
0018-9162/04/$20.00 © 2004 IEEE20 Computer

C O M P U T I N G P R A C T I C E S

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Coping with Java Threads

A
thread is a basic unit of program execu-
tion that can share a single address space
with other threads—that is, they can
read and write the same variables and
data structures. Originally, only assem-

bly programmers used threads. A few older pro-
gramming languages such as PL/I supported thread
concurrency, but newer languages such as C and
C++ use libraries instead. Only recently have pro-
gramming languages again begun to build in direct
support for threads. Java and Ada are examples of
industry-strength languages for multithreading.1-3

The Java thread model has its roots in traditional
concurrent programming.4,5 It nevertheless has seri-
ous, well-known inherent limitations, and it
includes constructs that are easily abused. As the
“Real-Time Specification for Java” sidebar
describes, RTSJ attempts to remove some of the lim-
itations relative to real-time applications—primar-
ily by circumventing garbage collection. But RTSJ
does not make the language safer.6 It retains stan-
dard Java’s threading pitfalls and is a risky candi-
date for critical concurrent applications.

Notably, the pitfalls are almost nonexistent in
Ada,1,3 which, unlike Java, was designed for safety-
critical real-time applications from the start and has
support mechanisms built into the syntax. While an
Ada programmer can rely on the compiler to guard
against major mistakes, a Java programmer must
understand the basics of threading and synchro-
nization as well as the Java thread model and strate-
gies for avoiding its pitfalls.

THREADING AND SYNCHRONIZATION
The Java concurrency model relies on two enti-

ties: threads and synchronized objects. Each thread
has its own context including a program counter

that indicates what instruction the thread must exe-
cute next and a stack that reflects what method it’s
currently processing and what methods it must
return to. With its own program counter and stack,
each thread proceeds independently through the
program code.

Each thread also has a priority governing its
access to a processor. A processor executes at most
one thread at a time—normally the highest-priority
thread that is ready to run. If a higher-priority
thread becomes ready to run while a lower-prior-
ity thread is using the processor, the higher-priority
thread preempts the lower-priority thread and starts
processing. An operation where the processor starts
running a new thread and using its context is called
a context switch. A thread can force a context
switch by yielding the processor—for example, by
calling sleep.

Threads can speed up a program by taking advan-
tage of symmetric multiprocessors, but they are also
useful on a single processor where one thread can
compute while others are waiting for external input.

A shared object is one that multiple threads can
access. Those accesses by different threads must be
synchronized to guard against data inconsistencies.
Java provides exclusion synchronization through
the keyword synchronized. Exclusion synchroniza-
tion, or mutual exclusion, makes a synchronized
object thread safe—that is, only one thread at a time
can call its synchronized methods. A critical section
is a code sequence that is executed under exclusion
synchronization.

Java also provides condition synchronization for
threads that must wait for a certain condition before
proceeding in a synchronized method.

Distinguishing between these two forms of syn-
chronization is crucial to correct programming, and

Bo Sandén
Colorado
Technical
University

Java works for many kinds of
concurrent software, but it was not
designed for safety-critical real-time
applications and does not protect
the programmer from the pitfalls
associated with multithreading.

April 2004 21

many of the Java threading pitfalls result from
confusing them.

Exclusion synchronization
This mechanism stops different threads from call-

ing methods on the same object at the same time and
thereby jeopardizing data integrity. In a well-pro-
grammed system, each thread maintains exclusive
access for a very short time. A thread rarely finds an
object locked and, if it does, the wait is brief.

In such a well-programmed system, it’s highly
unlikely that two or more threads will attempt
access to the same object while it is locked; so it’s
not necessary to maintain an orderly queue of
threads pending an object lock. Instead, when a
thread encounters a locked object, it yields the
processor. If the object is still locked when the
thread becomes eligible for processing, the thread
again yields the processor. If the thread has its own
processor, it can instead enter a loop where it
repeatedly attempts access (“spins”) until success-
ful. I’ll use the term spin lock for both the single
processor and multiprocessor cases.

A priority inversion occurs when a higher-
priority thread is waiting for a lower-priority
thread. While a thread, low, is operating on a shared
object, o, under exclusion synchronization, a higher-
priority thread, high, which also needs exclusive
access to o, can preempt low. Unavoidably, high
must wait for low to exit a critical section.

