
EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #4
Updated January 23, 2011

1

Implementation

Specification •  Ada 95
•  Clocks, time, delay
•  Task priorities

Ada 95 consists of a core language and a set of annex
containing extensions for special applications.

An Ada 95 implementation must support the entire core
language, but can choose to support an arbitrary
combination of annex.

An annex may define new packages, attributes and
pragma, but may not introduce new syntax or change
semantics of the core language.

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #4
Updated January 23, 2011

2

Ada.Calendar defines a data type Time that represents
calendar time (date + seconds since midnight) with a
resolution of at least 20 ms. Values of this type can be
converted to year, month, day and seconds.

Calendar time is normally monotonic (non-decreasing), but
can be adjusted (forwards/backwards) as a consequence
of e.g. daylight savings time or other time adjustments.

The current value of the calendar time can be read by calling
the function Ada.Calendar.Clock.

A (calendar) time interval (i.e. the difference between two
time instants) is represented by the data type Duration.

Ada.Real_Time defines a data type Time that represents real
time (physical time) with a resolution of at least 1 ms.
Values of this type cannot be converted to calender data.

Real time is strictly monotonic (cannot be adjusted backwards)
and measured in elapsed time units since an epoch. Time
unit and epoch are both implementation dependent.

The current value of the real time can be read by calling the
function Ada.Real_Time.Clock.

A (real) time interval (i.e. the difference between two time
instants) is represented by the data type Time_Span.

Although same names are used for types & functions, Ada.Calendar
and Ada.Real_Time can coexist in the same program.

with Ada.Calendar; use Ada.Calendar;
package body Controller is
 task body Temp_Controller is
 ... -- declaration of variables

 Start, Finish : Time;
 Interval : Duration := 1.7;
 Overrun_Error : exception;
 begin loop
 Start := Clock;
 ... -- statements in Temp_Controller;

 Finish := Clock;
 if Finish - Start > Interval then
 raise Overrun_Error;
 end if;
 end loop;
 exception
 when Overrun_Error =>

 -- program code for error handling end Temp_Controller;
end Controller;

with Ada.Real_Time; use Ada.Real_Time;
package body Controller is
 task body Temp_Controller is
 ... -- declaration of variables

 Start, Finish : Time;
 Interval : Time_Span := To_Time_Span(1.7);
 Overrun_Error : exception;
 begin loop
 Start := Clock;
 ... -- statements in Temp_Controller;

 Finish := Clock;
 if Finish - Start > Interval then
 raise Overrun_Error;
 end if;
 end loop;
 exception
 when Overrun_Error =>

 -- program code for error handling end Temp_Controller;
end Controller;

Time constants have type
Duration as default.

Conversion of time intervals
is found in Ada.Real_Time.

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #4
Updated January 23, 2011

3

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #4
Updated January 23, 2011

4

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #4
Updated January 23, 2011

5

When task priorities are used to introduce determinism and
analyzability to the system, this must also encompass
the handling of protected objects.

In order to verify the system, an upper bound of each task’s
blocking time must be possible to derive.

Such derivation is relatively simple as long as a task can
only be blocked by tasks with higher priority.

The analysis becomes much more difficult when protected
objects are used, as a task can then also be blocked by
tasks with lower priority that does not use the object.

One such example is when priority inversion occurs.

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #4
Updated January 23, 2011

6

Assume three tasks H, M and L (decreasing priorities) where H
and L share a protected object.
1. Assume that task L with lowest priority requests and acquires a

protected object (critical region).
2. Task H, which has highest priority, then starts and requests the

protected object. As only one task at a time can execute code
in a protected object, H must wait until L releases the object.

3. Task M, which has medium priority, preempts task L according
to the priority rules and then starts its execution.

•  Priority inversion has now occurred because task M preempted a
task (H) with higher priority.

•  The blocking time for task H now depends on a task (M) with lower
priority that does not use the protected object.

•  If task M should use another protected object there would also be
a potential risk that deadlock could occur. t1

H blocked

t2

Blocking time for H is not bounded
by execution of critical region

t

t
H

t
M

normal execution

critical region

priority (H) > priority (M) > priority (L)

L

H and L share resource R

Priority inversion can be reduced with the aid of a
mechanism called ceiling priorities.

Each protected object is assigned a ceiling priority that is
equal to the maximum priority among all tasks that may
potentially request the protected object.

When a task executes the code of a protected object it is
temporarily assigned a priority equal to that of the
protected object’s ceiling priority.

One method for ceiling priorities supported by Ada 95 is the
Immediate Ceiling Priority Protocol (ICPP).

L receives R’s ceiling priority (= H’s priority)

L receives original priority
H blocked

t
H

t
M

normal execution

critical region

priority (H) > priority (M) > priority (L)

t
L

H and L share resource R

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #4
Updated January 23, 2011

7

