
1

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Introduction to Ada95

Types and program flow control� Types and program flow control

� Compilation units, ”packages”

� Tasks in Ada95

� Protected objects in Ada95

� Example from Exercise Compendium

1

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

A simple example...

with Ada.Text_IO;

use Ada.Text_IO;

Compare:

Java: ’import’,

procedure hello is

begin

put_line(”Hello”);

end;

C: ”include”

Source code file has extension .adb

-> hello.adb

Compile and link with: gnatmake hello.adb

2

or

Compile separately with : gada68 hello.adb

and then linked with: gbind68 hello

And run : ./hello

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Identifiers

Identifiers

� Can be of arbitrary length

� Can only contain characters, digits and underscore (’_’)

� Must start with a character

EXAMPLE:

hello

Minimum_Delay

Minimum_Delay_2

A_Very_Verbal_Identifier_Name_Without_Useful_Information

3

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Literals

Literals

are character representation of numerical values. May also include information

about the numeric radix (base of the value).

EXAMPLE:

10000 same as 10_000 type: ”universal_integer”

3.1416 type: ”universal_float”

3E6 I.e. 3×106 type: ”universal_float”

16#FE12# constant, radix 16

’a’, ’c’ character constant

4

”hello” string constant

2

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Reserved words

abort case for new raise tagged

abs constant function not

range task abstract null record

etc, etc...

Reserved words cannot be used as identifiers...

5

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Types

Scalar

Character: 8 bits (Latin-1)

Wide_Character: 16 bits.

Composite

Array, arbitrary dimension.Wide_Character: 16 bits.

Boolean: can be TRUE or FALSE

(se ADA Distilled, A1)

Float: Real numbers.

Integer: Integer numbers

Enumeration type, EXAMPLE

type enumerate (first,second,third);

(1..16)

Array, arbitrary dimension.

EXAMPLE:

type mystring is array(1..16)

of character;

EXAMPLE

Record:

type imnum is record

Real_Part : float;

6

type enumerate (first,second,third);
Real_Part : float;

Im_Part : float;

end record;

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

More on integer types...

EXAMPLE declarations:

x,y,z : integer; -- vaiables, undefined contents

length : integer := 17; -- declaration and initialisationlength : integer := 17; -- declaration and initialisation

month : integer range 1..12; -- with range constraints

alternative:

subtype months is integer range 1..12; -- a new type

month : months;

7

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Integer operators

+ addition

- subtraction- subtraction

/ integer division, A/B = c + d/e

* multiplication

** exponent, EXAMPLE y**x (”y raised to x”)

mod modulus result from division, A mod B = c + d/e

rem modulus result from division, A mod B = c + d/e

8

note: mod/rem result may differ depending on A and B signs

abs absolute value

3

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Simple ”array” type

type name is array(startindex..stopindex) of element_type;

EXAMPLE:

type stack is array(1..50)of integer;

ws :stack; -- variable ’ws’ of type ’stack’

ws:=(1=>10,2=>20,3=>30, others => 0);

9

ws:=(1=>10,2=>20,3=>30, others => 0);

can also be written...

ws:=(10,20,30, others => 0);

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Unlimited ”array” type
type name is array (index_type range <>) of element_type;

EXAMPLE:
type num_vec is array(integer range <>)of float;

vector1 : num_vec(-10..10);

n: : integer := 8;

vector2 : num_vec(1..n);

for i in vektor2’range loop

null;

end loop;

attribute

10

MULTI DIMENSION ARRAY EXAMPLE:

type matrix5 is array(1..4,1..10,-8..16,32..36,1..8) of

integer;

attribute

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Composite type ”record”

type name is record

-- simple types, arrays

end record;

Records can be expanded with records, EXAMPLE:

type info is tagged record

name : string(1..64);

11

name : string(1..64);

age : integer;

end record; type add_info is new info with

record

male : boolean;

end record;

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Pointers

The name of a pointer in Ada95 is access type. Type checking is strong. E.g.

access type INTEGER is not the same as access type CHARACTER

type PtrTo_info is access all info;

ptr : PtrTo_info;

ptr_2 : PtrTo_info;

ptr := new info(”Lena ”, 35);

ptr_2.all := ptr; -- entire record copied

ptr_2.age = 36; -- record member initialized

Distinguish between the pointer value, which is an address, and the object that the
pointer points to. The pointer value is accessible with the attribute access.

