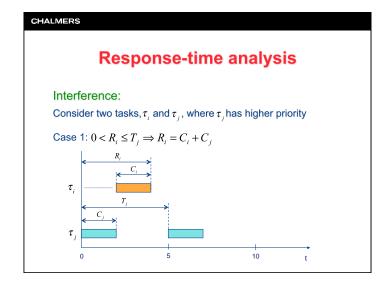


Response-time analysis The response time R_i for a task τ_i represents the worst-case completion time of the task when execution interference from other tasks are accounted for. The response time for a task τ_i consists of: C_i The task's uninterrupted execution time (WCET) I_i Interference from higher-priority tasks

Properties: Uses static priorities Proposed as a generalization of rate-monotonic scheduling (J. Leung and J. W. Whitehead, 1982) Note that RM is a special case of DM, with Di = Ti Theoretically well-established Exact feasibility test exists (an NP-complete problem) DM is optimal among all scheduling algorithms that use static task priorities for which Di ≤ Ti (shown by J. Leung and J. W. Whitehead in 1982)



Response-time analysis Interference: Consider two tasks, τ_i and τ_j , where τ_j has higher priority Case 2: $T_j < R_i \le 2T_j \Rightarrow R_i = C_i + 2C_j$

CHALMERS

Response-time analysis

Interference:

· For static-priority scheduling, the interference term is

$$I_i = \sum_{\forall j \in hp(i)} \left\lceil \frac{R_i}{T_j} \right\rceil C_j$$

where hp(i) is the set of tasks with higher priority than τ_i .

• The response time for a task τ_i is thus:

$$R_i = C_i + \sum_{\forall j \in hp(i)} \left\lceil \frac{R_i}{T_j} \right\rceil C_j$$

CHALMERS

Response-time analysis

Interference:

Task τ_i can be preempted by higher-priority task τ_i

The response time for τ_i is at most R_i time units.

If $0 < R_i \le T_i$, task τ_i can be preempted at most <u>one time</u> by τ_i

If $T_i < R_i \le 2T_i$, task τ_i can be preempted at most two times by τ_i

If $2T_i < R_i \le 3T_i$, task τ_i can be preempted at most three times by τ_i

•

The number of interferences from τ_j is limited by: $\left| \frac{R}{\tau_j} \right|$

The total time for these interferences are: $\left[\frac{R_i}{T_i}\right]C_j$

CHALMERS

Response-time analysis

Interference:

- The equation does not have a simple analytic solution.
- · However, an iterative procedure can be used:

$$R_i^{n+1} = C_i + \sum_{\forall j \in hp(i)} \left\lceil \frac{R_i^n}{T_j} \right\rceil C_j$$

- The iteration starts with a value that is guaranteed to be less than or equal to the final value of R_i (e.g. R_i⁰ = C_i)
- The iteration completes at convergence (R_iⁿ⁺¹ = R_iⁿ) or if the response time exceeds some threshold (e.g. D_i)

CHALMERS

Exact feasibility test for DM

(Sufficient and necessary condition)

A <u>sufficient and necessary</u> condition for deadlinemonotonic scheduling, for which $D_i \le T_i$, is

 $\forall i: R_i \leq D_i$

where R_i is the response time for task τ_i

The response-time analysis and associated feasibility test was presented by M. Joseph and P. Pandya in 1986.

CHALMERS

Example: scheduling using DM

Problem: Assume a system with tasks according to the figure below. The timing properties of the tasks are given in the table.

- a) Calculate the task response times.
- b) Show that the tasks are schedulable using DM
- c) What is the outcome of Liu & Layland's feasibility test for RM?

Task	C,	D _i	T,
$ au_1$	12	52	52
$ au_2$	10	40	40
$ au_3$	10	30	30

We solve this on the blackboard!

CHALMERS

Exact feasibility test for DM

(Sufficient and necessary condition)

The test is valid under the following assumptions:

- 1. All tasks are independent.
 - There must not exist dependencies due to precedence or mutual exclusion
- 2. All tasks are periodic.
- 3. Task deadline does not exceed the period $(D_i \le T_i)$.
- 4. Task preemptions are allowed.

CHALMERS

Extended response-time analysis

The test can be extended to handle:

- Blocking
- Start-time variations ("release jitter")
- Time offsets
- · Deadlines exceeding the period
- Overhead due to context switches, timers, interrupts, ...

In this course, we only study blocking.

CHALMERS

Extended response-time analysis

Blocking can be accounted for in the following cases:

- Blocking caused by critical regions
 - Blocking factor B_i represents the length of critical region(s) that are executed by processes with <u>lower priority</u> than τ_i
- Blocking caused by non-preemptive scheduling
 - Blocking factor B_i represents largest WCET (not counting τ_i)

$$R_i = C_i + \frac{B_i}{B_i} + \sum_{\forall j \in hp(i)} \left[\frac{R_i}{T_j} \right] C_j$$

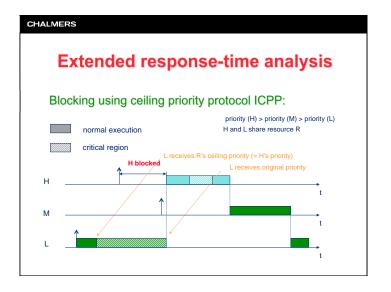
 Note that the feasibility test is now only <u>sufficient</u> since the worst-case blocking will not always occur at run-time.

CHALMERS

Extended response-time analysis

Blocking caused by lower-priority tasks:

- When using a priority ceiling protocol (such as ICPP), a task τ , can only be blocked once by a task with lower priority than τ .
- This occurs if the lower-priority task is within a critical region when τ_i arrives, and the critical region's ceiling priority is higher than or equal to the priority of τ_i .
- Blocking now means that the start time of τ_i is delayed (= the blocking factor B.)
- As soon as τ, has started its execution, it cannot be blocked by a lower-priority task.



Extended response-time analysis Determining the blocking factor for task τ_i: 1. Determine the ceiling priorities for all critical regions. 2. Identify the tasks that have a priority lower than τ_i and that calls critical regions with a ceiling priority equal to or higher than the priority of τ_i. 3. Consider the times that these tasks lock the actual critical regions. The longest of those times constitutes the blocking factor B_i.

CHALMERS

Example: scheduling using DM

Problem: Assume a system with tasks according to the figure below. The timing properties of the tasks are given in the table.

Two semaphores S₁ and S₂ are used for synchronizing the tasks.

The parameters $H_{\rm S1}$ and $H_{\rm S2}$ represent the longest time a task may lock semaphore S1 and S2, respectively.

Task	C,	D _i	Ti	H _{S1}	H _{S2}
$\tau_{_{1}}$	2	4	5	1	1
$ au_2$	3	12	12	1	-
τ_{\circ}	0	24	25	_	2

CHALMERS

Example: scheduling using DM

Problem: (cont'd)

Examine the schedulability of the tasks when ICPP (Immediate Ceiling Priority Protocol) is used.

- a) Derive the ceiling priorities of the semaphores.
- b) Derive the blocking factors for the tasks.
- c) Show whether the tasks are schedulable or not.

We solve this on the blackboard!