
1

Dahlberg/JohanssonInterfacing Ada95 to C and assembly language; WCET

Outline

� Interfacing Ada95 to C and assembly language� Interfacing Ada95 to C and assembly language

� Problems demonstrated during exercise: 34,35,38

� WCET analysis

� Problems 40, 42

E5-EDA222 1

Dahlberg/JohanssonInterfacing Ada95 to C and assembly language

Ada95, annex B3 “Interfacing with C”

� The facilities relevant to interfacing with the C language are
the package Interfaces.C and its children; support for the the package Interfaces.C and its children; support for the

Import, Export, and Convention pragmas.

� The package Interfaces.C contains the basic types,

constants and subprograms that allow an Ada program to

pass scalars and strings to C functions.

E5-EDA222 2

Dahlberg/JohanssonInterfacing Ada95 to C and assembly language

Interfacing with C - example

-- Calling the C Library Function strcpy

with Interfaces.C;

procedure Test is

package C renames Interfaces.C;
use type C.char_array;use type C.char_array;

-- Call <string.h>strcpy:
-- C definition of strcpy: char *strcpy(char *s1, const char *s2);
-- Note: since the C function's return value is ignored, the Ada interface is a procedure

procedure Strcpy (Target : out C.char_array; Source : in C.char_array);

pragma Import(C, Strcpy, "strcpy");

Chars1 : C.char_array(1..20);

Chars2 : C.char_array(1..20);

E5-EDA222 3

begin

Chars2(1..6) := "qwert" & C.nul;

Strcpy(Chars1, Chars2);

-- Now Chars1(1..6) = "qwert" & C.Nul

end Test;

Dahlberg/JohanssonInterfacing Ada95 to C and assembly language

Interfacing with assembly language

� When writing assembly programs we use the C-compiler

conventions for register usage, stack use etc..

� Then, interfacing assembly programs is identical to

interfacing C...

E5-EDA222 4

2

Dahlberg/JohanssonInterfacing Ada95 to C and assembly language

Assignment 34
Show the “skeleton” of an interrupt handler routine in CPU32 assembly language.

Assume that the hardware registers A0, A1, D0 and D1 are used by the handler.

31 16 15 8 7 0

DATA REGISTERS

31 16 15 0

ADDRESS REGISTERS

D0 A0 CPU32 –

STATUS

REGISTER
user

byte

system

byte

D0

D1

D2

D3

D4

D5

D6

D7

A0

A1

A2

A3

A4

A5

A6

A7 (SP)

USP

VBR

2 0

SFC

DFC

CPU32 –

Programmers

model

“working registers”

E5-EDA222 5

template_irq:

movem.l %A0/%A1/%D0/%D1,-(%SP) ; save working registers

; do interrupt handling

movem.l (%SP)+, %A0/%A1/%D0/%D1 ; restore working registers

rte

Dahlberg/JohanssonInterfacing Ada95 to C and assembly language

Assignment 35

An assembly routine manipulating the processor interrupt level is specified in ‘C’ as

follows:
int asm_spl(int new_level)

This routine sets the new processor interrupt level to new_level, and returns the This routine sets the new processor interrupt level to new_level, and returns the

previous interrupt level.

a) Show the assembly routine in CPU32 assembly language.

b) Show how to import asm_spl to a function spl in an Ada-program.

EXAMPLE USE:
Priority: integer;

…

Priority := spl(7);

E5-EDA222 6

Priority := spl(7);

-- Critical (uninterruptible) region

Priority := spl(Priority); -- restore priority

Dahlberg/JohanssonInterfacing Ada95 to C and assembly language

Solution

SYSTEM BYTE

SYSTEM BYTE

CONDITION CODE REGISTER

(CCR)

Status register layout:

T1 S I0I2 I1 CVZNXT0

TRACE ENABLE

SUPERVISOR STATE

INTERRUPT PRIORITY

MASK

CONDITION CODES

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E5-EDA222 7

1. Read IPM, shall be returned as an integer (0..7)

2. Set IPM bits from parameter (integer)

Dahlberg/JohanssonInterfacing Ada95 to C and assembly language

Solution

C-compiler call conventions gives Stack
contents in “asm_spl”:

4(SP)

0(SP)

new_level (low word)

new_level (high word)

PC return (low word)

