EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #12
Updated February 15, 2011

CHALMERS CHALMERS

Real-Time Systems Scheduling
A
Specification
+ Scheduling
Implementation « Feasibility tests

+ Configuration
- Static scheduling

Verification

3. Which task should execute?
— Scheduling policy

Scheduling Scheduling

A schedule is a reservation of spatial (e.g., processor, How is scheduling implemented?
program objects) and temporal (time) resources for a e Static scheduling:
given set of tasks.

— Schedule generated "off-line” before the tasks becomes ready,
sometimes even before the system is in mission.

— Schedule consists of a "time table”, containing explicit start and
@ e o completion times for each task instance, that controls the order
of execution at run-time.
[] e Dynamic scheduling:

— Schedule generated "on-line” as a side effect of tasks being
executed, that is, when the system is in mission.

shared T ! — Ready tasks are sorted in a queue and receive access to the
object 1 0 1 a 1 processor based on priority and/or time quanta ("round-robin”).

processor | | [[[T [[[T |

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 15, 2011

_

Scheduling

How flexible is the schedule?

e Time-triggered system: '®
— A task becomes ready according to a known time table.
— The system becomes very deterministic, but inflexible.

¢ Event-triggered system:

— Atask becomes ready as a result of an external or internal
event in the system.

— Requires run-time support for dynamic scheduling.
— The system becomes very flexible, but indeterministic.

-

Scheduling

A scheduling algorithm is used for generating a
schedule for a given set of tasks for a particular
type of run-time system.

= The scheduling algorithm is implemented by a scheduler
in the real-time kernel that decides in what order the
tasks should be executed.

= Observe that the scheduler decides which task should be
executed next, whereas the dispatcher is responsible for
starting the selected task.

Lecture #12

_

Scheduling

When are scheduling decisions taken?

e Non-preemptive scheduling:
— New scheduling decision is taken when no task executes.
— Mutual exclusion is automatically guaranteed.
— Existing methods for WCET analysis works well.

e Preemptive scheduling:
— New scheduling decision can be taken as soon as the system
state changes, that is, even during an ongoing execution.
— Mutual exclusion may have to be guaranteed with semaphores
(or similar primitives).
— WCET analysis becomes more complicated, because the state
in caches and pipelines will change at a task switch.

Scheduling

How complicated is the scheduler?

e For static scheduling:
— the implementation of the scheduler is simple because the next
task is chosen with a table look-up
— however, the table must be generated before the system is in
mission; this is done by a more advanced algorithm

e For dynamic scheduling:

— the implementation of the scheduler is more sophisticated
because it consists of a decision algorithm that must be
activated regularly (at each system event)

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #12
Updated February 15, 2011

_ _

Scheduling Scheduling
A schedule is said to be feasible if it fulfills all application A scheduling problem is said to be NP-complete if it (most
constraints for a given set of tasks. probably) can only be solved with an exponential time

complexity in the general case.

A set of tasks is said to be schedulable if there exists at

least one scheduling algorithm that can generate a Aschedulinglglg(.)r?thm Is said to .be gptima tima.l with respect
feasible schedule. to schedulability if it can always find a feasible schedule

whenever any other scheduling algorithm can do so.

CHALMERS CHALMERS

Scheduling Feasibility tests
Set of tasks A feasibility test is used for deciding whether a set of
| tasks is feasible or not for a given scheduler.
E— e For some schedulers the test can be done in linear time.
Feasibility test — These schedulers are typically special cases with very
I simplified assumptions as regards the task properties.
) e For most schedulers there exists (so far) no test that can
T Configuration ' be done in polynomially bounded time.
— All possible schedules must be considered.
I — These feasibility tests are NP-complete problems.
Run-time information

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #12
Updated February 15, 2011

CHALMERS

Feasibility tests

« A feasibility test is sufficient if it with a positive answer
shows that a set of tasks is definitely schedulable.
— A negative answer says nothing! A set of tasks can still be
schedulable despite a negative answer.

Schedulable

Task set positive test

Not schedulable

— 2
T >
Negative test

CHALMERS

Feasibility tests

« An exact feasibility test is both sufficient and necessary. If
the answer is positive the task set is definitely schedulable,
and if the answer is negative the task set is definitely not
schedulable.

Schedulable

Task set Ppositive test

Not schedulable

Negative test

CHALMERS

Feasibility tests

« A feasibility test is necessary if it with a negative answer
shows that a set of tasks is definitely not schedulable.

— A positive answer says nothing! A set of tasks can still be
impossible to schedule despite a positive answer.

