CHALMERS Scheduling1		XAM Problem 2008, March 12
WCET & Scheduling	(a) Assume that a procedure Main is used as part of a real-time program and that the procedure, when called, is allowed to take at most 100 μ s to execute.	procedure Main is A : Natural := 3; F : Natural := 0; function Calculate (Z : in Natural) return Natural i R : Natural := 0;
 WCET analysis Rate monotonic and Earliest Deadline First scheduling Sufficient schedulability condition Problems demonstrated during exercise: WCET exam problem March 12 (2008), 45, 55, others not in compendium 	Derive WCET for procedure Main by using Shaw's method and check whether the procedure's deadline with be met or not. Assume that each assignment statement, return statement and comparison operation costs 1 μ s to execute. A function call costs 1 μ s plus WCET for the function in question. Each addition and subtraction operation costs 2 μ s. Each multiplication operation costs 5 μ s. All other language constructs can be assumed to take 0 μ s to execute.	begin if $Z = 0$ then R := 1; else if $Z = 1$ then R := 1; else R := Calculate(Z-1)*Z; end; return R; end Calculate; begin F := Calculate(A); end;
E6-EDA222 1	E6-EDA222	2

	-
procedure Main is A : Natural := 3; F : Natural := 0; function Calculate (Z : in Natural) return Natural is R : Natural := 0; begin if Z = 0 then R := 1; else if Z = 1 then R := 1; else R := Calculate(Z-1)*Z;	
return R; end Calculate;	
begin F := Calculate(A); end;	We will solve it in white board
E6-EDA222	3

(b) Now assume that the data types for variables A, F, Z, R, and F, and the return type of function Calculate, are changed to Float. Since floating point operations require more advanced hardware and algorithms to implement than integer operations, the cost for executing the arithmetic perations will now increase. If each floating point addition and subtraction operation costs 5 μ s, decide the largest allowed cost for the floating point multiplication operation while not exceeding the deadline (100 μ s) of the procedure.	<pre>procedure Main is A : Natural := 3; F : Natural := 0; function Calculate (Z : in Natural) return Natural is R : Natural := 0; begin if Z = 0 then R := 1; else if Z = 1 then R := 1; else R := Calculate(Z-1)*Z; end; return R; end Calculate; begin F := Calculate(A); end;</pre>
---	---

CHALMERS Scheduling 1

Assignment 45

Show that, if or if possibly not, the task set is schedulable using RM scheduling.

	Task	Period <i>T</i> [ms]	Deadline <i>D</i> [ms]	Execution time C [ms]
	А	7	7	1
	В	14	14	1
ľ	С	18	18	4

Scheduling 1 Solution 45 Check the Sufficient condition for RM schedulability We solve it in whiteboard E6-EDA222 6

CHALMERS Scheduling 1

Assignment (not in exercise compendium)

Show that, if or if possibly not, the task set is schedulable.

Task	Period <i>T</i> [ms]	Deadline D [ms]	Execution time C [ms]
А	7	5	1
В	14	10	1
С	18	18	4

CHALMERS Scheduling 2

5

Problem (not from exercise compendium)

The following task set should be scheduled due to earliest deadline first (EDF).

Task	<i>T</i> [ms]	<i>D</i> [ms]	C [ms]
A	3	3	1
В	4	4	1
С	5	5	2

a) Calculate processor utilization factor.d) Determine if the task set can be scheduled using EDF?

E7-EDA222

CHALMERS Scheduling 2

E7-EDA222

Problem B (not in compendium)

The following task set should be scheduled due to earliest deadline first (EDF).

Task	<i>T</i> [ms]	<i>D</i> [ms]	C [ms]
А	3	3	2
В	4	4	1
С	5	5	2

a) Calculate processor utilization factor.d) Determine if the task set can be scheduled using EDF?

CHALMERS Scheduling 2

Assignment 55

E7-EDA222

9

The following task set should be scheduled due to earliest deadline first (EDF).

Task	<i>T</i> [ms]	D [ms]	C [ms]
Α	3	2	1
В	4	2	1
С	5	4	2

a) Calculate processor utilization factor.

b) Draw a timing diagram showing the possible scenarios for execution order. ("simulation").

	Scheduling 2 HARMONIC PERIODS
	erence between RM and EDF scheduling ds are harmonic and $T_i=D_i$?
(Harmonic mea some positive i	ins that $T_i = T_j * k$ for all $T_j \le T_i$ and for nteger k)
scheduling of ta	bility test should we use for RM ask set with harmonic periods and T _i =D _i /hat is the utilization bound?
E7-EDA222	1:

10