Dahlberg/Johansson

Interrupts in Ada95 and the lab assignment

= Interrupts in Ada95
= Assignment 30
= Lab assignments Issues

E3-EDA222 1

CH A L M E RS Interrupts in Ada95 and the lab assignment

Dahlberg/Johansson

Interrupts in Ada95

= An Interrupt represents a class of events that are detectdwthardware or system
software.

= TheOccurrence of an interrupt consists of itSeneration and itsDelivery.

= TheGeneration of an interrupt is the event in the underlying heace or system which
makes the interrupt available to the program.

= Déliveryis the action which invokes a part of the prograalléd the interrupbandler)
in response to the interrupt occurrence.

= In between the generation of the interrupt andéfgsery, the interrupt is said to be
pending. The handler is invoked once for each deliverthefinterrupt.

= While an interrupt is being handled, further intgats from the same source &tecked.

E3-EDA222 2

CH ALME RS Interrupts in Ada95 and the lab assignment

Dahlberg/Johansson

Interrupts in Ada95

= Certain interrupts arReserved. The programmer is not allowed to provide a hanidie
areserved interrupt.

= Each non-reserved interrupt has a default hanidégrni$ assigned by the run-time
system.

= We as programmers will use non-reserved interrigpiscifically interrupt for PortB of
MC68).

E3-EDA222 3

Interrupts in Ada95 and the lab assignment
Imporatant Points About Interrupt

= In Ada interrupts are handled usipgptected object.
— Interrupt handlers are procedures (of course bigglof the protected objects

= Data handled bynterrupt routine must be stored in local variables of protected
object.

= Reading/writing such data is done using calls tefions/entry/procedure of the
protected object.

— For example, reading/writing the data and steggister must be through
protected object. [think aboatwrite()/waitsensor () procedure in command.ads]

= The Three Numbers:

— Interrupt Priority/Level (Specific to a hardwaadready initialized)

— Protected Object (used for interrupt handlingdmiy (to be initialized by us)

— Interrupt Number (interrupt vector) (alrgaxitialized, but we will use it)
= Ada Hardware Interrupt Priority And Protected Objedority should be related

— GNU Ada95 M68K, the priority level 101..105 mapshardware priority 1..5.
= At port B the hardware interrupt has priorityVhat is the protected object priority?
= Whatis the interrupt number? For port B is it @s(Befined in Ada package).

Dahlberg/Johansson

E3-EDA222 4

cH ALME RS Interrupts in Ada95 and the lab assignment Dahlberg/Johansson

cH A L M E RS Interrupts in Ada95 and the lab assignment

Steps for interrupt handler Installation(from Lecture 6)

= Step 1: Declare a protected object with a handlecgriure frocedure_name).

— Patrtial Definition is given in “command.adb” file.

Now, What you do to say that we have an interrupt handler ?

= Step 2: Inform compiler about the service by

— pragma Interrupt_Handlgmocedure_name) in thespecification part.

In “command.adb” it is given agprocedure handler;
Now, What about interrupt vector?

= Step 3: Declare a variable to store the logical lmemof hardware interrupt signal.

— Int_ID: constant:=Ada.Interrupt.Names.PORTBINTjréady defined in
"traintypes.ads” in variableiVector”). What you do for this?

= Step 4: Associate the handler and interrupt si¢jnatallation).
— Attach_Handler (procedure_Name’access, Int_ID);
What about the ceiling priority?
= Inform compiler the ceiling priority of the protect object in thepecification by.
— Pragma Interrupt_Priority(priority)?
— What isthevalue of ceiling priority?

Dahlberg/Johansson

Interrupts in Ada95

Ada provides two styles of interrupt-handler installation ancbkexin
static anddynamic.

In the static style, an interrupt handler in a given protedbggtbis
implicitly installed when the protected object comes intoterise (is
created), and the treatment that had been in effect beforehand
(possibly the default handler) is implicitly restored when tloéeuted
object ceases to exist (is destroyed).

In the dynamic style, interrupt handlers are installed explibitly
procedure calls, and handlers that are replaced are not desxoept
by explicit request .

E3-EDA222 5

E3-EDA222 6

Dahlberg/Johansson

Interrupts in Ada95, example: static style

protected Static_style_Interrupt is
procedure Our_lInterrupt_Handler
Int_Id : Constant := inplenentation defined;

pragma Attach_Handler(Our_Interrupt_Handler, Int_Id);

end Static_style_Interrupt;

= Connect the procedure Our_Interrupt_Handler to
interrupt vector Int_Id.

