
1

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

1

Interrupts in Ada95 and the lab assignment

� Interrupts in Ada95
� Assignment 30
� Lab assignments Issues

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

2

Interrupts in Ada95
� An Interrupt represents a class of events that are detected by the hardware or system

software.

� The Occurrence of an interrupt consists of its Generation and its Delivery.

� The Generation of an interrupt is the event in the underlying hardware or system which
makes the interrupt available to the program.

� Delivery is the action which invokes a part of the program (called the interrupt handler)
in response to the interrupt occurrence.

� In between the generation of the interrupt and its delivery, the interrupt is said to be
pending. The handler is invoked once for each delivery of the interrupt.

� While an interrupt is being handled, further interrupts from the same source are blocked.

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

3

Interrupts in Ada95

� Certain interrupts are Reserved. The programmer is not allowed to provide a handler for
a reserved interrupt.

� Each non-reserved interrupt has a default handler that is assigned by the run-time
system.

� We as programmers will use non-reserved interrupts (specifically interrupt for PortB of
MC68).

Dahlberg/Johansson

Imporatant Points About Interrupt
� In Ada interrupts are handled using protected object.

– Interrupt handlers are procedures (of course blocking) of the protected objects
� Data handled by interrupt routine must be stored in local variables of protected

object.
� Reading/writing such data is done using calls to functions/entry/procedure of the

protected object.
– For example, reading/writing the data and status register must be through

protected object. [think about swrite()/waitsensor() procedure in command.ads]
� The Three Numbers:

– Interrupt Priority/Level (Specific to a hardware, already initialized)
– Protected Object (used for interrupt handling) priority (to be initialized by us)
– Interrupt Number (interrupt vector) (already initialized, but we will use it)

� Ada Hardware Interrupt Priority And Protected Object priority should be related
– GNU Ada95 M68K, the priority level 101..105 maps to hardware priority 1..5.

� At port B the hardware interrupt has priority 4. What is the protected object priority?
� What is the interrupt number? For port B is it is 66 (defined in Ada package).

E3-EDA222

Interrupts in Ada95 and the lab assignment

4

2

Dahlberg/Johansson

Steps for interrupt handler Installation(from Lecture 6)
� Step 1: Declare a protected object with a handler procedure (procedure_name).

– Partial Definition is given in “command.adb” file.
Now, What you do to say that we have an interrupt handler?

� Step 2: Inform compiler about the service by
– pragma Interrupt_Handler(procedure_name) in the specification part.

In “command.adb” it is given as:procedure handler;
Now, What about interrupt vector?

� Step 3: Declare a variable to store the logical number of hardware interrupt signal.
– Int_ID: constant:=Ada.Interrupt.Names.PORTBINT; (Already defined in

"traintypes.ads” in variable “ivector”). What you do for this?
� Step 4: Associate the handler and interrupt signal (Installation).

– Attach_Handler (procedure_Name’access, Int_ID);
What about the ceiling priority?

� Inform compiler the ceiling priority of the protected object in the specification by.
– Pragma Interrupt_Priority(priority)?
– What is the value of ceiling priority?

–E3-EDA222

Interrupts in Ada95 and the lab assignment

5

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

6

Interrupts in Ada95

Ada provides two styles of interrupt-handler installation and removal:
static and dynamic.

In the static style, an interrupt handler in a given protected object is
implicitly installed when the protected object comes into existence (is
created), and the treatment that had been in effect beforehand
(possibly the default handler) is implicitly restored when the protected
object ceases to exist (is destroyed).

In the dynamic style, interrupt handlers are installed explicitly by
procedure calls, and handlers that are replaced are not restored except
by explicit request .

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

7

Interrupts in Ada95, example: static style

protected Static_style_Interrupt is

...

procedure Our_Interrupt_Handler ;

Int_Id : Constant := implementation defined;

pragma Attach_Handler(Our_Interrupt_Handler, Int_Id);

...

end Static_style_Interrupt;

� Connect the procedure Our_Interrupt_Handler to
interrupt vector Int_Id.

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

8

Interrupts in Ada95, example: dynamic style

protected Dynamic_style_Interrupt is
...
procedure Our_Interrupt_Handler ;
Int_Id : Constant := implementation defined;
pragma Interrupt_Handler(Our_Interrupt_Handler);
...

end Dynamic_style_Interrupt;

protected body Dynamic_style_Interrupt is
...

begin
Attach_Handler(Our_Interrupt_Handler , Int_Id);

end ;

3

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

9

Interrupts in Ada95, protected object priority
� Protected object priority is the priority ceiling (Ada priority) used

when any procedure, function or entry within the object is
executed.