12

pointer points to. The pointer value is accessible with the attribute access.

ptr_2 := ptr’access;

ptr_2 and ptr now addresses the same object.

4

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

More on pointers...

Attribute all can only be used with acces types.

Uninitialised acces type objects has the value null.

A pointer declared access all can hold the address of a static object.

In this case, the object has to be declared aliased.

object : aliased info

ptr : PtrTo_info;

begin

13

begin

ptr = object’access;

...

Section 5 in ”ADA Distilled”

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Program flow control if/else

if boolean expression thenif boolean expression then

statement(s);

else

statement(s);

end if;

14

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

if/elsif

if boolean expression then

Program flow control

statement(s);

elseif another boolean expression then

statement(s);

else

statement(s);

15

statement(s);

end if;

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

case

case letter is

Program flow control

when ’a’..’z’ => put(”small”);

when ’A’..’Z’ => put(”capital”);

when ’0’..’9’ => put(”number”);

when others => put(” don’t know...”);

end case;

16

end case;

5

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

”do while”

loop

Program flow control

statement(s);

exit when boolean expression ;

end loop;

17

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

”while do”

while boolean expression loop

Program flow control

statement(s);

end loop;

18

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

”for...”

for i in (reverse) startvalue..stopvalue

loop

Program flow control

loop

statement(s);

end loop;

Loop variable i is not excplicitly declared so it cannot be

modified by the program. It is assigned startvalue prior to

the first iteration, then increased by 1 for each iteration.

19

the first iteration, then increased by 1 for each iteration.

If the form ”reverse” is used, the loop variable is initialised

with stopvalue, then decremented by 1 for each iteration.

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Program block

Blocks is used to define the first and the last execution point in a

program. Blocks may nests.program. Blocks may nests.

A block is always started with:

begin

-- statements and program flow control

and ended with:

end

20

end

6

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Subprograms

Only functions and procedures can be defined as subprograms. Only functions and procedures can be defined as subprograms.

They must always have an executable block.

A function always returns a value, it can (but should not) have

side effects. Values can be passed to functions.

A procedure is the general execution unit, values can be

passed to procedures as ”in”, ”out” or ”in/out”.

21

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Subprogram ”function”

EXAMPLE: Function even returns TRUE if parameter is even,

otherwise returns FALSE.otherwise returns FALSE.

function even(num: in integer) return boolean is

begin

if num mod 2 = 0 then

return TRUE;

else

return FALSE;

end if;

end;

22

Parameter can be in or access. A value should always be

returned and this is checked at compile time.

end;

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Subprogram ”procedure”

procedure even(num: in integer, res: out boolean) is

begin

Parameter can be in, out, inout or access. There are no

begin

if num mod 2 = 0 then

res = TRUE;

else

res = FALSE;

end if;

end;

23

Parameter can be in, out, inout or access. There are no

return values.

Overloading: Two subprograms can have the same identifiers

(names) presumed that their parameter lists are different.

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Generic units

� Generic routines are general descriptions of algoritms

that can be used with different data types.

� An instansiation, where a desired type is specified, � An instansiation, where a desired type is specified,

creates the usable object(s)..

package generic_stack is

generic

type element is private;

package stack is

with generic_stack;

use generic_stack;

procedure stacktest is

package int_stack

Declaration Instansiation

24

package stack is

procedure push(e: element);

procedure pop (e: element);

end stack;

end;

package int_stack

is new stack(integer);

begin

...

stack.push(data);

end;

7

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Unchecked type conversions

with unchecked_conversion;

Generic standard procedure unchecked_conversion

EXAMPLE: Convert access type to integer

with unchecked_conversion;

procedure unckecked is

type segment is array(1..1023) of character;

type pointer is access all segment;

memory : aliased segment;

new_memory : pointer;

start_address: integer;

-- a new instance ...

function to_int is new unchecked_conversion(pointer,integer);

25

begin

new_memory := memory’access;

start_address := to_int(new_memory);

end;

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

The Run-Time Environment

user stack

stack: local variables, temporary save of return

address during subprogram calls.user stack

heap

uninitialized data

(bss)

initialized data

heap: used for run-time (dynamic) memory

allocation (operator new).

stack grows downwards while heap grows

upwards in memory.

bss: (”block started by symbol”) non- initialised

memory, used for global variables.

data: global initialised variables.