Dahlberg/Johansson

CH ALME RS Interrupts in Ada95 and the lab assignment

Interrupts in Ada95, example: dynamic style

protected Dynamic_style_Interrupt is
.p.i'ocedure Our_Interrupt_Handler ;
Int_Id : Constant := inplenmentation defined;
pragma Interrupt_Handler(Our_lInterrupt_Handler);
end ISS/namic_ster_Interrupt;
protected body Dynamic_style_Interrupt is
beginm

Attach_Handler(Our_Interrupt_Handler , Int_Id);
end;

E3-EDA222 7

E3-EDA222 8

Dahlberg/Johansson

H A MERS Interrupts in Ada95 and the lab assignment

Interrupts in Ada95, protected object priority

= Protected object priority is the priority ceiling (Ada priority) used
when any procedure, function or entry within the object is
executed.

= This priority is normally not the same as the hardware interrupt
priority, but they are strongly related and must match.

protected Any_style_Interrupt is

Protected_object_priority : constant := inpl ementation defined;
pragma Interrupt_Priority(Protected_object_priority);

end Any_style_Interrupt;

H A L M E RS Interrupts in Ada95 and the lab assignment

Dahlberg/Johansson

Summary of implementation defined
features, gada68k (used in the train lab.)

Binding interrupt :

Interrupt_PortB : constant := Ada.Interrupts.Names.PORTBINT;
-- is the vector interrupt number (0x42)...
-- => interrupt vector address 0x108.

Ada priority for protected object (given, Interrupt_PortB)
Protected_object_priority : constant = 104;

Corresponding hardware interrupt = Ada Priority - 100

E3-EDA222

E3-EDA222 9

Dahlberg/Johansson

MERS Interrupts in Ada95 and the lab assignment

Assignment 30

Assume an eight bit register available at address FF&4h in memory space (se below).

a) Define an appropriate type for this register layout.

b) Write a packag€ntrl_Reg with functionsRead_Done, returning theDone-bit,
andRead_Error returning theError-bit.

Add to the package a procedinkite_ Reg(FLAG:FLAG:CHAN_TYPE) that
updates the fieldsA/D Sart, Interrupt Enable/Disable andChannel simultaneously.
Use value 0 for the read only bi®ne andError.

C,

-

bo bl b6 b7 bg bl4 b15
Interrupt
$FFFFFF04 > SAtI;Drt Notused | Enable/ | Done Channel NOL Error
7 Disable use

E3-EDA222 11

10

MERS Interrupts in Ada95 and the lab assignment

Dahlberg/Johansson

bo bl b6 b7 b8 b14

bis

Interrupt|
SOl a) J— SA!’aDn Notused | Enable/| Done | Channel u'ig'd
Disable

Error

type FLAG is (CLEAR,SET);
for FLAG use (CLEAR=>0, SET =>1);
for FLAG'Size use 1;

-- Enumeration clause
Size clause

type CHAN_TYPEisrange 0..63;
for CHAN_TYPESize use 6; - “Bitfield” CHAN_TYPE needs 6 bits
type Control_Register is -- Asuitable control register definition
record
AD_Start: FLAG;
Int_Enable: FLAG;

Done: FLAG;
Channel: CHAN_TYPE;
Error: FLAG;
end record;
-- Arecord representation clause is used to define actual bit positions (bit-field position)
for Control_Register use
record
AD_Start at 0 range 0.0;
Int_Enable at 0 range 6..6;
Done at 0 range 7.7,
Channel at 0 range 8.13;
Error at 0 range 15..15;
end record;

si ze clause:
-- Type requires 16 bits

-- Tell compiler the size of this register with a
for Control_Register’ Size use 16;

bits-are-notused

E3-EDA222

12

H A L M E RS Interrupts in Ada95 and the lab assignment

Dahlberg/Johansson

Assignment 30 (Cont.)
Assume an eight bit register available at address FF&4h in memory space (se below).

a) Define an appropriate type for this register layout.

b) Write a packag€ntrl_Reg with functionsRead_Done, returning theDone-bit,
andRead_Error returning theError-bit.

c) Add to the package a procedikite_Reg(FLAG:FLAG:CHAN_TYPE) that
updates the fieldsA/D Sart, Interrupt Enable/Disable andChannel simultaneously.
Use value 0 for the read only bi®ne andError.

b0 bl b6 b7 b8 bl4 b15
Interrupt
AD Not
$FFFFFF04 > Start Not used E?Sa"gallee/ Done Channel used | EfTOr

