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Real-time programming
Recommended programming method:

— Parallel programming paradigm

e Reduces unnecessary dependencies between tasks

Timing-aware task execution

e Enables the identification of timing properties of tasks

— Deterministic task execution with priorities
e Enables the analysis of interference between tasks

Interrupt-based handling of system events
e Enables the analysis of the events’ interference on tasks
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Real-time programming

Desired properties of a programming language:

— Suitable schedulable unit

o tasks with individual memory protection

e access to I/0O addresses
o |low-level data types

o task priorities (enables deterministic conflict resolution)
o task delays (enables periodic behavior)

o threads ("lightweight tasks” without individual memory protection)

— Constructs facilitating communication with the environment

— Constructs facilitating the analysis of timing correctness

¢ handling of hardware interrupts (model interrupt as a task)
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Real-time programming

What programming languages are suitable?

- C,C++
e Strong support for low-level programming

— Java
e Strong support for parallel programming (threads)

— Ada 95
e Strong support for low-level programming
e Strong support for parallel programming (tasks)
e Strong support for priorities and notion of time

o Parallel programming only via calls to operating system (POSIX)
e Priorities and notion of time lacking in language (OS dependent)

e Priorities and notion of time lacking (but appears in RT Java)
o Memory management ("garbage collection”) unsuited for real-time
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Why parallel programming?

Most real-time applications are inherently parallel
— Events in the target system’s environment often occur in parallel;
by viewing the application as consisting of multiple tasks, this
reality can be reflected.
— While a task is waiting for an event (e.g., I/O or access to a
shared resource) other tasks may execute.

System timing properties can be analyzed more easily
— First the local timing properties of each task are derived; then,
the interference between tasks are analyzed

System can obtain reliability properties
— Redundant copies of the same task makes system fault-tolerant

CHALMERS

Problems with parallel programming

Access to shared resources

— Many hardware and software resources can only be used by
one task at a time (e.g., processor, hard disk, display)

— Only pseudo-parallel execution is possible in many cases

Information exchange

— System modeling using parallel tasks also introduces a need
for synchronization and information exchange.

Parallel programming assumes an advanced run-time
system that takes care of the scheduling of shared
resources and communication between tasks.
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Support for parallel programming

Support in the programming language:
— Program is easier to read and comprehend, which means
simpler program maintenance

— Program code can be easily moved to another operating system

— For some embedded systems, a full-fledged operating system is
unnecessarily expensive and complicated

— Examples: Ada 95, Java, Modula, Occam, ...

Example:
Ada 95 offers support via task, rendezvous & protected objects

Java offers support via threads & synchronized methods

CHALMERS

Support for parallel programming

Support in the operating system:

— Simpler to combine programs written in different languages
whose parallel programming models are incompatible
(e.g., C/C++, Java, Pascal, ...)

— Difficult to implement the language’s parallel programming
model on top of the operating system’s model

— Operating systems become more and more standardized,
which makes program code more portable between OS’s
(e.g., POSIX for UNIX, Linux, Mac OS X, and Windows)

Example:
C/C++ offer support via fork, semctl & msgctl (UNIX, Linux)
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Example: a simple control system

Thermometer = ADC

Objective: Keep temperature and
pressure for a chemical process
within given bounds.

Pressure sensor

Switch — T

Heater A

Screen

. L

ADC

DAC

Pumplvalve
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Sequential solution

procedure Controller is
TR : Temp_Reading;
PR : Pressure_Reading;
HS : Heater_Setting;
PS : Pressure_Setting;
begin
loop
Read(TR);
Temp_Convert(TR,HS);
Write(HS);
Write(TR);

Read(PR);
Pressure_Convert(PR,PS);
Write(PS);
Write(PR);
end loop;
end Controller;

-- read temperature

-- convert to temperature setting
-- to temperature switch

-- to screen

-- read pressure

-- convert to pressure setting
-- to pressure control

-- to screen
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Sequential solution

Drawback:

— the inherent parallelism of the application is not exploited

e procedure Read blocks the execution until a new temperature
or pressure sample is available from the ADC

¢ while waiting to read the temperature, no attention can be given
to the pressure (and vice versa)
o if the call for reading the temperature does not return because of
a fault, it is no longer possible to read the pressure
— the independence of the control functions are not considered

e temperature and pressure must be read with the same interval

o the iteration frequency of the loop is mainly determined by the
blocking time of the calls to Read.