If low continues executing at its normal priority
after high has begun waiting, a third thread, inter-
mediate, whose priority is between high and low,
can preempt low. If intermediate does not need
access to o, it can take over the processor while low
is still locking o. To avoid this situation, where high
is waiting for more than one lower-priority thread,
the synchronization mechanism can give low a pri-
ority boost in one of two ways:

• let low inherit high’s priority once high tries to
access o; or

• define a ceiling priority for o, which means that
any thread has this ceiling priority while exe-
cuting a synchronized method on o.

The ceiling priority must be that of the highest-pri-
ority thread that ever operates on o, also called the
“highest locker.”

Condition synchronization
In condition synchronization, a thread waits for

some resource other than a synchronized object.
Condition synchronization includes no assumption

that the wait will be brief; threads can wait indefi-
nitely. A classic example of condition synchroniza-
tion is a Buffer class with the methods put and get.
Producer threads call put and consumer threads call
get. Producers must wait if the buffer is full, and
consumers must wait if it’s empty.

Condition synchronization complements exclu-
sion synchronization. A producer thread, t, must
first lock the buffer to see that it’s full. But while t
is waiting for the condition to change, the buffer
must remain unlocked so consumers can call get.
Java provides the operation wait for suspending
threads that are waiting for a condition to change.
When t finds the buffer full, it calls wait, which
releases the lock and suspends the thread. After
some other thread notifies t that the buffer may no
longer be full, t regains the lock on the buffer and
retests the condition.

Condition synchronization is used when threads
control shared resources in a problem domain. For
example, in an automated factory application,7,8

jobs may need exclusive access to an automated
forklift truck. A Job thread represents each job.
Because a forklift operation can continue for several
minutes, it requires condition synchronization so
that waiting Job threads won’t spin.

THE JAVA THREAD MODEL
Programming threads in Java is much simpler

than programming with the thread packages that
come with C and C++. Exclusion synchronization
is built into the Java language so programmers need
not manipulate semaphore objects to synchronize
threads. Further, programmers can use Java’s object

Real-Time Specification for Java
RTSJ is based on the premise that a real-time program must be pre-

dictable so that the programmer can determine a priori when certain
events will occur. Standard Java does not meet this premise for various
reasons.

For example, the garbage collector can interrupt any processing at
any time, which introduces an element of randomness that makes it
impossible to predict how long a certain operation will take. RTSJ
addresses this problem by introducing several new classes, one of which,
NoHeapRealtimeThread, is a descendent of Thread, but its instances
have higher priority than the garbage collector. This lets NHRTs execute
predictably, but it places restrictions on the programmer, who must
explicitly allocate any new objects in special memory areas.

Another example of particular interest to this article: A notify call in
standard Java reactivates threads in a wait set in arbitrary order, no mat-
ter how long they have waited. In RTSJ, the wait set is a first-in, first-
out (FIFO) queue within priorities, and notify reactivates the thread that
has the highest priority and has waited the longest. RTSJ uses priority
inheritance as the default policy to control priority inversion. It also
specifies a priority ceiling protocol.

To further support real-time programming, RTSJ allows the pro-
grammer to specify interrupt handlers.

22 Computer

model to fit thread classes and synchronized
classes into inheritance hierarchies.

Defining and starting threads
Java provides the abstract class Thread,

whose method run is intended to contain a
thread’s main logic. A standard way of cre-
ating threads is to declare a new class—say,
T—that extends Thread and overrides run
with appropriate processing.

Each instance of T—say, to—has its own thread,
which is started by the call to.start. Once started,
the thread executes T’s run method and has access
to the instance to’s data.

Java does not allow multiple inheritance, so
another mechanism is necessary if a class—say, R—
that needs a thread already extends another class—
say, Applet. For this situation, Java provides the
interface Runnable. So, R extends Applet and
implements Runnable. Instantiating R creates a
runnable object. To associate a thread with a
runnable object, the programmer submits the
object as a parameter to one of Thread’s construc-
tors. This results in a thread instance, which is then
started by a start call.

Synchronizing objects
All Java objects have the potential for exclusion

synchronization. Every object has a lock variable,
which is hidden from the programmer. A method,
m, is synchronized as follows:

void synchronized m() { ... }

Java brackets a synchronized method’s code with
statements that acquire and release the lock on the
object, o, on which m is invoked. In other words,
a thread calling o.m locks the object as a whole,
and no other thread can perform any synchronized
method on it. The thread always releases the lock
when it leaves the synchronized method, even if it
leaves through Java’s exception-handling mecha-
nism. Any class instance that has at least one syn-
chronized method or block is a synchronized
object.