E3-EDA222

13

CH A L M E RS Interrupts in Ada95 and the lab assignment

Dahlberg/Johansson

bo bl b6 b7 b8 b14 b15

Interrupt
SOI- b) S$FFFFFF04 gaDrl Not used E[\abt:e/ Done Channel u’igtﬂ Error
isable

Write a packag€ntrl_Reg with functionsRead_Done, returning the
Done-bit, andRead_Error returning theerror-bit.

with System, System.Storage_elements;
use System;
package body Cntrl_Reg is
-- Declare the register at FFFFFF04h
C_reg: Control_Register;
for C_reg’ address use : constant Address =
Storage_elements.to_address(16#FFFFFF04#);

function Read_Done return FLAG is
begin

return(C_reg.Done);
end Read_Done;

function Read_Error return FLAG is
begin
return(C_reg.Error);
end Read_Error;
end Cntrl_Reg;

E3-EDA222

Dahlberg/Johansson

Assignment 30 (Cont.)

a) Define an appropriate type for this register layout.

b) Write a packag€ntrl_Reg with functionsRead_Done, returning theDone-bit,
andRead_Error returning theError-bit.

Add to the package a procedinkite_ Reg(FLAG:FLAG:CHAN_TYPE) that
updates the fieldsA/D Sart, Interrupt Enable/Disable andChannel simultaneously.
Use value 0 for the read only bi®ne andError.

C,

-

Assume an eight bit register available at address FF&4h in memory space (se below).

bo bl b6 b7 bg bl4 b15
Interrupt
$FFFFFF04 > SAtI;Dn Notused | Enable/ | Done Channel NOL Error
7 Disable use

E3-EDA222

15

14

CH ALME RS Interrupts in Ada95 and the lab assignment

Dahlberg/Johansson

bo bl b6 b7 b8 b14 bis

Interrupt|
SOl C) SFFFFFFO4 S0 | Notused Enablel| Done | - Chammel ot | eror
isable

Add to the package a procedWikite_Reg(FLAG:FLAG:CHAN_TYPE)
that updates the fields%/D Sart, Interrupt Enable/Disable andChannel
simultaneously. Use value O for the read only bitee andError.

Write_Reg(ADS_Flag, |_ED_Flag: in FLAG;
Ch: in CHAN_TYPE) s

procedure

Shadow_Register: Control_Register;

begin
Shadow_Register:= (AD_Start => ADS_Flag,
Int_Enable =>1_ED_Flag,
Done => CLEAR,
Channel => Ch,
Error => CLEAR);
C_reg := Shadow_Register; -- Register update
end Write_Reg;

E3-EDA222

16

H A MERS Interrupts in Ada95 and the lab assignment

Dahlberg/Johansson
b0 b1 b6 b7 b8 bld _ bi5
A 1 t 30 Interrupt|
m AD Not
SS I g n e n $FFFFFFO4 Start Not used Sr\g’t‘uleel Done [Channel used | EOY

The register is a control register for an A/D convevibere bits have the following functions:

A/D Sart Set to 1 to initiate conversion.
Interrupt Enable/Disable Set to 1 if the finalized conversion should generate an
interrupt
Done If this bit is zero, the conversion is still pending, ottise it's ready
Channel Chooses one out of the 64 analog inputs.
Error This bit is clear if the conversion was ok, otherwisis get.
cho

Signal
conditioning
Signal
conditioning

Counter
Timer

Ch1l

Analog
MPX

SAH | p ADC 36 »

Ch 63 Signal
conditioning

E3-EDA222 17

H A L M E RS Interrupts in Ada95 and the lab assignment

Dahlberg/Johansson
b0 b1 b6 b8 bla _ bis
Assignment 30 [wrereros 20 | vorusns [Eritf oo | cramer | 228 | eror
Start Dicabla used

When a conversion is initiated the converter samplevalue from Channel.
The Done bit is reset. The sampled value is convertedittagy value and placed in a 16 bit datg
register located at FFFFFF02. The Done bit is now sttelfnterrupt Enable/Disable is set
an interrupt is generated.
Write an ADA package AD_Converter with a single proceduség Interrupt Enable:
procedure Read_AD(Ch: in CHAN_TYPE; M:out MEASUREME NT;
AD_busy: out BOOLEAN);

If the conversion was successful, thdholds the converted value aA®_Busy is FALSE. If the
converter is busy, thedD_Busy is TRUE andMis undefined. If a conversion error occurs,
then exceptiorConversion_Error should be raised.

