
EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #3
Updated January 16, 2011

1

Implementation

Specification •  Shared data structures
•  Mutual exclusion
•  Protected objects in Ada

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #3
Updated January 16, 2011

2

The remaining statements, e.g.
I := (I mod N) + 1;
Count := Count + 1;

are only executed by one task (Circular_Buffer), and it is
therefore no risk for data inconsistency.

Assume that Put is implemented as a procedure.
procedure Put(D : in Data) is
 -- declaration of A, I and Count
 ...

begin
 A(I) := D;
 I := (I mod N) + 1;
 Count := Count + 1;
end Put;

 Now, assume that Put is called by two task:
task body P1 is task body P2 is
begin begin
 loop loop

 Put(X); Put(Y);

 end loop; end loop;
end P1; end P2;

The following execution order causes data inconsistency:

 Put(X): Put(Y): Fault:
 A(I) := X;
 A(I) := Y; -- X is overwritten

 I := (I mod N)+1;
 I := (I mod N)+1; -- old value in
 Count := Count + 1; -- last data record

 Count := Count + 1;

I

Y X

I

? Y

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #3
Updated January 16, 2011

3

Specification:
protected type Shared_Integer(Initial_Value : Integer) is
 function Read return Integer;
 procedure Write(New_Value : Integer);
 procedure Increment(By : Integer);
private
 The_Data : Integer := Initial_Value;

end Shared_Integer;

Declaration of protected variable:
My_Data : Shared_Integer(42);

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #3
Updated January 16, 2011

4

