EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #2
Updated January 16, 2011

CHALMERS

Real-time systems

A
Specsﬁcatlon + Parallel programming

+ Cooperating tasks
* Rendezvous in Ada

A

Implementation
AL
Verification

Real-time programming
Recommended programming method:

— Parallel programming paradigm

e Reduces unnecessary dependencies between tasks

Timing-aware task execution

e Enables the identification of timing properties of tasks

— Deterministic task execution with priorities
e Enables the analysis of interference between tasks

Interrupt-based handling of system events
e Enables the analysis of the events’ interference on tasks

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 16, 2011

CHALMERS

Real-time programming

Desired properties of a programming language:

— Suitable schedulable unit

o tasks with individual memory protection

e access to I/0O addresses
o |low-level data types

o task priorities (enables deterministic conflict resolution)
o task delays (enables periodic behavior)

o threads ("lightweight tasks” without individual memory protection)

— Constructs facilitating communication with the environment

— Constructs facilitating the analysis of timing correctness

¢ handling of hardware interrupts (model interrupt as a task)

CHALMERS

Real-time programming

What programming languages are suitable?

- C,C++
e Strong support for low-level programming

— Java
e Strong support for parallel programming (threads)

— Ada 95
e Strong support for low-level programming
e Strong support for parallel programming (tasks)
e Strong support for priorities and notion of time

o Parallel programming only via calls to operating system (POSIX)
e Priorities and notion of time lacking in language (OS dependent)

e Priorities and notion of time lacking (but appears in RT Java)
o Memory management ("garbage collection”) unsuited for real-time

Lecture #2

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #2
Updated January 16, 2011

CHALMERS

Why parallel programming?

Most real-time applications are inherently parallel
— Events in the target system’s environment often occur in parallel;
by viewing the application as consisting of multiple tasks, this
reality can be reflected.
— While a task is waiting for an event (e.g., I/O or access to a
shared resource) other tasks may execute.

System timing properties can be analyzed more easily
— First the local timing properties of each task are derived; then,
the interference between tasks are analyzed

System can obtain reliability properties
— Redundant copies of the same task makes system fault-tolerant

CHALMERS

Problems with parallel programming

Access to shared resources

— Many hardware and software resources can only be used by
one task at a time (e.g., processor, hard disk, display)

— Only pseudo-parallel execution is possible in many cases

Information exchange

— System modeling using parallel tasks also introduces a need
for synchronization and information exchange.

Parallel programming assumes an advanced run-time
system that takes care of the scheduling of shared
resources and communication between tasks.

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #2
Updated January 16, 2011

CHALMERS

Support for parallel programming

Support in the programming language:
— Program is easier to read and comprehend, which means
simpler program maintenance

— Program code can be easily moved to another operating system

— For some embedded systems, a full-fledged operating system is
unnecessarily expensive and complicated

— Examples: Ada 95, Java, Modula, Occam, ...

Example:
Ada 95 offers support via task, rendezvous & protected objects

Java offers support via threads & synchronized methods

CHALMERS

Support for parallel programming

Support in the operating system:

— Simpler to combine programs written in different languages
whose parallel programming models are incompatible
(e.g., C/C++, Java, Pascal, ...)

— Difficult to implement the language’s parallel programming
model on top of the operating system’s model

— Operating systems become more and more standardized,
which makes program code more portable between OS’s
(e.g., POSIX for UNIX, Linux, Mac OS X, and Windows)

Example:
C/C++ offer support via fork, semctl & msgctl (UNIX, Linux)

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011

Updated January 16, 2011

CHALMERS

Example: a simple control system

Thermometer = ADC

Objective: Keep temperature and
pressure for a chemical process
within given bounds.

Pressure sensor

Switch — T

Heater A

Screen

. L

ADC

DAC

Pumplvalve

CHALMERS

Sequential solution

procedure Controller is
TR : Temp_Reading;
PR : Pressure_Reading;
HS : Heater_Setting;
PS : Pressure_Setting;
begin
loop
Read(TR);
Temp_Convert(TR,HS);
Write(HS);
Write(TR);

Read(PR);
Pressure_Convert(PR,PS);
Write(PS);
Write(PR);
end loop;
end Controller;

-- read temperature

-- convert to temperature setting
-- to temperature switch

-- to screen

-- read pressure

-- convert to pressure setting
-- to pressure control

-- to screen

Lecture #2

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 16, 2011

CHALMERS

Sequential solution

Drawback:

— the inherent parallelism of the application is not exploited

e procedure Read blocks the execution until a new temperature
or pressure sample is available from the ADC

¢ while waiting to read the temperature, no attention can be given
to the pressure (and vice versa)
o if the call for reading the temperature does not return because of
a fault, it is no longer possible to read the pressure
— the independence of the control functions are not considered

e temperature and pressure must be read with the same interval

o the iteration frequency of the loop is mainly determined by the
blocking time of the calls to Read.

