
1

L5-EDA222

Low level programming in Ada95

1

Roger Johansson

Low level programming in Ada95

Useful type declarations
Bit manipulations and conversions
Declaring Input/Output memory locations and volatile
entities
Ada95 and the hardware – UART example

L5-EDA222

Low level programming in Ada95

2

Roger Johansson

Useful type declarations

type SINT16 is integer

range -32768..32767;
for SINT16’size use 16;

-32768..

32767

16 bit
integer 2’s
complement

signed
short

type UINT16 is integer range 0..65535;

for UINT16’size use 16;

0..6553516-bit
integer no
sign

unsigned
short

type SINT8 is integer range -128..127;

for SINT8’size use 8;

-128..+1278 bit
integer 2’s
complement

signed
char

type UINT8 is integer range 0..255;
for UINT8’size use 8;

0..2558-bit
integer no
sign

unsigned
char

Type definitions in AdaRangeDescriptionC-type

L5-EDA222

Low level programming in Ada95

3

Roger Johansson

Useful type declarations cont’d Bitfields

type BIT_TYPE is range 0..1; -- Named type and min..max values
for BIT_TYPE’SIZE use 1; -- Object type needs a bit
type BITFIELD8 is
record

b0: BIT_TYPE;
b1: BIT_TYPE;
b2: BIT_TYPE;
b3: BIT_TYPE;
b4: BIT_TYPE;
b5: BIT_TYPE;
b6: BIT_TYPE;
b7: BIT_TYPE;

end record;

Note: This declaration doesn’t specify neither the size of
BITFIELD8, nor the representation (bit order)

L5-EDA222

Low level programming in Ada95

4

Roger Johansson

Useful type declarations cont’d Representation clause

for BITFIELD8’SIZE use 8; -- Object type needs 8 bits

for BITFIELD8 use
record

b0 at 0 range 0..0;
b1 at 0 range 1..1;
b2 at 0 range 2..2;
b3 at 0 range 3..3;
b4 at 0 range 4..4;
b5 at 0 range 5..5;
b6 at 0 range 6..6;
b7 at 0 range 7..7;

end record;

Little Endian bit numbering means that b0 refers to the least
significant bit (the rightmost) in the mathematical binary number.
Note: Called Low_Order_First representation in Ada 95

Byte position within actual post

Bit position within actual byte

2

L5-EDA222

Low level programming in Ada95

5

Roger Johansson

Useful type declarations cont’d Representation clause

for BITFIELD8’SIZE use 8; -- Object type needs 8 bits

for BITFIELD8 use
record

b7 at 0 range 0..0;
b6 at 0 range 1..1;
b5 at 0 range 2..2;
b4 at 0 range 3..3;
b3 at 0 range 4..4;
b2 at 0 range 5..5;
b1 at 0 range 6..6;
b0 at 0 range 7..7;

end record;

Big Endian bit numbering means that b0 refers to the most
significant bit (the leftmost) in the mathematical binary number.
Note: Called High_Order_First representation in Ada 95

The interpretation of bit numbers can be set
through the BIT_ORDER attribute of a data type

Gnu Ada 95 can only use (and has therefore
as default) Big Endian representation

L5-EDA222

Low level programming in Ada95

6

Roger Johansson

Bit manipulations

if(a&1)...;

if(a&&1)...;

A scary example:

In C (or Java) what is the difference between the following
statements?

Bitwise AND

Logical AND

Suppose you made a ”typo” error, estimate the time spent for
tracking down and correcting this error.

And even worse, what if your tests never exposed this error?

L5-EDA222

Low level programming in Ada95

7

Roger Johansson

Bit manipulation cont’d

There are no BIT-operators in
the Ada language. Instead
the types should have been
declared to accomodate bit
operations.

...
a : BITFIELD8;

...
if (a.b7 == 1) then ...

...

if(a&1)...;

L5-EDA222

Low level programming in Ada95

8

Roger Johansson

Data type conversions
There are no ”implicit” conversions in Ada

...
a : integer;
b : float;
...

a = integer (b);
b = float (a);

...

...
int a; float b;
b = a;
...

...
int a; float b;
a = (int) b;
...

3

L5-EDA222

Low level programming in Ada95

9

Roger Johansson

Easy (unchecked) conversions
The strong data typing in Ada can be overridden.

A single data copy between different types (of the same sizes) is allowed
presumed that you have already stated that it is legal. You do so by
creating new instances from the package ”unchecked_conversion”..

