



CHALMERS					
Example: schedul	ling (usi	ng	D	М
Problem: Assume a system with task below. The timing properties of the a) Calculate the task response tim b) Show that the tasks are schedu c) What is the outcome of Liu & Li	tasks ar nes. ılable usi	e give ing D	ən in M	the t	able.
	Task	C _i	D _i	T	
(au_1) (au_2) (au_3)	$ au_1$	12	52	52	
\bigcirc \bigcirc \bigcirc	$ au_2$	10	40	40	
	$ au_3$	10	30	30	



	sche	eduli	ılir	lin	uliı	edu				
b) Compare response times with corresponding deadline:										
Task R	i Di	Result	lt		ult	Resu				
τ_1 52	2 52	OK			ĸ	OK				
$ au_2$ 20	0 40	OK			K	OK				
$ au_3$ 10	0 30	OK			-					

CHALMERS							
Example: scheduling using DM							
Problem: (cont'd)							
Examine the schedulability of the tasks when ICPP (Immediate Ceiling Priority Protocol) is used.							
a) Derive the ceiling priorities of the semaphores.							
b) Derive the blocking factors for the tasks.							
c) Show whether the tasks are schedulable or not.							

CHALMERS
Example: scheduling using DM
c) Calculate response times:

$$R_1 = C_1 + B_1 = 2 + 2 = 4 \le D_1 = 4 \implies OK!$$

 $R_2 = C_2 + B_2 + \left[\frac{R_2}{T_1}\right]C_1$ Assume $R_2^0 = C_2 = 3$
 $R_2^1 = 3 + 2 + \left[\frac{3}{5}\right] \cdot 2 = 3 + 2 + 1 \cdot 2 = 7$
 $R_2^2 = 3 + 2 + \left[\frac{7}{5}\right] \cdot 2 = 3 + 2 + 2 \cdot 2 = 9$
 $R_2^3 = 3 + 2 + \left[\frac{9}{5}\right] \cdot 2 = 3 + 2 + 2 \cdot 2 = 9 \le D_2 = 12 \implies OK!$

CHALMERS						
Example: scheduling using DM						
$R_3 = C_3 + \left\lceil \frac{R_3}{T_2} \right\rceil C_2 + \left\lceil \frac{R_3}{T_1} \right\rceil C_1 \qquad \text{Assume } R_3^0 = C_3 = 8$						
$R_{3}^{1} = 8 + \left[\frac{8}{12}\right] \cdot 3 + \left[\frac{8}{5}\right] \cdot 2 = 8 + 1 \cdot 3 + 2 \cdot 2 = 15$						
$R_3^2 = 8 + \left[\frac{15}{12}\right] \cdot 3 + \left[\frac{15}{5}\right] \cdot 2 = 8 + 2 \cdot 3 + 3 \cdot 2 = 20$						
$R_{3}^{3} = 8 + \left[\frac{20}{12}\right] \cdot 3 + \left[\frac{20}{5}\right] \cdot 2 = 8 + 2 \cdot 3 + 4 \cdot 2 = 22$						
$R_3^4 = 8 + \left\lceil \frac{22}{12} \right\rceil \cdot 3 + \left\lceil \frac{22}{5} \right\rceil \cdot 2 = 8 + 2 \cdot 3 + 5 \cdot 2 = 24$						
$R_3^5 = 8 + \left\lceil \frac{24}{12} \right\rceil \cdot 3 + \left\lceil \frac{24}{5} \right\rceil \cdot 2 = 8 + 2 \cdot 3 + 5 \cdot 2 = 24 \le D_3 = 24 \implies \text{OK!}$						