EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #3
Updated January 16, 2011

Real-Time Systems Mutual exclusion

Systems with cooperating concurrent tasks require

A automatic handling of shared data structures.
Specification :;’L?;:f:f;ﬁj :i';ct”res e Animportant problem that has to be solved is how to guarantee
- Protected objects in Ada that a data structure is always kept in a consistent state.
A e A working solution is achieved if one makes sure that only
Imol tati one task at a time receive access to the data structure.
mplementation
& e Exclusive access to a data structure can be achieved by making
sure that program code that manipulates the data structure
A executes under so-called mutual exclusion, that is, the code
Verification execution cannot be preempted in the most critical moment.

Mutual exclusion Example: circular buffer

Program constructs that provide mutual exclusion: Problem: Write a server task Circular Buffer in Ada that handles a
circular buffer with room for 8 data records of type Data.

e Ada 95 uses server tasks (rendezvous) or protected objects.
— The server task should have two entries, Put and Get.

e Other (mainly older) programming languages (e.g. Modula-1, Prod tasks should be able to insert dat ds in the buff
. — Producer tasks should be able to insert data records in the buffer
Concurrent Pascal, Mesa) use monitors. via entry Put. If the buffer is full, a task that calls Put should be
e Java uses synchronized methods, a simplified version of monitors. blocked.

— Consumer tasks should be able to remove data records from the

e Real-time kernels and operating systems use semaphores. When buffer via entry Get. If the buffer is empty, a task that calls Get
programming in languages (e.g. C and C++) that do not provide should be blocked.

the constructs mentioned above, such semaphores must be used.

To guarantee mutual exclusion in the implementation itself for

i |
the constructs mentioned above, special methods must be used. We solve this on the blackboard!

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #3
Updated January 16, 2011

Mutual exclusion

When a shared data structure is handled by a server task in
Ada, mutual exclusion is obtained because a rendezvous
can only occur between two tasks at a time. This means
that all statements between do and end must be executed
before a new rendezvous can take place.

accept Put (D : in Data) do

A(I) :=

end Put;

The remaining statements, e.g.

I := (1 mod N) + 1;
Count := Count + 1;

are only executed by one task (Circular_Buffer), and it is
therefore no risk for data inconsistency.

Mutual exclusion

Assume that Put is implemented as a procedure.

procedure Put(D : in Data) is
-- declaration of A, 1 and Count

begin
A(l) = D;
1 := (1 mod N) + 1;
Count := Count + 1;
end Put;

Now, assume that Put is called by two task:

task body P1 is task body P2 is
begin begin

Toop Toop

PUL(X); PUE(Y);

éﬁé loop; éﬁé loop;
end P1; end P2;

_

Mutual exclusion

Observe that, if the operations put and Get had been
implemented as ordinary procedures, mutual
exclusion would not have been obtained.

Instead, the buffer data structure could very easily become
corrupt and give rise to data inconsistencies.

The following example demonstrates one such case ...

CHALMERS

Mutual exclusion

The following execution order causes data inconsistency:

Put(X): Put(Y): Fault:
ACD) = X;
ACl) = Y; -- X is overwritten
1 := (1 mod N)+1;
1 := (1 mod N)+1; -- old value in
Count := Count + 1; -- last data record

Count := Count + 1;

Consistent data: Inconsistent data:
IMTTTTT] MEITTT T

[I

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 16, 2011

CHALMERS

Protected objects

Using server tasks to handle shared data structures is
often an inefficient solution as task switches will occur
every time a data structure has to be manipulated.

Ada 95 therefore provides an alternate solution with a
language construct called protected objects.

— A protected object is an entirely passive object that offers
protected operations for data being shared by multiple tasks.

— A protected object consists (similar to packages and tasks)
of a specification and a body.

Example: integers as protected objects

Specification:
protected type Shared_Integer(Initial_Value : Integer) is
function Read return Integer;
procedure Write(New_Value : Integer);
procedure Increment(By : Integerg;

private
The_Data : Integer := Initial_Value;

end Shared_Integer;

Declaration of protected variable:

My_Data : Shared_Integer(42);

Lecture #3

Protected objects

A protected operation can be a function, a procedure
or an entry.

— Protected procedures and entries are regarded as writers and
mutual exclusion is guaranteed for these operations.

— Protected functions are regarded as readers and are therefore
not allowed to modify the data of the protected object. Mutual
exclusion among tasks calling protected functions is thus not
required.

CHALMERS

Example: integers as protected objects

Body:

protected body Shared Int

function Read return Intege
begin

return The Data;
end Read -

procedure Write
begin

The Data
end W

procedure Increment (By : Integer) is

end Shared Integer;

Observe that the protected object is entirely passive, i.e. lacks active code.

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #3
Updated January 16, 2011

CHALMERS

Protected objects

Protected entries are guarded by a Boolean expression
called a barrier. This barrier must evaluate to "true” to
allow the entry body code to be executed.

entry E1(X : in Data) when boo
begin

is
end E1;

Ada 95 requires that a Boolean expression (barrier) is given
for each protected entry.

CHALMERS

Protected objects

Restrictions of protected entries:

— A task executing the code of a protected procedure/entry may
not use any operation that can block.
— This means that the following operations may not be used in the
body of a protected procedure/entry:
e Call to an entry
e Delay statement
¢ Call to a sub-program whose code contains a potentially blocking
operation
— Exception: A tasks executing the code of an entry body may
execute a requeue statement.

* Requeue places the task executing the statement in a given entry
queue. Because the task using requeue releases the protected
object at the same time, there is no conflict.

Protected objects

Semantics of protected entries:

— A task that calls an entry whose barrier evaluates to "false” is
queued (blocked).
— A barrier is evaluated ...

1. ... in conjunction with calls to the protected entry if the barrier may
have changed since it was last evaluated.

2. ... every time a call to a protected procedure/entry completes, if
there are tasks being queued at the entry and the barrier may have
changed since it was last evaluated.

Barriers are not evaluated at calls to protected functions as such

functions cannot change the state of a protected object.

— Queued tasks that are waiting for barriers have priority over
other callers when the protected object becomes available.

Example: circular buffer

Problem: Write a protected object Circular Buffer that handles a
circular buffer with room for 8 data records of type Data.

— The protected object should have two entries, Put and Get.

— Producer tasks should be able to insert data records in the buffer
via entry Put. If the buffer is full, a task that calls Put should be
blocked.

— Consumer tasks should be able to remove data records from the

buffer via entry Get. If the buffer is empty, a task that calls Get
should be blocked.

We solve this on the blackboard!

