EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #11
Updated February 13, 2011

CHALMERS

Real-Time Systems

« Task model
« Execution-time analysis

CHALMERS

Designing a real-time system

New design!

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011

Updated February 13, 2011

CHALMERS

Task model

Implementation

task body P1 is

Next_Time :
begin

loo] R
Action;

end loop;
end P1;

task body P2 is

begin

loo] R
Action;

end loop;
end P2;

Abstract model

Interval : constant Duration := 5.0;
Time;

Next_Time := Clock + Interval;

delay until Next_Time;
Next_Time := NexT_Time + Interval;

Interval : constant Duration := 7.0;
Next_Time : Time;

Next_Time := Clock + Interval;

delay until Next_Time;
Next_Time := Next_Time + Interval;

@ 7 :{CH];’DI’O]}
@ 7, :{CstzaDstz}

CHALMERS

Task model

A task model must be defined to be able to analyze the
temporal behavior of a set of tasks.

e The static parameters of a task describe characteristics
that apply independent of other tasks.
— Derived from the specification or implementation of the system
— For example: period, deadline, WCET

e The dynamic parameters of a task describe effects that
occur during the execution of the task.

— Is a function of the run-time system and the characteristics
of other tasks

— For example: start time, completion time, response time

Lecture #11

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #11
Updated February 13, 2011

CHALMERS

Task model

Static task parameters: C +(undisturbed) WCET

T, :period

@ T, = {Cl_,Y;,D“O’, } D, :(relative) deadline

O, : (absolute) time offset

<05

S - }
Ve 1 t
LG ‘
o T

CHALMERS

Task model

Static task parameters:

C. Task’s worst-case execution time (WCET)

— Represents the longest undisturbed execution time for one
iteration of the task

— Derived as a function of the task’s program code

D, Task's relative deadline (responsiveness constraint)

— Represents the maximum allowed time within which the
task must complete its execution

— Applies relative to the time when the task becomes executable

— Derived as a function of the environment (e.g., laws of nature,
control theory, ...)

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #11
Updated February 13, 2011

CHALMERS

Task model

Static task parameters:
T, Task’s periodicity

1

— Represents how often the task should be repeated
— Each iteration of the task has the same WCET

O, Task'’s time offset

— Represents the first arrival time of the task, e.g., the earliest
time instant at which the task becomes executable

— Applies relative to a given "origin” of the system
The arrival time of the n:th iteration of a task then becomes

A" =0,+(n-1)-T

CHALMERS

Task model

Different types of tasks:

e Periodic tasks
— A periodic task arrives with a time interval 7;

e Sporadic tasks
— A sporadic task arrives with a time interval = Ti

e Aperiodic tasks
— An aperiodic task has no guaranteed minimum time between
two subsequent arrivals

= Hard real-time systems can only contain periodic and
sporadic tasks.

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #11
Updated February 13, 2011

CHALMERS

The importance of models

KALLE OCH HOBBE

av Bill Watterson

Dad? How do they know I hey drive bigger and
how much weight a bridg igger trucks over the

ridge until it collapses!

Then they take the
weight of the last truck
and rebuild the bridge

Oh, I guess | Honey, if you
1 should have don*t know the
known that! | answer, just

/| SAY so!

Free translation from Swedish by J. Jonsson

CHALMERS

(this page deliberately left blank)

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 13, 2011

CHALMERS

Execution-time analysis

for 1:=1 to N loop
begin
if A>K

—
===
then A:=K-1;
else A:=K+1; - ‘ 42
if A<k
then A:=K;
else A:=K-1;
end;

CHALMERS

Execution-time analysis

Motivation:

— itis a prerequisite for (hard) schedulability analysis

e The execution time of a task depends on
— program structure + input data
— initial system state
— temporal properties of the system (OS + hardware)
— internal and external system events

while the program is compiled!

e Worst-case execution time (WCET) is important since

— resource needs should be estimated early in the design phase

Estimation of WCET should consequently be made

Lecture #11

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 13, 2011

CHALMERS

Execution-time analysis

Requirements:

e WCET must be pessimistic but tight

0 < "Estimated WCET” — “Real WCET” < ¢
(¢ small compared to real WCET)

pessimistic:
to make sure assumptions made in the schedulability analysis
of hard real-time tasks also apply at run time

tight:
to avoid unnecessary waste of resources during scheduling of
hard real-time tasks

e The computational complexity of the analysis method
must be tractable

CHALMERS

Execution-time analysis

Execution time

estimated WCET

*** v 2
real WCET
«© \

Input data

Lecture #11

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 13, 2011

CHALMERS

A simple (yet challenging) example
Derive WCET for the following program:

Issues to consider:

e Input data is unknown

— Iteration bounds must be known

to facilitate analysis

e Path explosion

— 47N paths in this example
e Exclusion of non-executable (false)

paths

— T1+ E2is a false path in the example

A simpler (but non-trivial) example

Derive WCET for the following statement:

