CHALMERS Scheduling 1
Scheduling
 Response Time Analysis ICPP and blocking in scheduling analysis Processor Demand Analysis Problems demonstrated during exercise: 47, 48, 51, 55, 56
E6-EDA222

CHALMERS Scheduling 1

Problem 47

• Consider the following task set:

Task	Period T [ms]	Deadline <i>D</i> [ms]	Execution time C [ms]
А	10	7	3
В	12	6	4

- a) Determine if the set is schedulable due to Rate Monotonic priority assignment.
- b) Determine if the set is schedulable due to Deadline Monotonic priority assignment.

CHALMERS Scheduling 1

E6-EDA222

Solution 47

- We will solve it in the white board.
- Answer: Using RM priority assignment this task set is not schedulable but using deadline monotonic priority assignment it is schedulable.

CHALMERS Scheduling 1

Assignment 48

E6-EDA222

Consider the following task set. Show that: Assign priorities according to deadline monotonic order. Does every task meet its deadline?

Task	Period <i>T</i> [ms]	Deadline <i>D</i> [ms]	Execution time C [ms]
A	70	65	15
В	40	40	10
С	30	12	10

E6-EDA222

1

3

	Scheduling 1	
Solution	48	
	olve it in the white board. Ve will do response time analysis and would answer.	
E6-EDA222		

CHALMERS Scheduling 2

Assignment 51

E7-EDA222

- The following task set should be scheduled due to *deadline monotonic*.
- Three semaphores; S₁, S₂ and S₃ are used to synchronize the tasks.
- H_{si} denotes the maximum locking time when a task locks semaphore *i*.
- P_A , P_B , P_C and P_D denote the tasks A,B,C and D.

Task	<i>T</i> [ms]	<i>D</i> [ms]	C [ms]	Priority	H _{S1} [ms]	H_{S2} [ms]	H _{S3} [ms]
А	5	4	2	1	1	-	1
В	16	12	3	2	1	2	-
С	20	16	3	3	-	3	-
D	28	28	4	4	-	-	2

Assume that ICPP (Immediate Ceiling Priority Protocol) is used to lock and unlock the semaphores. Is this task set then schedulable?

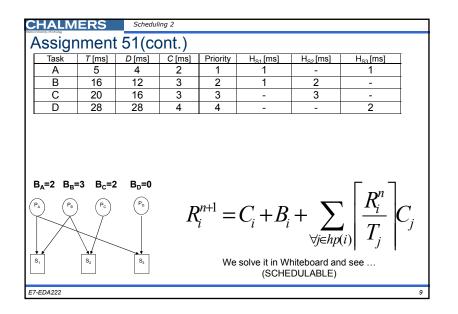
CHALMERS Scheduling 2

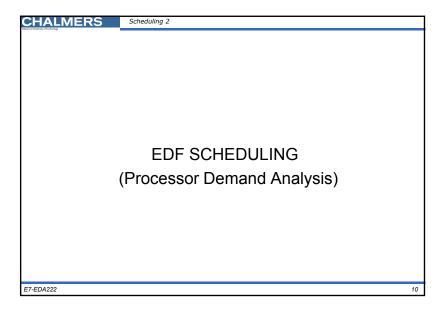
E7-EDA222

Assignment 51(cont.)

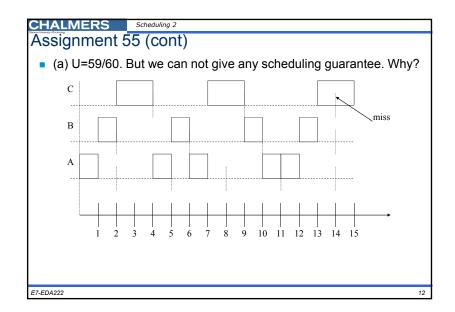
- The following task set should be scheduled due to *deadline monotonic*.
- Three semaphores; S₁, S₂ and S₃ are used to synchronize the tasks.
- H_{si} denotes the maximum locking time when a task locks semaphore i.
- P_A , P_B , P_C and P_D denote the tasks A,B,C and D.

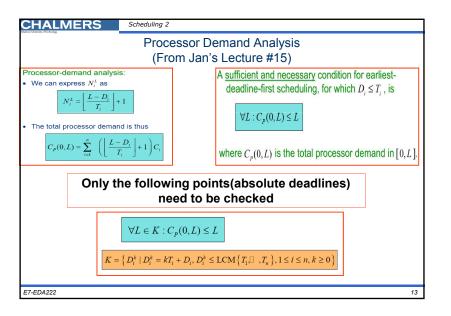
ĺ	Task	<i>T</i> [ms]	D [ms]	C [ms]	Priority	H _{S1} [ms]	H _{S2} [ms]	H _{S3} [ms]
	Α	5	4	2	1	1	-	1
	В	16	12	3	2	1	2	-
	С	20	16	3	3	-	3	-
ĺ	D	28	28	4	4	-	-	2


Draw the access graph to find the ceiling priority and the blocking factor.


