

CHALMERS
Task model
A <u>task model</u> must be defined to be able to analyze the temporal behavior of a set of tasks.
 The <u>static parameters</u> of a task describe characteristics that apply independent of other tasks. Derived from the specification or implementation of the system For example: period, deadline, WCET
 The <u>dynamic parameters</u> of a task describe effects that occur during the execution of the task. Is a function of the run-time system and the characteristics of other tasks For example: start time, completion time, response time

CHALMERS
Task model
Static task parameters:
 Task's periodicity Represents how often the task should be repeated Each iteration of the task has the same WCET
 O_i Task's time offset Represents the <u>first</u> arrival time of the task, e.g., the earliest time instant at which the task becomes executable Applies relative to a given "origin" of the system
The <u>arrival time</u> of the n:th iteration of a task then becomes $A_i^n = O_i + (n-1) \cdot T_i$

CHALMERS
Task model
Different types of tasks:
 Periodic tasks A periodic task arrives with a time interval <i>T_i</i>
 Sporadic tasks A sporadic task arrives with a time interval ≥ T_i
 Aperiodic tasks An aperiodic task has no guaranteed minimum time between two subsequent arrivals
⇒ Hard real-time systems can only contain periodic and sporadic tasks.

CHALMERS
Execution-time analysis
Requirements:
 WCET must be <u>pessimistic</u> but <u>tight</u> 0 ≤ "Estimated WCET" – "Real WCET" < ε (ε small compared to real WCET)
<pre>pessimistic: to make sure assumptions made in the schedulability analysis of hard real-time tasks also apply at run time tight: to avoid unnecessary waste of resources during scheduling of hard real-time tasks</pre>
The computational complexity of the analysis method must be tractable

CHALMERS
Fundamental issues
 Issues in the analysis of program paths how to limit WCET (if necessary, pessimistically) how to eliminate false paths (in order to derive a tight WCET estimate)
 Issues in the analysis of temporal behavior "everything that takes time must be modeled in a realistic fashion (or at least not optimistically)" accurate and effective timing model of the system platform (influence of, e.g., cache memories, pipelining,) consequences of system events at run time (e.g.: exceptions, interrupts, context switches)

CHALMERS		
Path analysis Shaw's Timing Schema (1989):		
<pre>for I:=1 to N loop begin if A > K (I1) then A:=K-1; (T1) else A:=K+1; (E1) if A < K (I2) then A:=K; (T2) else A:=K-1; (E2)</pre>	The estimated WCET (WCETe) is the execution time of the longest <u>structural</u> path through the program WCETe = N* (WCET (loop) + WCET (II) + max (WCET (TI), WCET (E1)) +	
end;	max(WCET(T2), WCET(E2)))	

CHALMERS
Methods for path analysis
Branches (alternative paths) introduces the following set of problems:
 Iterations (loops, recursions) Alternative (if-then-else, case)
Goal: – Bound the number of iterations in a loop or recursion – Eliminate non-executable (false) program paths

CHALMERS
Methods for path analysis
The user annotates the program so that its CFG only contains a limited number of executable paths:
 Annotation of loop bounds: Provide upper bounds on loop indices and catch potential exceptions at run time
 Elimination of false paths: Enumerate all possible paths and list the set of false paths so that these can be avoided in the analysis
Requires very detailed knowledge of the program's function, but is therefore also very prone to errors!

CHALMERS
Methods for path analysis
Automated method:
 Static analysis (embedded in compiler): Derive upper bounds on loop indices requires an explicit loop index does not always work for complicated termination conditions Eliminate false paths symbolically execute the program and do "assert" with respect to the possible values that variables are able to assume
Preliminary methods are promising but only for fairly simple programs where the analysis is trivial!

HALMERS
Methods for timing analysis
Extension of Shaw's Timing Schema
 Analysis is performed at code block level
 Merging of paths at certain code locations by estimating the effects of worst-case situations (reduces path explosion)
Data flow analysis:
 Analysis performed at code block level
 Propagation of pipeline and cache states between blocks
Integer Linear Programming
 Formulate an ILP problem as a function of execution time and number of executions at code block level

CHALMERS
Challenges
So far, non-preemptive scheduling of program code has been assumed (which is not always realistic).
 In reality, pseudo-parallel execution is typically used, something which requires preemptive execution. Preemptions will affect system state (i.e., cache contents will change and pipeline will be flushed) and must therefore be accounted for in the analysis.
 However, it is difficult to account for these effects in the analysis of WCET, which means that it <u>must be handled at a higher level</u> (i.e., in the schedulability test).