CHALMERS

Improved sequential solution

Procedure Controller is

begin

end Controller;

Pressure_Convert(PR,PS);

The Boolean function Ready_Temp indicates
whether a sample from ADC is available

loop

iT Ready_Temp then
Read(TR); read temperature
Temp_Convert(TR,HS); convert to temperature setting
Write(HS); to temperature switch
Write(TR); to screen

end if;

if Ready_Pres then
Read(PR); read pressure

convert to pressure setting

Write(PS); to pressure control
Write(PR); to screen
end if;
end loop;

Lecture #2

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 16, 2011

CHALMERS

Improved sequential solution

Advantages:
— the inherent parallelism of the application is exploited
¢ pressure and temperature control do not block each other

Drawbacks:
— processor capacity is unnecessarily wasted
o the program spends a large amount of time in "busy wait” loops
to detect new data samples (also complicates verification of correctness)
— the independence of the control functions are not considered

o if the call for reading the temperature does not return because of
a fault, it is no longer possible to read the pressure

CHALMERS

Parallel solution

Procedure Controller is « A parallel code entity in Ada is
task Temp_Controller; called "task”
task Pressure_Controller; « A task consists of a specification

task body Temp_Controller is and a body
begin

loop
Read(TR);
Temp_Convert(TR,HS);
Write(HS);
Write(TR);
end loop;
end Temp_Controller;

task body Pressure_Controller is

begin
oop
gigggsig’Convert(PR ,PS);: Procedure Controller does not terminate
Write(PS); until tasks Temp_Controller and
Write(PR); Pressure_Controller both have terminated
end loop;
end Pressure_Controller;

begin
null; -- begin parallel execution
end Controller;

Lecture #2

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #2
Updated January 16, 2011

CHALMERS

Parallel solution

Advantages:
— the inherent parallelism of the application is fully exploited
e pressure and temperature control do not block each other
o the control functions can work at different frequencies
e NO processor capacity are unnecessarily consumed
o the application becomes more reliable

Drawbacks:
— the parallel tasks share a common resource
e the screen can only be used by one task at a time
¢ a third task is needed for controlling the access to the screen

o tasks must be able to communicate with each other, which requires
a run-time system for synchronization and information exchange

CHALMERS

Synchronization in Ada 95

Rendezvous:
— For atask, there may be a number of entries that can be called
by other tasks
— Entries are declared in the specification of the task:
task P is -- specification of P
entry E1 (i : in integer); -- one input parameter (i)
entry E2; -- no input parameters
end P;

— A specification of a task may only contain declarations of entries

— Entries are called from another task using:

P.El(n); -- call with argument (n)
P.E2; -- call without argument

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 16, 2011

CHALMERS

Synchronization in Ada 95

Rendezvous (cont'd):
— In the body of a task there should be at least one accept
construct for each declared entry.

e When P reaches the accept construct and another task Q has called
the corresponding entry, a rendezvous occurs between P and Q.

e The tasks simultaneously execute the statements in the accept
construct; the task that arrived first will have to wait.

— Examples of accept constructs:

accept E1 (i : in integer); -- for data exchange

accept E2; -- only give synchronization

-- because no common
-— statements are executed

CHALMERS

Synchronization in Ada 95

Rendezvous (cont’d):
— Multiple tasks can call a certain entry E in task P.
e The calling tasks are put into a wait queue in the order of the
made calls (i.e., FIFO, first-in-first-out).
o Just one task at a time can perform rendezvous with P.

e Every time the execution in P reaches an accept construct
for E, the first task in the wait queue is selected.

— There may be multiple accept constructs for the same entry in
a task. The current point of execution then decides which
accept construct will be selected.

e Should be avoided! The program code becomes more difficult
to understand.

Lecture #2

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 16, 2011

CHALMERS

Example: simple buffer

Problem: Write a server task Simple Buffer that works as a storage
buffer for a data record of type data.

