EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #4
Updated January 23, 2011

CHALMERS

Real-Time Systems

A
Specification «Ada 95

- Clocks, time, delay
- Task priorities

AL ——

Implementation
AL
Verification

Ada 95 Reference Manual (ARM)

The following parts of ARM are dealt with in this course:

Section 9: Tasks and Synchronization
Section 13: Representation Issues
Annex C: Systems Programming
Annex D: Real-Time Systems

In addition, the following parts of ARM are interesting:

Annex E: Distributed Systems
Annex F: Information Systems
Annex G: Numerics

Annex H: Safety and Security

_

Ada 95 Reference Manual (ARM)

Ada 95 consists of a core language and a set of annex
containing extensions for special applications.

An Ada 95 implementation must support the entire core
language, but can choose to support an arbitrary
combination of annex.

An annex may define new packages, attributes and
pragma, but may not introduce new syntax or change
semantics of the core language.

Clocks and time in Ada 95

To construct a real-time system, the chosen programming
language must support a concept of time that can be
used for modeling the system’s time constraints.

In Ada 95, time is represented as system clocks, that can
be read in order to report current time.

Ada 95 has two different time packages that each defines
a system clock:
Ada.Calendar: compulsory package (Section 9.6) with a clock
that represents calendar time with "satisfactory" resolution.
Ada.Real_Time: annex package (Annex D.8) with a clock that
represents physical (monotonic) time with high resolution.

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #4

Updated January 23, 2011

CHALMERS

Calendar time in Ada 95

Ada.Calendar defines a data type Time that represents
calendar time (date + seconds since midnight) with a
resolution of at least 20 ms. Values of this type can be
converted to year, month, day and seconds.

Calendar time is normally monotonic (non-decreasing), but
can be adjusted (forwards/backwards) as a consequence
of e.g. daylight savings time or other time adjustments.

The current value of the calendar time can be read by calling
the function Ada.Calendar.Clock.

A (calendar) time interval (i.e. the difference between two
time instants) is represented by the data type Duration.

CHALMERS

Example: control of execution time
(with Ada.Calendar)

with Ada.Calendar;
use Ada.Calendar;

package body Controller is

task body Temp_Controller is
-- declaration of variables

Start, Finish : Time;

Interval - Duration :=_1.7;

Overrun_Error : exception;
be?in

oop

Start := Clock;
.. -- statements in Temp_Controller;
:= Clock;

ish - Start > Interval then

e Overrun_Error;

end N
end loop;
exception
when Overrun_Error =>
-- program code for error handling
end Temp_Controller;

end Controller;

Real time in Ada 95

Ada.Real_Time defines a data type Time that represents real
time (physical time) with a resolution of at least 1 ms.
Values of this type cannot be converted to calender data.

Real time is strictly monotonic (cannot be adjusted backwards)
and measured in elapsed time units since an epoch. Time
unit and epoch are both implementation dependent.

The current value of the real time can be read by calling the
function Ada.Real_Time.Clock.

A (real) time interval (i.e. the difference between two time
instants) is represented by the data type Time_Span.

Although same names are used for types & functions, Ada.Calendar
and Ada.Real_Time can coexist in the same program.

CHALMERS

Example: control of execution time
(with Ada.Real_Time)

with Ada.Real_Time;
use Ada.Real_Time; . Time constants have type
package body Controller is Duration as default.
task body Temp_Controller is
- -- declaration of variables
inish : Time;
Interval : Time_Span := To_Time_Span(1.7);
Overrun_Error : exception;

be?m Conversion of time intervals

oop q q =

Start := Clock: is found in Ada.Real_Time.
.- -- statements in Temp_Controller;

2= Clock;
ish - Start > Interval then
raise Overrun_Error;
end if;
end loop;
exception
when Overrun_Error =>
-- program code for error handling
end Temp_Controller;

end Controller;

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #4
Updated January 23, 2011

CHALMERS

Time delays

How can the execution of a task be delayed in Ada?

o Use the (relative) delay statement:
delay 10.0; -

t for 10 sec

e While the task is delayed in the delay statement, other tasks (if
such exist) may execute.

e The delay statement guarantees that the delay will be at least the
indicated number of seconds (which should be of type Duration).

e The actual delay could be longer because the delayed task may
have to wait for other tasks to complete their execution.

CHALMERS

Periodic activities

How can systematic time skew be avoided in Ada?
e Use the (absolute) delay statement:

delay until Later; -- wait until clock become

e The absolute delay statement guarantees that the continued
execution is delayed until the given time instant at the earliest.

e The given time instant can be of arbitrary time type
(i.e. from Ada.Calendar as well as from Ada.Real_Time).

Periodic activities

Example: Execute a task periodically every 5th second.

package body Periodic_Action is
task body T is

Interval : constant Duration := 5.0;
begin
loop
Action;
delay Interval;
end loop;

end T;
end Periodic_Action;

This solution gives rise to a systematic time skew

— The code for Action takes a certain time Aaction
— The code for administrating the loop construct takes a certain time Aioop

= The minimum interval between two executions of Action is:
5 + Aaction + Aloop sSeconds.

CHALMERS

Periodic activities

package body Periodic_Action is
task body T is
Interval : constant Duration := 5.0;
Next Time : Time;
begin
Next_Time := Clock + Interval;
loop
Action;
delay until Next Time;
Next Time := Next Time + Interval;
end loop; -
end T;
end Periodic_Action;

This solution does not eliminate local time skew

— Other tasks with same or higher priority may interfere so that the task
cannot begin its execution at the desired time instant

— Local time skew may cause the start time within the current time
interval to vary between different executions of the same task.

— Local time skew can be avoided by using suitable scheduling
algorithms or be determined with the aid of special analysis methods.

