EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated March 5, 2011

Solutions to examples, Lecture #3

CHALMERS

Example: circular buffer

Problem: Write a server task Circular_Buffer in Ada that handles a
circular buffer with room for 8 data records of type Data.

— The server task should have two entries, Put and Get.

— Producer tasks should be able to insert data records in the buffer
via entry Put. If the buffer is full, a task that calls Put should be
blocked.

— Consumer tasks should be able to remove data records from the
buffer via entry Get. If the buffer is empty, a task that calls Get
should be blocked.

CHALMERS

Example: circular buffer

task Circular_Buffer is [Free
entry Put(D : in Data);
entry Get(D : out Data); [] Busy

end Circular_Buffer;

task body Circular_Buffer is
N : constant := 8;

A : array (1..N) of Data;
1,J - Integer range 1..N = 1; I I
Count : Integer range O0..N := O;
begin | J
oop
select

when Count < N =>
accept Put(D : in Data) do

A(l) := D; -- save data in buffer
end Put;
1 := (1 mod N) + 1;
Count := Count + 1;

or
when Count > 0 =>
accept Get(D : out Data) do
D := AQJ); -- get data from buffer
end Get;
J = (3 mod N) + 1;
Count := Count - 1;
end select;
end loop;
end Circular_Buffer;

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated March 5, 2011

Solutions to examples, Lecture #3

CHALMERS

Example: circular buffer

Problem: write a protected object Circular Buffer that handles a
circular buffer with room for 8 data records of type Data.

— The protected object should have two entries, Put and Get.

— Producer tasks should be able to insert data records in the buffer
via entry Put. If the buffer is full, a task that calls Put should be
blocked.

— Consumer tasks should be able to remove data records from the
buffer via entry Get. If the buffer is empty, a task that calls Get
should be blocked.

CHALMERS

Example: circular buffer

type Buffer is array (Integer range <>) of Data; [Free

protected type Circular_Buffer is] Busy
entry Puth : in Data);
entry Get(D : out Data);
private 7/
N : constant :=_8;
A : Buffer(1l..N);
1,J : Inteder range 1..N := 1; T T
Count : Integer range O0..N := 0O; 1 3
end Circular_Buffer;

protected body Circular_Buffer is
entry Put(D : in Data) when Count < N is
begin
A(l) := D;
1 := (1 mod N) + 1;
Count := Count + 1;
end Put;

entry Get(D : out Data) when Count > O is
begin
D := AQJ);
J = (J mod N) + 1;
Count := Count - 1;
end Get;
end Circular_Buffer;