Called by client tasks in the following way:

Simple Buffer.Write(Y); -- write buffer
SimpZE_qufér.Hc%d(M); -- read buffer

CHALMERS

Example: simple buffer

Access graph:

Task Y

i .
Oo—
\ Simple_Buffer

#
- / Read
VA

7

10

Lecture #2

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011

Updated January 16, 2011

CHALMERS

task Simple_Buffer is
entry Write(d : in data);
entry Read(d : out data);
end Simple_Buffer;

task body Simple_Buffer is
buffer : data;

begin
loop
accept Write(d :
buffer == d
end Write;

accept Read(d :
d := buffer;
end Read;
end loop;

end Simple_Buffer;

Example:

in data) do
-- save client data in buffer

out data) do
-- return buffer data to client

simple buffer

CHALMERS

Example:

ADC

Thermometer

control system

Pressure sensor

—

Switch

Heater e

Screen

- =l

ADC

DAC

Pumpl/valve

11

Lecture #2

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #2
Updated January 16, 2011

CHALMERS

Synchronized solution

task Screen_Controller is
entry Write_p(PR : in Pressure_Reading);
entry Write_t(TR : in Temp_Reading);

end Screen_Controller;

task body Screen_Controller is

begin
oop
accept Write_p(PR : in Pressure_Reading) do
put_p(PR); -- write pressure value to screen
end Write_p;

accept Write_t(TR : in Temp_Reading) do
put_t(TR); -- write temperature value to screen
end Write_t;

end loop;
end Screen_Controller;

CHALMERS

Synchronized solution

Procedure Controller is

task Temp_Controller;
task Pressure_Controller;

task body Temp_Controller is
begin

loop
Read(TR);
Temp_Convert(TR,HS);
Write(HS);
Screen_Controller.Write_t(TR); -- entry call
end loop;
end Temp_Controller;

task body Pressure_Controller is
begin

oop
Read(PR);
Pressure_Convert(PR,PS);
Write(PS);
Screen_Controller.Write_p(PR); -- entry call
end loop;
end Pressure_Controller;

begin
null; -- begin parallel execution
end Controller;

12

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #2
Updated January 16, 2011

CHALMERS

Synchronized solution

Drawbacks:
— the independence of the control functions are not considered

o the screen task writes pressure and temperature every other
call (predetermined sequences)

o the sequential coding of the accept constructs in the screen task
introduces a (unnecessary) dependence between the tasks
Temp_Controller and Pressure_Controller

o this solution works poorly if one of the control functions needs to
write its value more often than the other (i.e., using different
iteration frequencies)

= the screen task needs a mechanism for considering available
accept constructs simultaneously

CHALMERS

Synchronization in Ada 95

Alternative rendezvous:

— Multiple accept alternatives can be "open” at the same time in
the called task by enclosing them with select:

select

accept E1 (...) do
or .

accept E2 (...) do
else

. -- do something else

end select;

— If rendezvous cannot occur instantly, a task can refrain from

waiting and instead choose the else alternative in the select
construct.

13

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #2
Updated January 16, 2011

CHALMERS

Synchronization in Ada 95

Alternative rendezvous (cont'd):
— A corresponding action can be made for a calling task:

select
P.E1 (...) -- try to establish contact

else

. -- perform error handling

end select;

CHALMERS

Improved screen task

task Screen_Controller is
entry Write_p(PR : in Pressure_Reading);
entry Write_t(TR : in Temp_Reading);
end Screen_Controller;

task body Screen_Controller is

begin
oop
select
accept Write_p(PR : in Pressure_Reading) do
put_p(PR); -- write pressure value to screen
end Write_p;
or
accept Write_t(TR : in Temp_Reading) do
put_t(TR); -- write temperature value to screen

end Write_t;
end select;
end loop;
end Screen_Controller;

14

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 16, 2011

CHALMERS

Synchronization in Ada 95

Alternative rendezvous with time-out;:

— If rendezvous does not occur in a select construct within a
certain amount of time, the called task can abort its wait:

select
accept E1 (...) do
or S
accept E2 (...) do
or
delay 10; -- wait for 10 seconds for contact

. -- do something else
end select;

— If no call is made to any of the open accept alternatives within
the given amount of time, the delay alternative will be chosen.

CHALMERS

Synchronization in Ada 95

Alternative rendezvous with time-out (cont’d):
— A corresponding action can be made for a calling task:

select

P.EL (...) -- try to establish contact ...
or

delay 10; -— ... for 10 seconds

. -- perform error handling
end select;

15

Lecture #2

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 16, 2011

CHALMERS

Synchronization in Ada 95

Conditional rendezvous (with guards):
— An accept construct enclosed by select can have a guard:

select
when Condition 1 =>

accept E1 (...) do

or
when Condition 2 =>
accept E2 (...) do

end select;

— Only alternatives where the condition is true are "open” and can
be selected

— The conditions are calculated (in arbitrary order) every time the
select construct is executed

— If no alternatives are open, the program will terminate with error
code PROGRAM_ERROR

16

Lecture #2