26

initialized data

(data)

program (text)

data: global initialised variables.

text: devoted to machine instructions. Only

executable segment.

Somewhat simplified...

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Tasks in Ada95

A ”subprogram” executing in

parallel with other

procedure shopping is

task john;

task liza;

task body john is

beginparallel with other

subprograms is called a task.

begin

Get_Bread;

end john;

task body liza is

begin

Get_Milk;

end liza;

begin

27

begin

null;

end shopping;

Liza and John goes shopping

simultanously.

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Task synchronisation
� Tasks are synchronised by mean of rendezvous.

� A rendezvous specification is called an entry.

� Entries are the only allowed declarations in a task specification.

task p is

entry e1(i : in integer);

entry e2;

end;

Entries can be called (requesting a rendezvous) from another

subprogram:

28

...

p.e1(n);

...

p.e2;

...

8

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Task synchronisation, continued...
For each entry there must be at least one accept-statement

task body p

...

accept e1(i : in integer)

do

...

end e1;

...

When p reaches accept the queue for this entry (e1) is checked. If

the queue is non-empty, i.e. any task q has called the entry (p.e1())

29

the queue is non-empty, i.e. any task q has called the entry (p.e1())

a rendezvous is undertaken. The block within do-end is then

executed, without interruption (critical region).

If p reaches accept- prior to a call to this entry, p is blocked and thus

cannot proceed ececution.

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

� A single entry can be called from any subprogram.

Task synchronisation, continued...

� A single entry can be called from any subprogram.

� Each entry call is queued (FIFO).

� Each call is granted a rendezvous that cannot be interrupted.

� Each time the accept statement is reached, the corresponding

queue is examined for pending entry calls.

� A task cannot be a library unit, it must reside as a subprogram.

30

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Protected objects

� A protected object insures mutual exclusion. There is always at

least one variable, that has to be protected.

� A protected object package includes procedures and functions that

can be called anytime, but may block depending on run-time

circuimstances. Typically, these procedures/functions manipulates the

protected variable(s).

� A protected object is used to manage an exclusive resource. There

are similarities between tasks and protected objects, but they are not

31

are similarities between tasks and protected objects, but they are not

quite the same. An entry can ”call itself” (requeue) but a protected

object member cannot call itself, another member of the object OR

another protected object.

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Protected objects, EXAMPLE

with Ada.Text_IO;

procedure Protected_Variable_Example is

protected Variable is

procedure Modify(Data : Character);

-- Object ’Variable’ is locked for this operation-- Object ’Variable’ is locked for this operation

function Query return Character ;

-- Read-only. May not update data

entry Display(Data : Character; T : String);

-- An entry has a queue

private

Shared_Data : Character := '0';

-- All data is declared here

32

end Variable;

protected body Variable is -- No begin end part in protected body

ADA Distilled 14.3

9

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Exceptions

Exceptional events are things that happens, during program

execution, that prevents further execution of a subprogram. execution, that prevents further execution of a subprogram.

EXAMPLES:

Divide by 0

Assigning values out of bound

Requesting memory beyond limits

etc. etc.

Ada provides mechanisms for the application programmer to
handle such events.

33

handle such events.

This will be further elaborated

throughout this course

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Tools used in this course:

GPS, for Windows (or similar for Linux)GPS, for Windows (or similar for Linux)

General Ada programming, work at home. Windows version

available at course home page.

Gada68k, cross-compiler for MC68340, only Linux

34

For lab assignment, programming with the train simulator.

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

A simple resource handler (Lab Related…)

Assume a single resource is shared.

Clients of the resource call ”Acquire” to access it

Clients of the resource call ”Release” to free it

When multiple clients want to access it, only one

client get access; others are bolcked.