...
function TO_UINT8 is new
unchecked_conversion(BITFIELD8, UINT8);
...
a : BITFIELD8;
b : UINT8;

...
b:= TO_UINT8 (a);

...

L5-EDA222

Low level programming in Ada95

10

Roger Johansson

Easy (unchecked) conversions cont’d
Overloading is supported, we can use the same identifier for different
conversions...

with Unchecked_Conversion
...
function TO_UINT8 is new
unchecked_conversion(BITFIELD8, UINT8);

function TO_UINT8 is new
unchecked_conversion(SINT8, UINT8);

function TO_UINT8 is new
unchecked_conversion(your_decided_name, UINT8);

... as long as the sizes match ...

L5-EDA222

Low level programming in Ada95

11

Roger Johansson

Declaring a ”variable” for an IO register
1. Create a type definition that represents the register bits.

2. Declare an object (”variable”) of this type

3. Use an address clause, to tell the compiler where this object resides

...
IO_port : BITFIELD8;

-- address clause for this object:
for IO_port’address use constant System.address :=

System.Storage_elements.to_address(memory address);
...

L5-EDA222

Low level programming in Ada95

12

Roger Johansson

Volatile entities
The volatile pragma tells the compiler that an object can be changed
independently of program control.

The generic example is IO interface registers (in the hardware).

...
IO_port : BITFIELD8;
pragma Volatile(IO_Port);
-- address clause for this object:
for IO_port’address use constant System.address :=

System.Storage_elements.to_address(memory address);
...

4

L5-EDA222

Low level programming in Ada95

13

Roger Johansson

Why is ”Volatile” important?
Consider the following example, a decent compiler should reduce the
loop into a single statement (test only once, or perhaps even remove it)
unless the test value couldn’t change between the loop iterations.

-- wait for device ready ...
while (IO_Port.b7 /= 0) loop

NULL;
end loop;

The
pragma Volatile(IO_Port);

tells the compiler to do NO such optimizations here.

L5-EDA222

Low level programming in Ada95

14

Roger Johansson

Ada 95 and the hardware – UART example

The train simulator target computer MC68340.
The serial interface – UART (Universal Asynchronous
Receiver/Transmitter)
Serial communication principles
Programming the device – interpretation of the data
sheet.

L5-EDA222

Low level programming in Ada95

15

Roger Johansson

The train simulator control computer ”MC68”

MC68340
– micro-
controller

512 kByte Read Only Memory

512 kByte Read/Write Memory

L5-EDA222

Low level programming in Ada95

16

Roger Johansson

The train simulator target computer ”G1”

256 kByte Read Only Memory

14 kByte Read/Write Memory

5

L5-EDA222

Low level programming in Ada95

17

Roger Johansson

Motorola MC68340

68term

”WAITING FOR
CONFIGURATION”

Port A

Port B

L5-EDA222

Low level programming in Ada95

18

Roger Johansson

Serial communication module
Control registers

Status registers

Data registers

L5-EDA222

Low level programming in Ada95

19

Roger Johansson

Interrupt vector

serial

cpu32

IRQ

if acknowledged..

put IRQ
number (IVR)

on bus

cpu32 calculates
vector

(4 * IVR)

and then fetch
address to the

interrupt routine

Interrupts and Ada will be
thoroughly elaborated in E3

L5-EDA222

Low level programming in Ada95

20

Roger Johansson

Interrupt level

Useful definitions...

ILR_address : constant System.address := to_address(16#FFFFF704#);

D_ILR: bits;

for D_ILR’address use ILR_address;

EXAMPLE:

D_ILR := 16#5#; -- IRQ Level 5 for serial module

BASE for serial module is
programmable in MC68340.
In this system we use

16#FFFFF000#

6

L5-EDA222

Low level programming in Ada95

21

Roger Johansson

Use of interrupts

Use IER to enable interrupt sources from the serial module

COS
- Change of State
DBA/DBB
- Delta Break

L5-EDA222

Low level programming in Ada95

22

Roger Johansson

Mode register 1, (one for each channel A and B)

L5-EDA222

Low level programming in Ada95

23

Roger Johansson

Clock Select Register A and B

Communicating devices must
use the same baudrate

L5-EDA222

Low level programming in Ada95

24

Roger Johansson

Mode register 2, (one for each channel A and B)

RTS/CTS used for ”hand shaking”.
I.e. hardware synchcronises
receiver/transmitter.