Schedulable

Task set Ppositive test
S >

Not schedulable

Negative test

CHALMERS

Feasibility tests

How is a feasibility test done?

e For static scheduling:
— the schedule is verified at the same time as it is generated

e For dynamic scheduling:
— Processor utilization analysis

— Response time analysis

— Processor demand analysis

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #12
Updated February 15, 2011

CHALMERS CHALMERS

Configuration

A configuration consists of static information regarding
system tasks used by the scheduler at run time.
Besides information about the tasks’ timing properties
and WCET, the configuration contains:

e For static scheduling:
— Start and finish times for each task.

e For dynamic scheduling:
— For static priorities, the tasks’ (base-) priorities are used together
with the ceiling priorities of any shared objects.
— For dynamic priorities, the configuration does not contain any
further information (because all necessary information is already
available via the tasks’ timing properties and WCET).

Static scheduling
)

General properties:
e Time-triggered system (cyclic executive)

t MY N
7, B :

7, 777

2 m m |
15*i+0 15*i+5 15*i1+10 15*i+15 t

CHALMERS

Static scheduling

General properties:

e Off-line schedule generation
— Explicit start and finish times for each task is derived
— Feasibility test can be done as soon as these times are available
— Configuration phase encompasses generating a time table
indicating which task is started at which time instant
e Mutual exclusion is handled explicitly
— The schedule must be generated in such a way that a task
switch is not made within a critical region
— Support for mutual exclusion is not needed in real-time kernel
e Precedence constraints are handled explicitly

— The schedule must be generated in such a way that enforced
task execution orders are respected

CHALMERS

Static scheduling

Advantages:
e Simplifies the communication between tasks
— The time instant when data becomes available is known
— Task execution can easily be adapted to any existing time
triggered (TDMA) network protocol.

e Minimal overhead at task switches
— Only requires a time table lookup

e Task execution becomes very deterministic
— Simplifies feasibility tests (compare finish time to constraint)
— Simplifies software debugging (increased observability)
— Simplifies implementation of fault tolerance (natural points in
time for self control)

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #12
Updated February 15, 2011

CHALMERS

Static scheduling

Disadvantages:

o Low flexibility
— Schedule cannot adapt itself to changes in
the task set or in the system environment
« External events are not handled efficiently
— 1/O units are handled by "polling”
» Only efficient for periodic tasks
— Sporadic events with short deadline must either be handled by
a task with short period (= resource waste) or by a task with
longer period (= long response time)
 Inefficient for tasks with "bad” periods
— Tasks with mutually inappropriate periods give rise to large time
tables, which consumes memory in the real-time kernel

CHALMERS

Static scheduling

How is the size of the time table restricted?

e Only cyclic schedules are considered:
— The schedule is repeated with a cycle time that is equal to the
LCM ("least common multiple”) of the task periods.
— Tasks that are not periodic, or that have a very long period can
be handled by a periodic server task

e Suitable task periods are chosen:
— To obtain reasonably long cycle times, the task periods should
be adjusted to be multiples of each other.
— Example:
periods 7, 13, 23 ms = cycle time 2093 ms, but
periods 5, 10, 20 ms = cycle time 20 ms

CHALMERS

Static scheduling

How is the schedule generated?

e Simulation of dynamic scheduling:
— Simulate a run-time system in a real-time kernel and then
“execute” the system tasks on that simulator, e.g., according
to earliest-deadline-first scheduling.

e Exhaustive search:
— Use an algorithm that searches for a feasible static schedule by
considering all possible execution orders for the system tasks.
— To maintain a low average time complexity of the search,
intelligent heuristic search algorithms are used, for example,
"Branch-and-Bound” or "Simulated Annealing”

CHALMERS

Static scheduling

How is the scheduler implemented?

e Create a circular queue that corresponds to the time table
— Each element in the queue contains start and finish times for a
certain task (or task segment in case of preemptive scheduling)
— The elements in the queue are sorted by the start time

e Use clock interrupts
— When a task starts executing, a real-time clock is programmed to
generate an interrupt at the task’s expected finish time.
— When the interrupt occurs, the next task (i.e., the one whose
start time is closest in time) in the circular queue is fetched and
the system waits until that task’s given start time is due.

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011

Updated February 15, 2011

CHALMERS

Example: static scheduling

Problem: Assume a system with tasks and precedence constraints
according to the figure below. Timing constraints for the tasks are
given in the table. Generate a static schedule for these tasks by
simulating preemptive earliest-deadline-first scheduling.

Period: 15

Period: 5 @

Task C | O | b
A 4 0 7
B B 0 12
© 5 0 15
D 1 3! 1

We solve this on the blackboard!

Lecture #12