A Java programmer can choose to specify only
some methods of a class as synchronized. This tech-
nique has useful applications. For example, there
is no need to synchronize a read-only method that
returns a single attribute value. Different threads
can execute nonsynchronized methods simultane-
ously while yet another thread is executing a syn-
chronized method. If the methods are lengthy, this
option can increase concurrency, especially on mul-

tiprocessors, where different threads can really
execute at the same time.

Synchronized blocks. In addition to synchronized
methods, Java provides synchronized blocks. The
following syntax can synchronize a block in any
method with respect to an object—in this case,
block B:

synchronized (Expression)
{ /* Block B */ }

The value of Expression must be a reference to
some object—say, vo of class V.

Like a synchronized method, a synchronized
block is a critical section that Java brackets by
statements to acquire and release the lock on the
specified object. Consider first the case where block
B is part of some method, m, of class V and is syn-
chronized with respect to the current object as
follows:

class V ... {
void m() {

synchronized (this) {
/* Block B*/

}
}
}

In this excerpt, this is a reference to the current
object.

Synchronized blocks offer a way to synchronize
only part of m when all of m does not require exclu-
sive access.9 If only B is synchronized, two or more
threads can simultaneously execute the rest of m.
Another option is to make B a separate, synchro-
nized method of V and call it from within m.

The programmer can synchronize B with respect
to any object. The following construct synchro-
nizes B with respect to object wo of class W
(though wo could also be another instance of
class V):

class V ...{
void m() {

synchronized (wo) {
/* Block B*/

}
}
}

Arguably, this is bad programming style: B is an
operation on wo and so should be a method
defined in W’s declaration. But synchronized blocks

All Java
objects have
the potential
for exclusion

synchronization.

April 2004 23

can prove handy when different threads must per-
form their own operations on a shared object under
exclusive access. For example, many threads can
write tailored outputs to a printer object as follows:

synchronized (myPrinter) {
// Block of statements that
produce output to myPrinter

}

In this case, the synchronized block obviates the
need to make every possible combination of out-
put statements into a printer class method.

Nested critical sections. A programmer can nest
critical sections in various ways. If m is itself syn-
chronized, the example for wo becomes

class V ... {
synchronized void m() {

synchronized (wo) {
/* Block B */

}
}
}

Here, B executes with exclusive access to both wo
and the current instance of V. Another way of nest-
ing is to call a synchronized method from within a
synchronized block or method.

Nesting can be necessary for coordinating
updates. Say a synchronized object z controls two
synchronized objects, x and y. As part of a syn-
chronized method m on z, a thread must also
update x and y to maintain consistency. For this,
m can contain nested blocks that are synchronized
with respect to x and y. The innermost block pro-
vides exclusive access to x, y, and z.

Multiple locks on the same object. A programmer can
also nest methods and blocks that are synchronized
with respect to the same object. Assume that
thread t calls o.m and that m is synchronized. If t
calls another synchronized method on o from
within m, t gets an additional lock on o. Each time
t exits a critical section, it releases one lock. That
way, t keeps o locked until it exits its outermost
critical section with respect to o.

Unfortunately, excessive multiple locking of
single objects can cause performance problems.

Syntax complications
The standard Java idiom for condition synchro-

nization is the statement

while (cond) wait();

Such a wait loop statement must be inside a
synchronized method or block. The wait loop
stops any calling thread, t, for as long as the
condition cond holds. If cond is true, t calls
wait, thereby placing itself in the current
object’s wait set and releasing all its locks on
that object.

The need to handle an Interrupted-
Exception can complicate the wait loop syn-
tax. By means of this exception, one thread
can interrupt another. If the second thread is
in a wait set, it is activated and proceeds to
an exception handler. For this reason, the
following construct is often necessary:

while (cond) try {wait();}
catch(InterruptedException e)
{/* Handle exception */}

Wait loop placement. The wait loop usually appears
at the very beginning of a critical section, and a
thread reaches the loop immediately after it locks
the object. But the Java syntax allows a wait loop
to appear anywhere within a synchronized method
or block.

For example, here’s a way to count the calls to a
method in an instance variable:

synchronized void m() {
callCounter ++;
while (cond) wait();
. . . .

