrrov
- Change of State ISR
DBA/DBB o [1]] o [} o [1] 1]
- Delta Break Write Only Supervisor/User

RxRDYB—Channel B Receiver Ready or FIFO full

1= Enable interrupt
0 = Disable interrupt

TxRDYB—Channel B Transmitter Ready

1= Enable interrupt
0 = Disable interrupt

Use IER to enable interrupt sources from the serial module

L5-EDA222

CHALM ERS Low level programming in Ada95 Roger Johat

nsson

Mode register 1, (one for each channel A and B)

MR1A, MR1B $710, 5718
7 5 5 4 3 2 1 0
|HxF€TS| WF}EHH[PM1IM|PT|B.’C1IBIOGI
RESET: CEREE] Bits/Character
i 0 0 0] 0 0 0) o Frve S
Read/Write Supervisor/User] ! E1.0
1 [Seven Bils
1 1 Eght Bits.
PM1 | PMO Parity Made FT Farity Typs
0 [Wi Parky [Even Party
0 0 Wi Parky 1 O Party
o 1 Faree Party [] L Panty
o 1 Force Party 1 High Parity
1 0 o Parity X ho Parity
1 Mutarop Mode: o Caata Characier
1 Muitiarop Mok 1 Agdress Characher
L5-EDA222

22

CHALM ERS Low level programming in Ada95 Roger Johansson

Clock Select Register A and B

CSRA, CSRB 5711, 8719

e
e [re [|

0 [] 0
Write Only Supervisor/User

Communicating devices must
RCS3 | ROS2 | RCSY | RCSa Sat 1
use the same baudrate
o [o [+ o |m
s ol v [v = P
. o | w | =
o w |
o T o | e |
o I O T
s | o | o | swe | u0
0 Q 1 4800 AN
N I oo
1 00
s [o i |
y [+ [o1 e
i | o =T
1 1 SOLKN

L5-EDA222

CHALM ERS Low level programming in Ada95 Roger Johan

sson

Mode register 2, (one for each channel A and B)

MR2A, MR2B $720, $721 -
= - . . o o . . RTS/CTS used for ”hanc_l shaking”.
| = | = |WTS \m:rs| s | = | & ‘ =0 | le. I?ardware synchcromses
receiver/transmitter.
RESET:
0 L] 1] 1] 1] 0 [1] o
Read/Write Supervisor/User

TXRTS—Transmitter Ready-to-Send

SB3-SB0—Stop-Bit Length Control
These bits select the length of the stop bit appended to the transmitted character

e e L This bit controls the negation of the RTSA or RTSB signals.
0] Normal

] 1 Automatic Echo

1 o Local Loopback TxCTS—Transmitter Clear-to-Send

1 i FRemole Loopoack 1= Enables clear-to-send operation.

L5-EDA222

24

m Low level programming in Ada95 Roger Johansson

T 6 S 4 3 2 1]
(One for each [re | = [pe [e [newe[neov] Frus [rirov |
channelAand B) ™= |
Read Only Supervisor/User

TxRDY=Transmitter Ready
This bit is duplicated in the ISR bit 0 for channel A and bit 4 for channel B.

1= The transmitter holding register iz empty and ready to ba loaded with a character.
This bit is set when the is to the itter shift register.
This bit is also set when the transmitter is first enabled. Characters loaded into
the transmitter holding register while the transmitter is disabled are not
transmitted and are lost.

0= The transmitier holding register was loaded by the CPU32, or the transmitier is
disabled

RxRDY—Receiver Ready
1= A character has been received and is waiting in the FIFO to be read by the
CPU32. This bit is set when a character is transferred from the receiver shift
register to the FIFO.
0= The CPU32 has read the receiver buffer. and no characters remain in the FIFQ

after this read.

L5-EDA222

m Low level programming in Ada95 Roger Johansson

SRA, SRB 3711, $719
EXAMPLE 7 g 5 4 3 2 1 0

| R3 | FE I FE l OE |TxEMP|TxRDY|FFULLIR‘RDYI

C or Java... e
1] 1} i] o o 1] 0 o
Read Only Supervisor/User

while(! (SRB & TxRDY))
;11 spin

/1 ok to transmt

L5-EDA222

m Low level programming in Ada95 Roger Johansson

SRA, SRB $711, $719
EXAMPLE 7 8 5 4 3 2 1 0
I

R3 | FE J FE I OE |T;¢EMP|T&RD‘1‘ | FFULL I R;«F{DYI
Ada RESET:

a 0 0 1] 1] [u] 0 0

Read Only Supervisor/User

-- wait for device ready ...
while (SRB. TXRDY == 0) |oop
NULL; -- spin

end | oop;

Assuming proper declaration
of 10 register "SRB”

L5-EDA222

26

m Low level programming in Ada95 Roger Johansson

TBA, TBB $713, $71B
Transmit N
. |T37|'BBITBGITB4|TEB|TBE|B1ITBUI
reg|5ter RESET:
0 0 i] 1] 0 0 0 i]
Write Only Supervisor/User
EXAMPLE:
C or Java... o
while(! (SRB & TxRDY))
;11 spin
/1 ok to transmt
TBB = c;
L5-EDA222 28

CHAM ERS Low level programming in Ada95 Roger Johansson
TBA, TBB $713, 371B
Transmit Lz - 0
. | Ta7 | TBE l TES [TB4 I 83 I TB2 I TB1 l TED I
regISter RESET:
1] 0 o o] 1] 0 0 o
Write Only Supervisor/User

EXAMPLE:

-- wait for device ready ...

