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Implementation 

Specification •  Ada 95 
•  Clocks, time, delay 
•  Task priorities 

Ada 95 consists of a core language and a set of annex 
containing extensions for special applications. 

An Ada 95 implementation must support the entire core 
language, but can choose to support an arbitrary 
combination of annex. 

An annex may define new packages, attributes and 
pragma, but may not introduce new syntax or change 
semantics of the core language. 
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Ada.Calendar defines a data type Time that represents 
calendar time (date + seconds since midnight) with a 
resolution of at least 20 ms. Values of this type can be 
converted to year, month, day and seconds. 

Calendar time is normally monotonic (non-decreasing), but 
can be adjusted (forwards/backwards) as a consequence 
of e.g. daylight savings time or other time adjustments. 

The current value of the calendar time can be read by calling 
the function Ada.Calendar.Clock. 

A (calendar) time interval (i.e. the difference between two 
time instants) is represented by the data type Duration. 

Ada.Real_Time defines a data type Time that represents real 
time (physical time) with a resolution of at least 1 ms. 
Values of this type cannot be converted to calender data. 

Real time is strictly monotonic (cannot be adjusted backwards) 
and measured in elapsed time units since an epoch. Time 
unit and epoch are both implementation dependent. 

The current value of the real time can be read by calling the  
function Ada.Real_Time.Clock. 

A (real) time interval (i.e. the difference between two time 
instants) is represented by the data type Time_Span. 

Although same names are used for types & functions, Ada.Calendar 
and Ada.Real_Time can coexist in the same program. 

with Ada.Calendar; use Ada.Calendar; 
package body Controller is 
  task body Temp_Controller is 
    ...  -- declaration of variables 

    Start, Finish : Time; 
    Interval : Duration := 1.7; 
    Overrun_Error : exception; 
  begin     loop 
      Start := Clock; 
      ...   -- statements in Temp_Controller; 

      Finish := Clock; 
      if Finish - Start > Interval then 
        raise Overrun_Error; 
      end if; 
    end loop; 
  exception 
    when Overrun_Error => 

  -- program code for error handling   end Temp_Controller; 
end Controller; 

with Ada.Real_Time; use Ada.Real_Time; 
package body Controller is 
  task body Temp_Controller is 
    ...  -- declaration of variables 

    Start, Finish : Time; 
    Interval : Time_Span := To_Time_Span(1.7); 
    Overrun_Error : exception; 
  begin     loop 
      Start := Clock; 
      ...   -- statements in Temp_Controller; 

      Finish := Clock; 
      if Finish - Start > Interval then 
        raise Overrun_Error; 
      end if; 
    end loop; 
  exception 
    when Overrun_Error => 

  -- program code for error handling   end Temp_Controller; 
end Controller; 

Time constants have type  
Duration as default. 

Conversion of time intervals 
is found in Ada.Real_Time. 
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When task priorities are used to introduce determinism and 
analyzability to the system, this must also encompass 
the handling of protected objects.  

In order to verify the system, an upper bound of each task’s 
blocking time must be possible to derive.  

Such derivation is relatively simple as long as a task can 
only be blocked by tasks with higher priority. 

The analysis becomes much more difficult when protected 
objects are used, as a task can then also be blocked by 
tasks with lower priority that does not use the object. 

One such example is when priority inversion occurs. 
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Assume three tasks H, M and L (decreasing priorities) where H 
and L share a protected object. 
1. Assume that task L with lowest priority requests and acquires a 

protected object (critical region). 
2. Task H, which has highest priority, then starts and requests the 

protected object. As only one task at a time can execute code 
in a protected object, H must wait until L releases the object. 

3. Task M, which has medium priority, preempts task L according 
to the priority rules and then starts its execution. 

•  Priority inversion has now occurred because task M preempted a 
task (H) with higher priority. 

•  The blocking time for task H now depends on a task (M) with lower 
priority that does not use the protected object. 

•  If task M should use another protected object there would also be 
a potential risk that deadlock could occur. t1 

H blocked 

t2 

Blocking time for H is not bounded  
by execution of critical region 

t 

t 
H 

t 
M 

normal execution 

critical region 

priority (H) > priority (M) > priority (L)  

L 

H and L share resource R  

Priority inversion can be reduced with the aid of a 
mechanism called ceiling priorities.  

Each protected object is assigned a ceiling priority that is 
equal to the maximum priority among all tasks that may 
potentially request the protected object.  

When a task executes the code of a protected object it is 
temporarily assigned a priority equal to that of the 
protected object’s ceiling priority. 

One method for ceiling priorities supported by Ada 95 is the  
Immediate Ceiling Priority Protocol (ICPP). 

L receives R’s ceiling priority (= H’s priority) 

L receives original priority 
H blocked 
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