Issues to consider: -

e Execution time:

- affected by cache misses, pipeline conflicts, exceptions ...
— depends on previous and (!) subsequent instructions
— also depends on (unknown) input data

e Observations:

— accurate estimation of WCET must be based on a detailed
timing model of the system architecture

— uncertainties are handled by making worst-case assumptions

Lecture #11

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 13, 2011

CHALMERS

Formulation of the WCET problem

Given a system
(= program structure + system platform)
find the program’s “worst-case” execution time
for all possible input data, initial system states
and (internal and external) system events

CHALMERS

Fundamental issues

Issues in the analysis of program paths

— how to limit WCET (if necessary, pessimistically)

— how to eliminate false paths (in order to derive a tight
WCET estimate)

Issues in the analysis of temporal behavior

"everything that takes time must be modeled in a realistic
fashion (or at least not optimistically)”

— accurate and effective timing model of the system platform

— consequences of system events at run time

Lecture #11

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 13, 2011

CHALMERS

Path analysis

¢ CFG may not contain cycles
* Non-executable paths must be eliminated

CHALMERS

Path analysis

Shaw’s Timing Schema (1989):

The estimated WCET (WCETe) is the
execution time of the longest structural
path through the program

Lecture #11

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 13, 2011

CHALMERS

Methods for path analysis

Branches (alternative paths) introduces the following
set of problems:

1. Iterations (loops, recursions ...)
2. Alternative (if-then-else, case ...)

Goal:

— Bound the number of iterations in a loop or recursion
— Eliminate non-executable (false) program paths

CHALMERS

Methods for path analysis

The user annotates the program so that its CFG only
contains a limited number of executable paths:

Annotation of loop bounds:

e Provide upper bounds on loop indices and catch potential
exceptions at run time

Elimination of false paths:

e Enumerate all possible paths and list the set of false paths
so that these can be avoided in the analysis

Requires very detailed knowledge of the program’s
function, but is therefore also very prone to errors!

11

Lecture #11

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #11
Updated February 13, 2011

Methods for path analysis

Automated method:

Static analysis (embedded in compiler):
e Derive upper bounds on loop indices

— requires an explicit loop index

— does not always work for complicated termination conditions
e Eliminate false paths

— symbolically execute the program and do "assert” with respect
to the possible values that variables are able to assume

Preliminary methods are promising but only for fairly
simple programs where the analysis is trivial!

Methods for path analysis

The reality?

Existing methods implicitly assume that the execution time of
each language statement is constant and known
e This is a quite realistic assumption for a micro-controller that
— lacks pipelined execution
— lacks cache memories
— does not generate exceptions

However, for modern processor architectures (= RISC),
these methods yield very pessimistic results!

12

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #11
Updated February 13, 2011

CHALMERS

Timing analysis for modern processors

Modern processors have several advanced mechanisms
(e.g., pipelining, caching, branch prediction, out-of-
order execution) that cause significant variation in the
execution time of a processor instruction.

We must therefore estimate the execution time for each
executable path through the program and at the same
time account for these mechanisms.

This can be solved by partitioning the program code into
code blocks and analyze each block separately.

Today, mature methods for timing analysis only exist for
pipelining and caching.

Timing analysis for modern processors

Processor with pipeline:

A Sources of time variations:

IF ol exl |m WB e structural conflicts
e data conflicts

‘ ‘ e branch conflicts

Sources of time variations:
ICACHE DCACHE e cache misses

13

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #11
Updated February 13, 2011

CHALMERS

Timing analysis of cache memory

Issues:

¢ Not enough to investigate an
isolated code block

— miss/hit depends on previous
executions of the code

e [nstruction cache behavior is
predictable for each path

— known sequence of code

e Data cache behavior is more
difficult to analyze
— data addresses can depend on
the program’s input data

Timing analysis of pipeline

Issues:

e Not enough to investigate an
isolated code block

— conflicts may occur on the
boundary between code blocks

¢ Pipeline behavior is predictable
for each path
— known sequence of code

14

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 13, 2011

CHALMERS

Methods for timing analysis

Extension of Shaw’s Timing Schema
— Analysis is performed at code block level

— Merging of paths at certain code locations by estimating the
effects of worst-case situations (reduces path explosion)

Data flow analysis:
— Analysis performed at code block level
— Propagation of pipeline and cache states between blocks

Integer Linear Programming
— Formulate an ILP problem as a function of execution time and
number of executions at code block level

CHALMERS

Challenges

So far, non-preemptive scheduling of program code has
been assumed (which is not always realistic).

In reality, pseudo-parallel execution is typically used,
something which requires preemptive execution.

— Preemptions will affect system state (i.e., cache contents will
change and pipeline will be flushed) and must therefore be
accounted for in the analysis.

— However, it is difficult to account for these effects in the analysis
of WCET, which means that it must be handled at a higher level
(i.e., in the schedulability test).

15

Lecture #11