CHALMERS

Improved sequential solution

Procedure Controller is

begin

end Controller;

Pressure_Convert(PR,PS);

The Boolean function Ready_Temp indicates
whether a sample from ADC is available

loop

iT Ready_Temp then
Read(TR); read temperature
Temp_Convert(TR,HS); convert to temperature setting
Write(HS); to temperature switch
Write(TR); to screen

end if;

if Ready_Pres then
Read(PR); read pressure

convert to pressure setting

Write(PS); to pressure control
Write(PR); to screen
end if;
end loop;
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Improved sequential solution

Advantages:
— the inherent parallelism of the application is exploited
¢ pressure and temperature control do not block each other

Drawbacks:
— processor capacity is unnecessarily wasted
o the program spends a large amount of time in "busy wait” loops
to detect new data samples (also complicates verification of correctness)
— the independence of the control functions are not considered

o if the call for reading the temperature does not return because of
a fault, it is no longer possible to read the pressure

CHALMERS

Parallel solution

Procedure Controller is « A parallel code entity in Ada is
task Temp_Controller; called "task”
task Pressure_Controller; « A task consists of a specification

task body Temp_Controller is and a body
begin

loop
Read(TR);
Temp_Convert(TR,HS);
Write(HS);
Write(TR);
end loop;
end Temp_Controller;

task body Pressure_Controller is

begin
oop
gigggsig’Convert(PR ,PS);: Procedure Controller does not terminate
Write(PS); until tasks Temp_Controller and
Write(PR); Pressure_Controller both have terminated
end loop;
end Pressure_Controller;

begin
null; -- begin parallel execution
end Controller;

Lecture #2
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Parallel solution

Advantages:
— the inherent parallelism of the application is fully exploited
e pressure and temperature control do not block each other
o the control functions can work at different frequencies
e NO processor capacity are unnecessarily consumed
o the application becomes more reliable

Drawbacks:
— the parallel tasks share a common resource
e the screen can only be used by one task at a time
¢ a third task is needed for controlling the access to the screen

o tasks must be able to communicate with each other, which requires
a run-time system for synchronization and information exchange
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Synchronization in Ada 95

Rendezvous:
— For atask, there may be a number of entries that can be called
by other tasks
— Entries are declared in the specification of the task:
task P is -- specification of P
entry E1 (i : in integer); -- one input parameter (i)
entry E2; -- no input parameters
end P;

— A specification of a task may only contain declarations of entries

— Entries are called from another task using:

P.El(n); -- call with argument (n)
P.E2; -- call without argument
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Synchronization in Ada 95

Rendezvous (cont'd):
— In the body of a task there should be at least one accept
construct for each declared entry.

e When P reaches the accept construct and another task Q has called
the corresponding entry, a rendezvous occurs between P and Q.

e The tasks simultaneously execute the statements in the accept
construct; the task that arrived first will have to wait.

— Examples of accept constructs:

accept E1 (i : in integer); -- for data exchange

accept E2; -- only give synchronization

-- because no common
-— statements are executed

CHALMERS

Synchronization in Ada 95

Rendezvous (cont’d):
— Multiple tasks can call a certain entry E in task P.
e The calling tasks are put into a wait queue in the order of the
made calls (i.e., FIFO, first-in-first-out).
o Just one task at a time can perform rendezvous with P.

e Every time the execution in P reaches an accept construct
for E, the first task in the wait queue is selected.

— There may be multiple accept constructs for the same entry in
a task. The current point of execution then decides which
accept construct will be selected.

e Should be avoided! The program code becomes more difficult
to understand.
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Example: simple buffer

Problem: Write a server task Simple Buffer that works as a storage
buffer for a data record of type data.