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 23, 2011

Example: a simple control system

Problem: Write a procedure Periodic_Controller for the control system
introduced in an earlier lecture.

— Task Temp_Controller should use an iteration period of 70 ms.
— Task Pressure_Controller should use iteration period 30 ms.
— Printing to the display should take place without the server task.

— Use package Ada.Real_Time to model physical time.

We solve this on the blackboard!

Task priorities in Ada 95

Task priorities are of data type Any_Priority which is declared
in package System (see Section 13.7 in ARM).

Priorities are a subtype of Integer and are given as values in
the range

Any Priority’/First .. Any Priority’Last

The range of the priority values is implementation dependent
(not defined in the language):

subtype Any Priority is Integer range ing

Lecture #4

_

Task priorities in Ada 95

To be able to guarantee and analyze the behavior of a real-time
system, the programming language and run-time system
must have support for task priorities.

Task priorities are used for selecting which task that should be
executed if multiple tasks contend over the processing
resource (the CPU).

The priority of a task can be given in two different ways:

Static priorities: based on task characteristics that are known
before the system is running, e.g., iteration frequency or
deadline.

Dynamic priorities: based on task characteristics that are
derived at certain times while the system is running, e.g.,
remaining execution time or remaining time to deadline.

Task priorities in Ada 95

Depending of the type of task, two types of priorities are
used (both of which are subtypes of Any_Priority):

Normal tasks use priorities av data type Priority:

subtype Priority is Any Priority
range Any Priority’First ..

Interrupt handlers and protected objects use priorities of data
type Interrupt_Priority:

subtype Interrupt Priority is Any Priority
range Priority’Last+l .. Any Priority’Last;

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 23, 2011

Static task priorities in Ada 95

In the Ada 95 core language there is only support for static
task priorities.

The static (base) priority of a task is expressed using the
pragma Priority, Which should be located in the
specification of the task.

task P1 is
pragma Priority(5);
entry E1(X : in Objekt);
entry E2(Y : out Objekt);
end P1;

The parameter to the pragma is of data type Priority.

Dynamic task priorities i Ada 95

Annex D (Real-Time Systems) provides support for
dynamic priorities via package Ada.Dynamic_Priorities:

package Ada.Dynamic_ Priorities is

procedure Set Priority(...);

function Get Priority(...) return Any Priority;
end Ada.Dynamic Priorities;

By means of this package, the priority of a task can be
read and modified while the system is running.

Lecture #4

Static task priorities in Ada 95

In the absence of a priority pragma, a task inherits the
priority of its parent task.

If no priority is given in its ancestors, the task is assigned the
priority Default Priority (found in package System):
Default Priority : constant Priority :=
(Priority’First + Priority’Last)/2;
For the main program, which is executed by a predefined
(non-declared) task, the priority is given directly in the
main procedure because it lacks a specification part.

If no priority is given for the main program, it is assigned the
priority Default Priority.

Priorities and shared objects

When task priorities are used to introduce determinism and
analyzability to the system, this must also encompass
the handling of protected objects.

In order to verify the system, an upper bound of each task’s
blocking time must be possible to derive.

Such derivation is relatively simple as long as a task can
only be blocked by tasks with higher priority.

The analysis becomes much more difficult when protected
objects are used, as a task can then also be blocked by
tasks with lower priority that does not use the object.

One such example is when priority inversion occurs.

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 23, 2011

CHALMERS

Priority inversion

Assume three tasks H, M and L (decreasing priorities) where H
and L share a protected object.

1. Assume that task L with lowest priority requests and acquires a
protected object (critical region).
2. Task H, which has highest priority, then starts and requests the
protected object. As only one task at a time can execute code
In a protected object, H must wait until L releases the object.
3. Task M, which has medium priority, preempts task L according
to the priority rules and then starts its execution.
< Priority inversion has now occurred because task M preempted a
task (H) with higher priority.
« The blocking time for task H now depends on a task (M) with lower
priority that does not use the protected object.
 If task M should use another protected object there would also be
a potential risk that deadlock could occur.

Ceiling priorities

Priority inversion can be reduced with the aid of a
mechanism called ceiling priorities.

Each protected object is assigned a ceiling priority that is
equal to the maximum priority among all tasks that may
potentially request the protected object.

When a task executes the code of a protected object it is
temporarily assigned a priority equal to that of the
protected object’s ceiling priority.

One method for ceiling priorities supported by Ada 95 is the
Immediate Ceiling Priority Protocol (ICPP).

Lecture #4

CHALMERS

Priority inversion

priority (H) > priority (M) > priority (L)
[normal execution H and L share resource R

V7] critical region

H blocked

" —

W2

\

N

—

CHALMERS

Ceiling priorities in Ada 95 (ICPP)

priority (H) > priority (M) > priority (L)
[normal execution H and L share resource R

W77 critical region

H blocked

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #4
Updated January 23, 2011

CHALMERS CHALMERS

Ceiling priorities in Ada 95 (ICPP) Ceiling priorities in Ada 95
Besides minimizing priority inversion, ICPP exhibits some ICPP must be implemented in compilers that support
other nice properties in a single processor system: Annex D (Real-Time Systems) in Ada 95.
— Mutual exclusion is guaranteed because a task that executes A compiler vendor may choose to support multiple ceiling
the code of a protected object cannot be preempted by any priority protocols.

other task that also requests the protected object. . - - . .
a P) Which ceiling priority protocol to use in Ada 95 is selected

— A task can only be blocked once (in the beginning of its with the pragma Locking Policy:
execution) by a task with lower priority. pragma Locking Policy(Ceiling Locking) ;

~ Freedom from deadiock is guaranteed ifall objects are The identifier ceiling Locking corresponds to ICPP.
protected. -

In Gnu Ada 95, the pragma is not needed as ICPP is the
default policy.