PC return (high word) SP

.global asm_spl ; makes symbol visible globally

asm_spl:asm_spl:

; D0 is the ‘return value’ (by C compiler convention)

clr.l %D0 ; 0 -> D0

move %sr,%D0 ; old SR to D0 low word

move.l %D0,%D2 ; a copy to D2

lsr.l #8,%D0 ; shift right to correct position

; now set new interrupt priority mask…

move.l 4(%SP),%D1 ; “new_level” -> D1

andi.l #7,%D1 ; make sure ‘new_level’ <= 7

lsl.l #8,%D1 ; shift “new_level” to mask position

andi.l #0xF8FF,%D2 ; clear mask in old SR copy

E5-EDA222 8

andi.l #0xF8FF,%D2 ; clear mask in old SR copy

or.l %D1,%D2 ; D1 = D1 | D2

move %D1,%sr ; set new SR

rts

-- Declarations in Ada95

function spl(new_priority_level : in integer)

return integer;

pragma Import(c , spl , “asm_spl”);

3

Dahlberg/JohanssonInterfacing Ada95 to C and assembly language

Assignment 38

Assume that the following declarations specifies a data structure and a function

from a ‘C’-library.
struct Timeval {struct Timeval {

long tv_sec;

long tv_usec;

};

int SetIntervalTimer (struct Timeval *);

a) Show how to import these into an Ada program.

E5-EDA222 9

a) Show how to import these into an Ada program.

b) Show how to call the function ‘SetIntervalTimer’ from an Ada program.

Dahlberg/JohanssonInterfacing Ada95 to C and assembly language

Solution a)

with Interfaces.C; use Interfaces.C;

-- package body follows…

package Ic renames Interfaces.C; -- create a short name…package Ic renames Interfaces.C;

type Struct_Timeval is record

Tv_Sec : Ic.long;

Tv_Usec : Ic.long;

end record;

pragma Convention(C , Struct_Timeval);

-- Ada will represent Struct_Timeval as a C-style structure.

E5-EDA222 10

type Timeval_Ptr is access all Struct_Timeval;

function Set_Interval_Timer(Timeval_Ptr) return Ic.int;

pragma Import(C , Set_Interval_Timer , “SetIntervalTimer”);

Dahlberg/JohanssonInterfacing Ada95 to C and assembly language

Solution b)

Itv : aliased Struct_Timeval;

RetVal: Ic.int;

...

... assign values to Itv…

...

RetVal := Set_Interval_Timer(Itv’access);

E5-EDA222 11

Dahlberg/JohanssonWCET

Assignment 40

Consider a processor clocked at 100 MHz. Assume that there are

instructions that can be executed during a clock cycle. State instructions that can be executed during a clock cycle. State

the least possible ”time unit” that can be expressed as an

integer and also represent execution of every instruction.

Duration (period) of a 100 MHz frequency is 10 ns. Instruction

execution time is stated in ‘clock cycles’ by manufacturers.

E5-EDA222 12

execution time is stated in ‘clock cycles’ by manufacturers.

Every instruction execution time must thus be a multiple of the

10 nanoseconds.

Thus ‘time unit’ = 10 ns is an obvious choice.

4

Dahlberg/JohanssonScheduling 1

Assignment

42

procedure Main is

A : Natural := 4;

Consider the procedure Main below. Assume that: The cost for assignment/declaration, return and
comparison is one time unit. A function call overhead is one time unit. Addition and
subtraction costs are two time units. Other language constructs will not generate any code so
they are “null” cost.

a) Using Shaw’s method, estimate WCET for the procedure.

b) Now, suppose the value of A was undetermined in Main. How would you then try to estimate
WCET?

A : Natural := 4;

F : Natural;

function Calculate (Z : in Natural) return Natural is

R : Natural;

begin

if Z == 0 then

R := 1;

else if Z == 1 then

R := 1;

else

R := Calculate(Z-1) + Calculate(Z-2);

E5-EDA222 13

R := Calculate(Z-1) + Calculate(Z-2);

end;

return R;

end Calculate;

begin

F := Calculate(A);

end;

Dahlberg/JohanssonInterfacing Ada95 to C and assembly language

Solution 42: In white board

(Solution In the Exercise Compendium is in

Swedish; but easy to follow)

E5-EDA222 14