7

L5-EDA222

Low level programming in Ada95

25

Roger Johansson

Status register,
(one for each
channel A and B)

L5-EDA222

Low level programming in Ada95

26

Roger Johansson

EXAMPLE:
C or Java...

...

while(! (SRB & TxRDY))

; // spin

// ok to transmit ...

...

L5-EDA222

Low level programming in Ada95

27

Roger Johansson

EXAMPLE:
Ada

-- wait for device ready ...
while (SRB.TxRDY == 0) loop

NULL; -- spin
end loop;

Assuming proper declaration
of IO register ”SRB”

L5-EDA222

Low level programming in Ada95

28

Roger Johansson

Transmit
register

...

while(! (SRB & TxRDY))

; // spin

// ok to transmit ...

TBB = c;

EXAMPLE:
C or Java...

8

L5-EDA222

Low level programming in Ada95

29

Roger Johansson

Transmit
register

EXAMPLE:
Ada... -- wait for device ready ...

while (SRB.TxRDY == 0) loop
NULL; -- spin

end loop;
TBB := to_type(c);

Assuming proper type declaration and address clauses for IO register
”SRB”, ”TBB”

and approptiate unchecked conversion to_type

L5-EDA222

Low level programming in Ada95

30

Roger Johansson

Transmit/ Receive
registers shares
address

cpu32 bus signal
”Read/Write” is used as a
discriminating address bit

L5-EDA222

Low level programming in Ada95

31

Roger Johansson

Control
register

L5-EDA222

Low level programming in Ada95

32

Roger Johansson

Properties of a serial module

In a real-time system, the serial module is a shared resource.

EXAMPLES:
Different tasks will (perhaps simultanously) print a text string to the console
or

different tasks will (perhaps simultanously) send a command to the simulator
...

A serial module device driver, in a parallell computing
environment, has to be implemented as a protected object (which
insures mutual exclusion).

9

L5-EDA222

Low level programming in Ada95

33

Roger Johansson

A serial port initialization

procedure init_port_B is
begin

D_CRB := cmd_reset_receiver;
D_CRB := cmd_reset_transmitter;
D_CRB := cmd_reset_errorstatus;
D_CRB := cmd_reset_break;
D_MR1B := MR1B_init;
D_MR2B := MR2B_init;
D_CSRB := CSRB_init;
D_ILR := ILEVEL;
D_IVR := VECTOR;
D_IER := rec_irq_enable;
D_CRB := cmd_enable_receiver;
D_CRB := cmd_enable_transmitter;

end init_port_B;

ivector : constant := Ada.Interrupts.Names.PORTBINT;
cmd_reset_receiver : bits := bits(16#20#);
cmd_reset_transmitter : bits := bits(16#30#);
cmd_reset_errorstatus : bits := bits(16#40#);
cmd_reset_break : bits := bits(16#50#);

rec_irq_enable: bits := bits(16#24#);
cmd_enable_receiver : bits := bits(16#01#);
cmd_enable_transmitter : bits := bits(16#04#);

MR1B_init : constant bits := bits(16#13#);
-- 8 bits, no parity
MR2B_init : constant bits := bits(16#07#);
-- normal, 1 stop bit

CSRB_init : constant bits := bits(16#BB#);
-- 9600 baud, Rx and Tx
ILEVEL : bits := bits(16#04#);
-- Interrupt level 4, port A and portB !!
VECTOR : bits := bits(ivector);
-- Interrupt vector port A and port B !!

L5-EDA222

Low level programming in Ada95

34

Roger Johansson

Serial port device driver
with appropriate packages...
package body Serial is
...

protected body SerialB is
procedure init_port_B is
begin

-- initialize the port
end;

procedure handler is
begin

-- handle interrupt
end;

entry write (parameter) when guard
begin

-- send a character
end;

entry read (parameter) when guard
begin

-- get a character
end;

end SerialB;
-- Visible ...

procedure InitSerialB is....
procedure WriteSerialB (parameter) is....
function ReadSerialB is ...

begin

attach_handler(Serial.handler'access, ivector);
end Serial;

L5-EDA222

Low level programming in Ada95

35

Roger Johansson

Summary

Useful type declarations
– We have seen register mappings and howto specify bit positions(locations)

Bit manipulations and conversions
– Ada type checking might seem frustrating, but following some simple rules get

it right.
Declaring Input/Output memory locations and volatile entities

– Ada let’s you specify hardware register addresses in a way that is easy to
understand and at the same time indisputable.

Ada95 and the hardware – UART example
– A full blown device driver has been sketched.

