CHALMERS

Example: scheduling using DM

Problem: Assume a system with tasks according to the figure below. The timing properties of the tasks are given in the table. a) Calculate the task response times.
b) Show that the tasks are schedulable using DM
c) What is the outcome of Liu \& Layland's feasibility test for RM?

CHALMERS
Example: scheduling using DM
$R_{1}=C_{1}+\left\lceil\frac{R_{1}}{T_{2}}\right] C_{2}+\left\lceil\frac{R_{1}}{T_{3}}\right] C_{3} \quad\left[\right.$ Assume $\left.R_{1}^{0}=C_{1}+C_{2}+C_{3}=12+10+10=32\right]$
$R_{1}^{1}=12+\left\lceil\frac{32}{40}\right] \cdot 10+\left\lceil\frac{32}{30}\right] \cdot 10=12+1 \cdot 10+2 \cdot 10=42$
$R_{1}^{2}=12+\left\lceil\frac{42}{40}\right] \cdot 10+\left[\frac{42}{30}\right] \cdot 10=12+2 \cdot 10+2 \cdot 10=52$
$R_{1}^{3}=12+\left\lceil\frac{52}{40}\right] \cdot 10+\left[\frac{52}{30}\right] \cdot 10=12+2 \cdot 10+2 \cdot 10=52$
$\left[\right.$ Convergence because $\left.R_{1}^{3}=R_{1}^{2}\right]$

CHALMERS
Example: scheduling using DM
a) Calculation of response times:
(Also see solution in Tindell pp. 22-23)

$$
\begin{array}{ll}
R_{3}=C_{3}=10 & {\left[\tau_{3} \text { has the highest priority w r t DM }\right]} \\
R_{2}=C_{2}+\left\lceil\frac{R_{2}}{T_{3}}\right\rceil C_{3} & {\left[\text { Assume } R_{2}^{0}=C_{2}+C_{3}=10+10=20\right]} \\
R_{2}^{1}=10+\left\lceil\frac{20}{30}\right\rceil \cdot 10=10+1 \cdot 10=20 & {\left[\text { Convergence because } R_{2}^{1}=R_{2}^{0}\right]}
\end{array}
$$

CHALMERS

Example: scheduling using DM

b) Compare response times with corresponding deadline:

Task	$\mathbf{R}_{\mathbf{i}}$	$\mathbf{D}_{\mathbf{i}}$	Result
τ_{1}	52	52	OK
τ_{2}	20	40	OK
τ_{3}	10	30	OK

CHALMERS

Example: scheduling using DM

Problem: Assume a system with tasks according to the figure below. The timing properties of the tasks are given in the table. Two semaphores S_{1} and S_{2} are used for synchronizing the tasks. The parameters $\mathrm{H}_{\mathrm{s} 1}$ and $\mathrm{H}_{\mathrm{s} 2}$ represent the longest time a task may lock semaphore S_{1} and S_{2}, respectively.

Task	$\mathbf{C}_{\mathbf{i}}$	$\mathbf{D}_{\mathbf{i}}$	$\mathbf{T}_{\mathbf{i}}$	$\mathbf{H}_{\mathbf{s 1}}$	$\mathbf{H}_{\mathbf{s 2}}$
τ_{1}	2	4	5	1	1
$\tau_{\mathbf{2}}$	3	12	12	1	-
τ_{3}	8	24	25	-	2

CHALMERS

Example: scheduling using DM

b) Since both semaphores have highest ceiling priority (H), tasks τ_{1} och τ_{2} may always be blocked by another task with lower priority regardless of which semaphore it uses.

$$
\begin{array}{ll}
B_{1}=\max \{1,2\}=2 & \tau_{2} \text { and } \tau_{3} \text { may use semaphores } \mathrm{S}_{1} \text { and } \mathrm{S}_{2} \\
B_{2}=\max \{2\}=2 & \tau_{3} \text { may use semaphore } \mathrm{S}_{2} \\
B_{3}=0 &
\end{array}
$$

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Updated March 5, 2011

Example: scheduling using DM

c) Calculate response times:

$$
\begin{aligned}
& R_{1}=C_{1}+B_{1}=2+2=4 \quad \leq D_{1}=4 \quad \Rightarrow \mathrm{OK}! \\
& R_{2}=C_{2}+B_{2}+\left[\frac{R_{2}}{T_{1}}\right] C_{1} \quad \text { Assume } R_{2}^{0}=C_{2}=3 \\
& R_{2}^{1}=3+2+\left\lceil\frac{3}{5}\right] \cdot 2=3+2+1 \cdot 2=7 \\
& R_{2}^{2}=3+2+\left[\frac{7}{5}\right\rceil \cdot 2=3+2+2 \cdot 2=9 \\
& R_{2}^{3}=3+2+\left\lceil\frac{9}{5}\right\rceil \cdot 2=3+2+2 \cdot 2=9 \quad \leq D_{2}=12 \quad \Rightarrow \mathrm{OK}!
\end{aligned}
$$

Example: scheduling using DM

$$
\begin{aligned}
& R_{3}=C_{3}+\left\lceil\frac{R_{3}}{T_{2}}\right\rceil C_{2}+\left[\frac{R_{3}}{T_{1}}\right\rceil C_{1} \quad \text { Assume } R_{3}^{0}=C_{3}=8 \\
& R_{3}^{1}=8+\left\lceil\frac{8}{12}\right\rceil \cdot 3+\left[\frac{8}{5}\right\rceil \cdot 2=8+1 \cdot 3+2 \cdot 2=15 \\
& R_{3}^{2}=8+\left[\frac{15}{12}\right] \cdot 3+\left[\frac{15}{5}\right] \cdot 2=8+2 \cdot 3+3 \cdot 2=20 \\
& R_{3}^{3}=8+\left\lceil\frac{20}{12}\right\rceil \cdot 3+\left\lceil\frac{20}{5}\right\rceil \cdot 2=8+2 \cdot 3+4 \cdot 2=22 \\
& R_{3}^{4}=8+\left\lceil\frac{22}{12}\right\rceil \cdot 3+\left\lceil\frac{22}{5}\right\rceil \cdot 2=8+2 \cdot 3+5 \cdot 2=24 \\
& R_{3}^{5}=8+\left\lceil\frac{24}{12}\right\rceil \cdot 3+\left\lceil\frac{24}{5}\right\rceil \cdot 2=8+2 \cdot 3+5 \cdot 2=24 \quad \leq D_{3}=24 \quad \Rightarrow \mathrm{OK}!
\end{aligned}
$$