Assume that tasks are accessing the resources one at a time.

 $R_{i}^{n+1} = C_{i} + B_{i} + \sum_{\forall j \in hp(i)} \left[\frac{R_{i}^{n}}{T_{j}} \right] C_{j}$


_									
C	HALM	ERS	Schedulin	g 2					
A	ssigni	ment	51(coi	nt.)					
	Three sema H _{Si} denotes	phores; S ₁ , s the maximu	hould be scher S ₂ and S ₃ are m locking time e the tasks A,	used to synd when a tas	chronize the	tasks.			
	Task $T[ms]$ $D[ms]$ $C[ms]$ Priority $H_{s1}[ms]$ $H_{s2}[ms]$ $H_{s3}[ms]$								
	A	5	4	2	1	1	-	1	
	B 16 12 3 2 1 2 -								
	C 20 16 3 3 - 3 -								
	D 28 28 4 4 2								
	$\begin{array}{c} P_{A} \ (pri) = 1, \ P_{B} \ (pri) = 2, \ P_{C} \ (pri) = 3, \ P_{D} \ (pri) = 4. \\ \textbf{Ceiling priorities:} \\ ceilS_{1} = max \ \{P_{A} \ (pri), \ P_{B} \ (pri)\} = max \ \{1,2\} = 1 \\ ceilS_{2} = max \ \{P_{B} \ (pri), \ P_{C} \ (pri)\} = max \ \{2,3\} = 2 \\ ceilS_{3} = max \ \{P_{A} \ (pri), \ P_{D} \ (pri)\} = max \ \{1,4\} = 1 \end{array}$								
s		S2	S ₃ P ₁	riority that is _A = max { P _E ₃ can be blo	s higher or 3 uses S ₁ , P ocked by P _C	equal to the price D_D uses S_3 } =?	ority of P _A . x { P _C uses S ₂ ,	hores with a ceiling P _D uses S ₃ } =?	
E7-	EDA222								8


6

The following	ng task set	should be sche	eduled due to ear	rliest deadline fi	irst (EDF).
	Task	T [ms]	<i>D</i> [ms]	C [ms]	
	Α	3	2	1	
	В	4	2	1	
	С	5	4	2	
· ·	•	utilization fact am showing th		rios for executi	on order. ("simulation

A real-time system with executes all tasks with periods (<i>T</i>), deadlines	preemptior	n and due t	o task prio	rities. The f	ollowing table deta	ils
	Task	<i>T</i> [ms]	D [ms]	C [ms]		
	Α	4	4	3		
	В	10	4	1		
	С	20	16	3		
a) Show that Liu &b) Use processor der	2	•				

		LCM {A,B,C Checkpoints $K = \{4,8,12\}$		= 20.	
L	N ^L _A *C _A	$N_B^{L}^{*}C_B$	N ^L _C *C _C	С _Р (0, L)	C _P (0, L) ≤ L
4	(└(4-4) / 4┘)+1)*3 = 3	(└(4-4) / 10┘)+1)*1 = 1	(└(4-16) / 20┘)+1)*3 = 0	4	ОК
8	(└(8-4) / 4┘)+1)*3 = 6	(└(8-4) / 10┘)+1)*1 = 1	(└(8-16) / 20┘)+1)*3 = 0	7	ОК
12	(└(12-4)/4┘)+1)*3 = 9	(└(12-4) / 10┘)+1)*1 = 1	(└(12-16) / 20┘)+1)*3 = 0	10	OK
14	(└(14-4)/4┘)+1)*3 = 9	(└(14-4) / 10┘)+1)*1 = 2	(└(14-16) / 20┘)+1)*3 = 0	11	OK
16	(└(16-4) / 4┘)+1)*3 = 12	(└(16-4) / 10┘)+1)*1 = 2	(└(16-16) / 20┘)+1)*3 = 3	17	NOT OK!
20	(((20-4) / 4)+1)*3 = 15	([(20-4) / 10])+1)*1 = 2	(└(20-16) / 20┘)+1)*3 = 3	20	ОК
	I.e. NOT schedulab	le since $C_p(0, 16) =$	17 exceeds length o	f the i	nterval

CHALMERS	Scheduling 2	
	Good Luck with Exam!!	
7-EDA222		16