Ada...
while (SRB. TXRDY == 0) |oop
NULL; -- spin

end | oop;
TBB := to_type(c);

Assuming proper type declaration and address clauses for 10 register

"SRB", "TBB”

and approptiate unchecked conversion t o_t ype

L5-EDA222 29

Roger Johansson

CHAM ERS Low level programming in Ada95

Transmit/ Receive
. TBA, TBB $713, $71B
registers shares T e 5 43 1
RESET-
a 0) o o 0 [}
Write Only Supervisor/User
cpu32 bus signal
”Rea_dl_/\/rlt_e" is used as a RBA, RBB 5713, $71B
discriminating address bit 7 s s 4 3 2 0
| R&7 | RB6 1 R85 I RB4 | REB3 | RE&2 | RB1 I RBO I

RESET
o 0 0 o o 0

Supervisor/User

o

Read Only

30

CHALMERS Low level programming in Ada95 Roger Johansson
CRA, CRB $712, $T1A
Control 7 5 5 4 3 2 1 0
regISter | MISC3 | MISC2] MSC1 {Mlscn| TC1 | TCo | RC1] RCD {
RESET:
0 0 i 0 il i 0 0
Write Only Supervisor/User
’_*EJ_S MISCT L5 ILICG
Ir - ‘; T TCO Command
[] [: 0 0 Mo Action Taken
0 1 Enatie Transmiller
1 0 Disable Transmitter
1 D0 Mot Use:
: :I' RCY1 RCO Command
' u a hio Action Taken
2 L a 1 Enatie Recener
‘, .I. ; 1 0 Disabie REcemer
1 G 1 1 1 Do Mol Liger
L5-EDA222 31

L5-EDA222

Roger Johansson

CHAM ERS Low level programming in Ada95

Properties of a serial module

In a real-time system, the serial module is a shared resource.

EXAMPLES:
Different tasks will (perhaps simultanously) print a text string to the console

or
different tasks will (perhaps simultanously) send a command to the simulator

A serial module device driver, in a parallell computing
environment, has to be implemented as a protected object (which

insures mutual exclusion).

32

L5-EDA222

Roger Johansson

A serial port initialization

begin

procedure init_port_Bis

end ini tipiortiB;

;= cmd_reset _receiver;

= cnd_reset _transmitter;
cnd_reset _errorstatus;
= cmd_r eset _break;

:= MRIB_init;

D IER := rec_irqg_enabl e;
cnd_enabl e_r ecei ver;
= cmd_enabl e_transmitter;

ivector : constant := Ada.lnterrupts. Names. PORTBI NT;
cnu_reset _receiver : bits := bits(16#20#);
cnu_reset_transmitter : bits := bits(164304);
cmi_reset_errorstatus : bits := bits(16#40#);
cm_reset_break : bits := bits(16#50%);

rec_irq_enable: bits := bits(16#24#);
cmd_enabl e_receiver : bits := bits(16#01#);

cmd_enabl e_transmitter : bits := bits(16#04#);

MRIB_init : constant bits := bits(16#13#);
-- 8 bits, no parity
MR2B_init : constant bits := bits(16407#);
-~ normal, 1 stop bit

CSRB_init : constant bits := bits(16#BB#);
-- 9600 baud, Rx and Tx

ILEVEL © bits := bits(16#04#);

-~ Interrupt level 4, port A and portB !!
VECTGR © bits := bits(ivector);

-~ Interrupt vector port A and port B!l

L5-EDA222

m Low level programming in Ada95
Serial port device driver

Roger Johansson

vith appropriate packages
package body Serial is

protected body SerialB is
procedure init_port_Bis
begin
- initialize the port
end;

procedure handler is
begin

- handl e interrupt
end;

entry wite (parameter) when guard
begin

- send a charact er
end;

entry read (parameter) when guard
begin
- get a character

end;
end Serial B;
-~ Visible
procedure InitSerialBis....
procedure WiteSerial B (paraneter) is
function ReadSerialB is
begi n

attach_handl er (Serial . handl er access,
end Serial;

ivector);

L5-EDA222

34

Roger Johansson

Summary

Useful type declarations

— We have seen register mappings and howto specify bit positions(locations)

Bit manipulations and conversions

— Ada type checking might seem frustrating, but following some simple rules get
t.

it right.

Declaring Input/Output memory locations and volatile entities

— Ada let’s you specify hardware register addresses in a way that is easy to
understand and at the same time indisputable.

Ada95 and the hardware — UART example
— Afull blown device driver has been sketched.

L5-EDA222