� This priority is normally not the same as the hardware interrupt
priority, but they are strongly related and must match.

protected Any_style_Interrupt is
...
Protected_object_priority : constant := implementation defined;
pragma Interrupt_Priority(Protected_object_priority);
...

end Any_style_Interrupt;

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

10

Summary of implementation defined
features, gada68k (used in the train lab.)

Binding interrupt :

Interrupt_PortB : constant := Ada.Interrupts.Names.PORTBINT;
-- is the vector interrupt number (0x42)...
-- => interrupt vector address 0x108.

...
Ada priority for protected object (given, Interrupt_PortB)

Protected_object_priority : constant := 104 ;

Corresponding hardware interrupt = Ada Priority - 100

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

11

Assignment 30

Assume an eight bit register available at address FFFFFF04h in memory space (se below).

a) Define an appropriate type for this register layout.
b) Write a package Cntrl_Reg with functions Read_Done, returning the Done-bit,

and Read_Error returning the Error-bit.
c) Add to the package a procedure Write_Reg(FLAG:FLAG:CHAN_TYPE) that

updates the fields: A/D Start, Interrupt Enable/Disable and Channel simultaneously.
Use value 0 for the read only bits Done and Error.

$FFFFFF04

Interrupt
Enable/
Disable

b0

A/D
Start

b1 b6

Not used Done

b7

Channel

b8 b14 b15

ErrorNot
used

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

12

Sol. a)
type FLAG is (CLEAR,SET);
for FLAG use (CLEAR => 0, SET => 1); -- Enumeration clause
for FLAG’ Size use 1; -- Size clause

type CHAN_TYPE is range 0..63;
for CHAN_TYPE’Size use 6; -- “Bit field” CHAN_TYPE needs 6 bits
type Control_Register is -- A suitable control register definition

record
AD_Start: FLAG;
Int_Enable: FLAG;
Done: FLAG;
Channel: CHAN_TYPE;
Error: FLAG;

end record;
-- A record representation clause is used to define actual bit positions (bit-field position)
for Control_Register use

record
AD_Start at 0 range 0..0;
Int_Enable at 0 range 6..6;
Done at 0 range 7..7;
Channel at 0 range 8..13;
Error at 0 range 15..15;

end record;
-- Tell compiler the size of this register with a size clause:
for Control_Register’ Size use 16; -- Type requires 16 bits

-- undefined bits are not used

$FFFFFF04

Interrupt
Enable/
Disable

b0

A/D
Start

b1 b6

Not used Done

b7

Channel

b8 b14 b15

Error
Not

used

4

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

13

Assignment 30 (Cont.)

Assume an eight bit register available at address FFFFFF04h in memory space (se below).

a) Define an appropriate type for this register layout.
b) Write a package Cntrl_Reg with functions Read_Done, returning the Done-bit,

and Read_Error returning the Error-bit.
c) Add to the package a procedure Write_Reg(FLAG:FLAG:CHAN_TYPE) that

updates the fields: A/D Start, Interrupt Enable/Disable and Channel simultaneously.
Use value 0 for the read only bits Done and Error.

$FFFFFF04

Interrupt
Enable/
Disable

b0

A/D
Start

b1 b6

Not used Done

b7

Channel

b8 b14 b15

ErrorNot
used

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

14

Sol. b)

with System, System.Storage_elements;
use System;
package body Cntrl_Reg is

-- Declare the register at FFFFFF04h
C_reg: Control_Register;
for C_reg’ address use : constant Address :=

Storage_elements.to_address(16#FFFFFF04#);

function Read_Done return FLAG is
begin

return(C_reg.Done);
end Read_Done;

function Read_Error return FLAG is
begin

return(C_reg.Error);
end Read_Error;

end Cntrl_Reg;

$FFFFFF04

Interrupt
Enable/
Disable

b0

A/D
Start

b1 b6

Not used Done

b7

Channel

b8 b14 b15

Error
Not

used

Write a package Cntrl_Reg with functions Read_Done, returning the
Done-bit, and Read_Error returning the Error-bit.

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

15

Assignment 30 (Cont.)

Assume an eight bit register available at address FFFFFF04h in memory space (se below).

a) Define an appropriate type for this register layout.
b) Write a package Cntrl_Reg with functions Read_Done, returning the Done-bit,

and Read_Error returning the Error-bit.
c) Add to the package a procedure Write_Reg(FLAG:FLAG:CHAN_TYPE) that

updates the fields: A/D Start, Interrupt Enable/Disable and Channel simultaneously.
Use value 0 for the read only bits Done and Error.