Signal
conditioning Counter
H Al

Analog
MPX

che3
conditioning

E3-EDA222 18

MERS Interrupts in Ada95 and the lab assignment

Dahlberg/Johansson

bo bl bé b7 b8 bl4 b1s

SOl. d) ;ﬁ Not used ‘EEZ%Z%[Done [Channel | N | Error
-- Package specification *.ads
package AD_Converter s
Max_Measure : constant := (2**16)-1; -- 16 bits reg
subtype MEASUREMENE Integer range 0..Max_Measure;
type Chan_Type is range 0..63; -- 64 channels
procedure Read_AD(Ch: in CHAN_TYPE; M:
out MEASUREMENT ; AD_busy:BOOLEAN);
Conversion_error : exception ;
end AD_Converter;
E3-EDA222 19

Dahlberg/Johansson

-- Package body *.adb (the structure...)
with System, System.Storage_elements, Ada.Interrupts,
Ada.Interrupts.Names;
use System, System.Storage_elements, Ada.Interrupts,
Ada.Interrupts.Names;
package body AD_Converter is
-- type declarations goes here, see (a ...
-- register and priority declarations goes here
protected type AD_Device_|Interrupt is
entry wait_for_completion(M: out MEASUREMENT);
pragma Interrupt_Priority(AD_Dev_priority); -- object priority
procedure Handler;
pragma interrupt_handler(Handler);

Interrupt_Occured : Boolean := False;
end AD_Device_lInterrupt;

protected body AD_Device_lInterrupt is
-- protected body goes here

end AD_Device_lInterrupt;

AD_lInterrupt : AD_Device_Interrupt;

u Int_ld: Constant := -- inplenentation defined HW interrupt signal;
begin

Attach_Handler(AD_lInterrupt.Handler'Access, Int_Id)
end AD_Converter;

E3-EDA222 20

cH A MERS Interrupts in Ada95 and the lab assignment

Dahlberg/Johansson

Sol. d)

-- register and priority declarations:
C_reg: Control_Register;
for C_reg’address use constant Address :
to_address(16#FFFFFF04#);
D_reg: MEASUREMENT;
for D_reg'address use constant Address :
to_address(16#FFFFFF02#);

-- Priorities are implementation defined

-- In this implementation object priority

-- hardware priority 4

= 104;

AD_Dev_priority: constant

104 corresponds to

cH A MERS Interrupts in Ada95 and the lab assignment

Dahlberg/Johansson

Sol. d)

protected body
procedure Handler is
begin -- Interrupt

end Handler;

end wait_for_completion;
end AD_Device_Interrupt;

AD_Device_lInterrupt

Interrupt_Occured := True;

entry wait_for_completion (M:

when Interrupt_Occured is -- Wait_for_Interrupt
begin
if C_reg.Done=SET and C_reg.Error = CLEAR then
-- C_Reg_OK
M :=D_reg;
else
-- C_Reg_Not_OK
interrupt_occured := FALSE;
raise Conversion_error;
end if ;

interrupt_occured := FALSE;

S

out MEASUREMENT)

E3-EDA222 21
CHA MERS Interrupts in Ada95 and the lab assignment Dahlberg/Johansson
Sol. d)
procedure Read_AD(Ch: in CHAN_TYPE; M:
out MEASUREMENT ; AD_busy:BOOLEAN) is
begin
if C_reg.Done = CLEAR
AD_Busy := TRUE;
else
Write_Reg(1, 1; Ch); -- seec)
wait_for_completion(M);
AD_Busy := FALSE;
endif ;
end Read_AD;
E3-EDA222 23

E3-EDA222 22
HALMERS Interrupts in Ada95 and the lab assignment Dahlberg/Johansson

package body AD_Converter is

C_reg: Control_Register;
for C_reg'address use: constant Address :=
to_address(16#FFFFFF04#);

D_reg: MEASUREMENT;
for D_reg'address use constant Address :=
to_address(16#FFFFFF02#);

AD_Dev_priority: constant := implementation
defined

protected type AD_Device_Interrupt is
entry wait_for_completion(M: out MEASUREMENT);
procedure Handler;

pragma Interrupt_Priority(AD_Dev_priority);

pragma Interrupt_handler(Handler);
Interrupt_Occured : Boolean := False;

entry wait_for_completion (M: out MEASUREMENT) when Interrupt_Occured
is
begin
if C_reg.Done = SET and C_reg.Error = CLEAR then
--C_Reg_OK
M:=D_reg;
else
-- C_Reg_Not_OK
interrupt_occured := FALSE;
raise Conversion_error;
end if;
interrupt_occured := FALSE;
end wait_for_completion;