Called by client tasks in the following way:

Simple Buffer.Write(Y); -- write buffer
SimpZE_qufér.Hc%d(M); -- read buffer

CHALMERS

Example: simple buffer

Access graph:

Task Y

i .
Oo—
\ Simple_Buffer

#
- / Read
VA

7

10
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task Simple_Buffer is
entry Write(d : in data);
entry Read(d : out data);
end Simple_Buffer;

task body Simple_Buffer is
buffer : data;

begin
loop
accept Write(d :
buffer == d
end Write;

accept Read(d :
d := buffer;
end Read;
end loop;

end Simple_Buffer;

Example:

in data) do
-- save client data in buffer

out data) do
-- return buffer data to client

simple buffer

CHALMERS

Example:

ADC

Thermometer

control system

Pressure sensor

—

Switch

Heater e

Screen

- =l

ADC

DAC

Pumpl/valve
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Synchronized solution

task Screen_Controller is
entry Write_p(PR : in Pressure_Reading);
entry Write_t(TR : in Temp_Reading);

end Screen_Controller;

task body Screen_Controller is

begin
oop
accept Write_p(PR : in Pressure_Reading) do
put_p(PR); -- write pressure value to screen
end Write_p;

accept Write_t(TR : in Temp_Reading) do
put_t(TR); -- write temperature value to screen
end Write_t;

end loop;
end Screen_Controller;
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Synchronized solution

Procedure Controller is

task Temp_Controller;
task Pressure_Controller;

task body Temp_Controller is
begin

loop
Read(TR);
Temp_Convert(TR,HS);
Write(HS);
Screen_Controller.Write_t(TR); -- entry call
end loop;
end Temp_Controller;

task body Pressure_Controller is
begin

oop
Read(PR);
Pressure_Convert(PR,PS);
Write(PS);
Screen_Controller.Write_p(PR); -- entry call
end loop;
end Pressure_Controller;

begin
null; -- begin parallel execution
end Controller;

12



EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #2
Updated January 16, 2011

CHALMERS

Synchronized solution

Drawbacks:
— the independence of the control functions are not considered

o the screen task writes pressure and temperature every other
call (predetermined sequences)

o the sequential coding of the accept constructs in the screen task
introduces a (unnecessary) dependence between the tasks
Temp_Controller and Pressure_Controller

o this solution works poorly if one of the control functions needs to
write its value more often than the other (i.e., using different
iteration frequencies)

= the screen task needs a mechanism for considering available
accept constructs simultaneously
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Synchronization in Ada 95

Alternative rendezvous:

— Multiple accept alternatives can be "open” at the same time in
the called task by enclosing them with select:

select

accept E1 ( ... ) do
or .

accept E2 ( ... ) do
else

. -- do something else

end select;

— If rendezvous cannot occur instantly, a task can refrain from

waiting and instead choose the else alternative in the select
construct.

13
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Synchronization in Ada 95

Alternative rendezvous (cont'd):
— A corresponding action can be made for a calling task:

select
P.E1 ( ... ) -- try to establish contact

else

. -- perform error handling

end select;

CHALMERS

Improved screen task

task Screen_Controller is
entry Write_p(PR : in Pressure_Reading);
entry Write_t(TR : in Temp_Reading);
end Screen_Controller;

task body Screen_Controller is

begin
oop
select
accept Write_p(PR : in Pressure_Reading) do
put_p(PR); -- write pressure value to screen
end Write_p;
or
accept Write_t(TR : in Temp_Reading) do
put_t(TR); -- write temperature value to screen

end Write_t;
end select;
end loop;
end Screen_Controller;

14
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Synchronization in Ada 95

Alternative rendezvous with time-out;:

— If rendezvous does not occur in a select construct within a
certain amount of time, the called task can abort its wait:

select
accept E1 ( ... ) do
or S
accept E2 ( ... ) do
or
delay 10; -- wait for 10 seconds for contact

. -- do something else
end select;

— If no call is made to any of the open accept alternatives within
the given amount of time, the delay alternative will be chosen.
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Synchronization in Ada 95

Alternative rendezvous with time-out (cont’d):
— A corresponding action can be made for a calling task:

select

P.EL ( ... ) -- try to establish contact ...
or

delay 10; -— ... for 10 seconds

. -- perform error handling
end select;

15
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Synchronization in Ada 95

Conditional rendezvous (with guards):
— An accept construct enclosed by select can have a guard:

select
when Condition 1 =>

accept E1 ( ... ) do

or
when Condition 2 =>
accept E2 ( ... ) do

end select;

— Only alternatives where the condition is true are "open” and can
be selected

— The conditions are calculated (in arbitrary order) every time the
select construct is executed

— If no alternatives are open, the program will terminate with error
code PROGRAM_ERROR
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