$FFFFFF04

Interrupt
Enable/
Disable

b0

A/D
Start

b1 b6

Not used Done

b7

Channel

b8 b14 b15

ErrorNot
used

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

16

Sol. c)

procedure Write_Reg(ADS_Flag, I_ED_Flag: in FLAG;
Ch: in CHAN_TYPE) is

Shadow_Register: Control_Register;

begin
Shadow_Register:= (AD_Start => ADS_Flag,

Int_Enable => I_ED_Flag,
Done => CLEAR,
Channel => Ch,
Error => CLEAR);

C_reg := Shadow_Register; -- Register update
end Write_Reg;

$FFFFFF04

Interrupt
Enable/
Disable

b0

A/D
Start

b1 b6

Not used Done

b7

Channel

b8 b14 b15

Error
Not

used

Add to the package a procedure Write_Reg(FLAG:FLAG:CHAN_TYPE)
that updates the fields: A/D Start, Interrupt Enable/Disable and Channel
simultaneously. Use value 0 for the read only bits Done and Error.

5

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

17

Assignment 30
d)
The register is a control register for an A/D converter where bits have the following functions:
A/D Start Set to 1 to initiate conversion.
Interrupt Enable/Disable Set to 1 if the finalized conversion should generate an

interrupt
Done If this bit is zero, the conversion is still pending, otherwise it’s ready
Channel Chooses one out of the 64 analog inputs.
Error This bit is clear if the conversion was ok, otherwise it is set.

$FFFFFF04

Interrupt
Enable/
Disable

b0

A/D
Start

b1 b6

Not used Done

b7

Channel

b8 b14 b15

Error
Not

used

Analog
MPX

Ch 0 Signal
conditioning

Signal
conditioning

Signal
conditioning

Ch 1

Ch 63

Counter
Timer

SAH ADC 16

6

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

18

Assignment 30

When a conversion is initiated the converter samples the value from Channel.
The Done bit is reset. The sampled value is converted to a binary value and placed in a 16 bit data

register located at FFFFFF02. The Done bit is now set. If the Interrupt Enable/Disable is set
an interrupt is generated.

Write an ADA package AD_Converter with a single procedure, using Interrupt Enable:
procedure Read_AD(Ch: in CHAN_TYPE; M:out MEASUREME NT ;

AD_busy: out BOOLEAN);

If the conversion was successful, then Mholds the converted value and AD_Busy is FALSE. If the
converter is busy, then AD_Busy is TRUE and Mis undefined. If a conversion error occurs,
then exception Conversion_Error should be raised.

$FFFFFF04

Interrupt
Enable/
Disable

b0

A/D
Start

b1 b6

Not used Done

b7

Channel

b8 b14 b15

Error
Not

used

Analog
MPX

Ch 0 Signal
conditioning

Signal
conditioning

Signal
conditioning

Ch 1

Ch 63

Counter
Timer

SAH ADC 16

6

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

19

Sol. d)

-- Package specification *.ads
package AD_Converter is

Max_Measure : constant := (2**16)-1; -- 16 bits reg
subtype MEASUREMENT is Integer range 0..Max_Measure;
type Chan_Type is range 0..63; -- 64 channels
procedure Read_AD(Ch: in CHAN_TYPE; M:

out MEASUREMENT ; AD_busy:BOOLEAN);
Conversion_error : exception ;

end AD_Converter;

$FFFFFF04

Interrupt
Enable/
Disable

b0

A/D
Start

b1 b6

Not used Done

b7

Channel

b8 b14 b15

Error
Not

used

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

20

Sol. d)
-- Package body *.adb (the structure...)
with System, System.Storage_elements, Ada.Interrupts,

Ada.Interrupts.Names;
use System, System.Storage_elements, Ada.Interrupts,

Ada.Interrupts.Names;
package body AD_Converter is

-- type declarations goes here, see (a ...
-- register and priority declarations goes here

protected type AD_Device_Interrupt is
entry wait_for_completion(M: out MEASUREMENT);
pragma Interrupt_Priority(AD_Dev_priority); -- object priority
procedure Handler;
pragma interrupt_handler(Handler);

Interrupt_Occured : Boolean := False;
end AD_Device_Interrupt;

protected body AD_Device_Interrupt is
-- protected body goes here

end AD_Device_Interrupt;
AD_Interrupt : AD_Device_Interrupt;