end AD_Device_Interrupt;

procedure Read_AD(Ch: in CHAN_TYPE; M:
out MEASUREMENT ; AD_busy:BOOLEAN) is
begin
if C_reg.Done = CLEAR
AD_Busy := TRUE;
else
Write_Reg(1, 1; Ch); -- see c)
wait_for_completion(M);
AD_Busy := FALSE;

end AD_Device_Interrupt; end if;
end Read_AD;
protected body AD_Device_Interrupt is IAD—I'(;‘_‘E”UPYA'?;Dev'c‘ef'me"“p"d fined :
procedure Handler is nt_ld: Constant := --implementation defined ;
begin -- Interrupt begin
Interrupt_Occured := True; Attach_Handler(AD_Interrupt.Handler'Access, Int_Id);
end Handler; end AD_Converter;
E3-EDA222 24

H A MERS Interrupts in Ada95 and the lab assignment

Dahlberg/Johansson

Lab assignment

= Train simulator
overview

= Simulator commands
= Simulator messages

0

N ~

~4

E3-EDA222

25

H ALM E RS Interrupts in Ada95 and the lab assignment

Dahlberg/Johansson

Overview

Work station

Terminal

Train simulator

Control computer

window 1

Terminal

(MC88340 based)

¥

Simulator computer

window 2

* (MCBBHCS12 based)

E3-EDA222

LME RS Interrupts in Ada95 and the lab assignment

Dahlberg/Johansson

Train simulator

Train simulator

Control computer

Send command
Await receipt
React on messages

(MC5B8540 based)

—

Simulator computer
7| (MCG8HCS12 based)

Serial
Communication
Line

(Internal)

Commands I | Messages

Receive, decode
Execute and respond

E3-EDA222

27

26

MERS Interrupts in Ada95 and the lab assignment

Dahlberg/Johansson

Command types

Configure

Set exchange
Activate sensor

This command restarts the train simulator. Trams, exchanges and

command
configurations.

Set an exchange in 1

The specitied sensor is aci

sions there the modal surpasses reality in performbnce). The
akes it possible to choose between \a fe

specifisd position.
cated or deactivated.

irions (one of the

SemerComman
Await receipt

|

different

Set spead Lhe speed for the specified traidsg set to specified value,
Command codes
MSB Bit number ‘ LSB Command type
7 ‘ 6 | 5 ‘ 4 ‘ 3 ‘ 2 1 ‘ 0
Value field Type field
0 | Log | Rec ‘ C-number 0 0 Configure
0 | off E-number K Set exchange
0 |Actve S-number 1 0 Activate sensor
Rev | speed | Tonumber 1 1 Set speed
>
E3-EDA222 28

HALME RS Interrupts in Ada95 and the lab assignment Dahlberg/Johansson cH ALME RS Interrupts in Ada95 and the lab assignment Dahlberg/Johansson
Message types Controlling the simulator
Receipt The lai_:c.s: cogu‘mmd of the specified type bas besn completed or n EVery command requires a Single byte transmission to the
alternatively 1ejected for some reason .
simulator.
Passage A sensor reacts when a tram armives to or l=aves the place whers the s2nsnr .
is lecated. = Every command must be acknowledged by the simulator
[Cataatrophe A train has collided, deranged or reversed. When a catastrophe is reported (Recelpt) Otherwise SynChronisation is impossible.
the stmulater has to be reconfigured.
Collision A train may not be driven against another train or into a stop block. serial send
Deranging A tram may not be driven mto an exchange set m the wrong position nor
can an =xchange be reposiionzd while a tramn 1s passmg,. —_ send .
Reversing The direction of movement camot be changed while a train is moving. To Exzfﬂgfn‘u"?;g;gm command simulator
. prevent a catastrophe the train first have to be stopped. Seri al receive
Addressing A command has been given that references a component (train. exchange,
sensor) that do not exist in the current configuration
E3-EDA222 29 E3-EDA222 30
CHALMERS Interrupts in Ada95 and the lab assignment Dahlberg/Johansson CHALMERS Interrupts in Ada95 and the lab assignment Dahlberg/Johansson
Train Application Summary
R
Train 1 | Command
-7 exec.) .
in2 Message Message nterrupt = Details about Interrupts in Ada95
decode / . .
< »| Sensor seial | 7 = Demonstration of Assignment 30
monitoring comm. SIM . H
L/ = Recommended home work: Assignment 29 and
serial send preparations for the train lab (Serial device driver)
Resource Main
Handler procedure
E3-EDA222 31 E3-EDA222 32