35

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

procedure P1 is

protected type resource is

entry Acquire;

procedure Release;

end resource;

----Body of the protected object

procedure P1 is

protected type resource is

entry Acquire;

procedure Release;

Private

free: boolean:=true;----Body of the protected object

r1: Resource;

task client1;

task client2;

task body client1 is

r1.Acquire; … r1.release;

end client1;

task body client2 is

free: boolean:=true;

end resource;

protected body resource is

entry Acquire when free is

begin

free=:=false;

end;

procedure release is

36

r1.Acquire; … r1.release;

end client2;

begin

null

end P1;

begin

free:=true;

end;

end resource;

… … …

end P1;

10

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Assignment 8

Three integer variables is shared by several tasks. Write an ADA package

Notice_Board containg read and write operations by concurrent tasks, for

these variables. The following type is declared:these variables. The following type is declared:

type var_num is range 1 .. 3;

The package shall include the following procedures:

procedure read (num : in var_num; value : out integer)

-- Returns value of variable denoted by ’var_num’.

-- Block the calling task if the variable

-- not have been previously assigned through ’write’.

procedure write (num : in var_num; value : in integer)

-- Assign ’value’ to variable denoted by ’var_num’.

37

-- Assign ’value’ to variable denoted by ’var_num’.

Write operations are mutual exclusive for a particular variable, i.e writing

one variable should not block operations on another variable. Hint: Create a

protected object for each variable).

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Step 1, the specification

package Notice_Board is

type Var_Num is range 1 .. 3;

procedure read(Num : in Var_Num; Value : out Integer);

procedure write(Num : in Var_Num; Value : in Integer);

end Notice_Board;

38

Goes to specification file, e.g. ”Notice_Board.ads”

Declarations are visible throughout the application

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Step 2,

declarations

package body Notice_Board is

protected type Protected_Int is

entry Read(Value : out Integer);

procedure Write(Value : in Integer);

Goes to declaration file, e.g. ”Notice_Board.adb”

Details the implementation, also contains locals i.e. visible inside but not

outside the package and ”privates”, i.e. unique copies for every object

instance.

procedure Write(Value : in Integer);

private

X : Integer := 0;

Written : Boolean := False;

end Protected_Int;

protected body Protected_Int is

-- implementation of entry ‘Read’ and local procedure ‘Write’ (protected)

end Protected_Int;

-- multiple instances of the protected object...

39

-- multiple instances of the protected object...

type Protected_Int_List is array (Var_Num) of Protected_Int;

Board_Variables : Protected_Int_List;

-- Exported (visible) procedures

procedure read(Num : in Var_Num; Value : out Integer) is

... –- implementation of procedure ‘Read’ globally visible

procedure write (Num : in Var_Num; Value : in Integer) is

... –- implementation of procedure ‘Write’ globally visible

end Notice_Board;

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Step 3, protected details

protected body Protected_Int is

entry Read(Value : out Integer) when Written is

begin

Value := X;

end;

procedure Write(Value : in Integer) is

begin

X := Value;

Written := True;

end;

end Protected_Int;

40

Note that ’Value’ is unique for every instance of the

Protected_Int object.

The choice of an entry for Read is motivated by the

required guard (Written).

11

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Step 4, globally visible procedure details

procedure Read(Num : in Var_Num; Value : out Integer) is

begin

Board_Variables(Num).Read(Value);

end;

procedure Write (Num : in Var_Num; Value : in Integer) is

begin

Board_Variables(Num).Write(Value);

end;

41

’Num’ indicates the actual instance of the protected object

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Recommended home work...

Eloborate on the following assignments..

1-51-5

Will get you started and going with the IDE and

ada95 taking mechanisms.

6

Learn how to make a set of procedures ”generic”

simply by using types.

7

42

A simple exercise on protected objects.

10

Preparations for the laboratory assignments.

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Summary

� Types and program flow control� Types and program flow control

� Compilation units, ”packages”

� Tasks in Ada95

� Protected objects in Ada95

� High value hints for persuing this course

ADA Distilled

43

Course home page provides links to

all needed resources.

Lab Description, Exercise

Compendium, Ada Distilled…