� Int_Id: Constant := -- implementation defined HW interrupt signal;

begin
Attach_Handler(AD_Interrupt.Handler’Access, Int_Id);

end AD_Converter;

6

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

21

Sol. d)

-- register and priority declarations:
C_reg: Control_Register;
for C_reg’address use constant Address :=

to_address(16#FFFFFF04#);
D_reg: MEASUREMENT;
for D_reg’address use constant Address :=

to_address(16#FFFFFF02#);

-- Priorities are implementation defined
-- In this implementation object priority 104 corresponds to
-- hardware priority 4

AD_Dev_priority: constant := 104;

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

22

Sol. d)
protected body AD_Device_Interrupt is

procedure Handler is
begin -- Interrupt

Interrupt_Occured := True;
end Handler;

entry wait_for_completion (M: out MEASUREMENT)
when Interrupt_Occured is -- Wait_for_Interrupt

begin
if C_reg.Done = SET and C_reg.Error = CLEAR then

-- C_Reg_OK
M := D_reg;

else
-- C_Reg_Not_OK
interrupt_occured := FALSE;
raise Conversion_error;

end if ;
interrupt_occured := FALSE;

end wait_for_completion;
end AD_Device_Interrupt;

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

23

Sol. d)
procedure Read_AD(Ch: in CHAN_TYPE; M:

out MEASUREMENT ; AD_busy:BOOLEAN) is

begin
if C_reg.Done = CLEAR

AD_Busy := TRUE;
else

Write_Reg(1, 1; Ch); -- see c)
wait_for_completion(M);
AD_Busy := FALSE;

end if ;

end Read_AD;

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

24

package body AD_Converter is

C_reg: Control_Register;
for C_reg’address use: constant Address :=

to_address(16#FFFFFF04#);

D_reg: MEASUREMENT;
for D_reg’address use constant Address :=

to_address(16#FFFFFF02#);

AD_Dev_priority: constant := implementation
defined

protected type AD_Device_Interrupt is

entry wait_for_completion(M: out MEASUREMENT);
procedure Handler;
pragma Interrupt_Priority(AD_Dev_priority);

pragma Interrupt_handler(Handler);
Interrupt_Occured : Boolean := False;
end AD_Device_Interrupt;

protected body AD_Device_Interrupt is
procedure Handler is

begin -- Interrupt
Interrupt_Occured := True;

end Handler;

pa

entry wait_for_completion (M: out MEASUREMENT) when Interrupt_Occured
is

begin
if C_reg.Done = SET and C_reg.Error = CLEAR then

-- C_Reg_OK
M := D_reg;

else
-- C_Reg_Not_OK
interrupt_occured := FALSE;
raise Conversion_error;

end if;
interrupt_occured := FALSE;

end wait_for_completion;

end AD_Device_Interrupt;

procedure Read_AD(Ch: in CHAN_TYPE; M:
out MEASUREMENT ; AD_busy:BOOLEAN) is

begin
if C_reg.Done = CLEAR

AD_Busy := TRUE;
else

Write_Reg(1, 1; Ch); -- see c)
wait_for_completion(M);
AD_Busy := FALSE;

end if;
end Read_AD;

AD_Interrupt : AD_Device_Interrupt;
Int_Id: Constant := --implementation defined ;

begin
Attach_Handler(AD_Interrupt.Handler’Access,Int_Id);

end AD_Converter;

7

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

25

Lab assignment

� Train simulator
overview

� Simulator commands
� Simulator messages

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

26

Overview

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

27

Train simulator

Serial
Communication
Line
(Internal)

Commands

Receive, decode
Execute and respond

Messages

Send command
Await receipt

React on messages

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

28

Command types

Commands

Receive, decode
Execute and respond

Messages

Send command
Await receipt

React on messages

8

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

29

Message types

Commands

Receive, decode
Execute and respond

Messages

Send command
Await receipt

React on messages

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

30

Controlling the simulator

� Every command requires a single byte transmission to the
simulator.

� Every command must be acknowledged by the simulator
(Receipt). Otherwise synchronisation is impossible.

send
command

serial send

simulator

serial receive

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

31

Train 2

Train Application

Serial
comm. SIM

Message interrupt

Command
exec.

Message
decode
Sensor

monitoring

Resource
Handler

Main
procedure

Train 1

serial send

Dahlberg/Johansson

E3-EDA222

Interrupts in Ada95 and the lab assignment

32

Summary

� Details about Interrupts in Ada95
� Demonstration of Assignment 30
� Recommended home work: Assignment 29 and

preparations for the train lab (Serial device driver)