}

The textbook case for placing the wait loop deep
inside a method is when the method allocates
resources to calling threads. If the method cannot
satisfy a request from the calling thread until addi-
tional resources become available, the calling
thread, t, can place itself in the wait set until some
other thread notifies it of released resources; t then
reacquires its locks on the object and continues pro-
cessing immediately after the wait call.

Notification of waiting threads. A thread that exe-
cutes a synchronized method on an object, o, and
changes a condition that can affect one or more
threads in o’s wait set must notify those threads.
In standard Java, the call o.notify reactivates one
arbitrarily chosen thread, t, in o’s wait set. If t
called wait from within a correct wait loop, it
then reevaluates the condition and either pro-
ceeds in the synchronized method or reenters the
wait set. In RTSJ, the most eligible thread is reac-
tivated.

Java syntax
allows a wait loop

to appear
anywhere
within a

synchronized
method or block.

24 Computer

The call o.notifyAll releases all threads in
o’s wait set. This is useful after a thread
changes the condition in such a way that mul-
tiple other threads can proceed. But some-
times a programmer must use notifyAll
instead of notify to let a single thread pro-
ceed. In fact, in standard Java, this is the only
way to be sure to activate the highest prior-
ity thread. It is inefficient if the wait set
includes many threads, since all the threads
must attempt access while only one will
succeed.9

Because each object has only one wait set,
the programmer must also use notifyAll instead of
notify if the wait set might include threads pending
on different conditions. If a thread changes one of
the conditions, it must activate all waiting threads
to be sure of activating one pending on that condi-
tion. This holds in RTSJ as well as in standard Java.

Calls to o.wait, o.notify, or o.notifyAll can only
occur inside a method or block that is synchronized
with respect to o. The wait set is itself a shared data
structure but does not have its own lock. The object
lock protects it, and a thread can only operate on
the wait set if it holds the object lock.

Shared-domain resource access
A programmer must use condition synchroniza-

tion to control shared resources in the problem
domain, such as the forklift in the factory applica-
tion. Typically, the object controlling access to the
forklift—say, instance f of class Forklift—has syn-
chronized operations, such as acquire and release,
and a Boolean attribute, busy, indicating the fork-
lift’s availability. The method acquire can be as
follows:

synchronized void acquire() {
while (busy) wait();
busy = true;

}

The method release sets busy to false and noti-
fies any waiting threads. Calls to acquire and release
bracket each statement sequence for operating the
forklift. While one job is using the forklift, other
Job threads can call f.acquire and place themselves
in f’s wait set. The variable busy locks the physical
forklift while f’s hidden lock protects only the vari-
able busy and the wait set data structure.

In the earlier example of a synchronized block
enclosing the operations on a printer, threads spin
while waiting for the printer. In an alternative solu-
tion, a class Printer has exactly the same methods

acquire and release we used for the forklift. If p is
a Printer instance, the printer operations appear as
follows:

p.acquire();
// Series of statements producing
output

p.release();

With this solution, threads waiting for the printer
are in p’s wait set.

PITFALLS AND STRATEGIES
Java gives the virtuoso thread programmer con-

siderable freedom, but it also presents many pit-
falls for less experienced programmers who can
create complex programs that fail in baffling ways.
The first line of defense for managing those pitfalls
is to establish a style guide for safe programming.
A precompilation tool or compiler can enforce cer-
tain rules, but in other cases, inspection is the best
way to ensure compliance.

The pitfalls discussed here are inherent and not
easily removed. They exist in RTSJ as well as stan-
dard Java.

Multiple threads, one object
Given a class R that implements Runnable, Java

gives programmers two ways to create multiple
threads that execute R’s run method:

• Instantiate R n times, and submit each instance
once as a parameter to one of Thread’s con-
structors. Each instance of R now has a thread
with its own set of instance variables.

• Submit one R instance repeatedly to Thread’s
constructor. This generates multiple threads
tied to one object. All these threads can freely
manipulate the object’s data and potentially
introduce inconsistencies.

Strategies. For most applications, each runnable
object needs no more than one thread. In that case,
the programmer submits each runnable object to
a Thread constructor only once. Someone read-
ing the program can easily verify compliance of
such a policy if programmers always include
thread creation and start in the constructor as
follows:

new Thread(this).start();

Some applications might require a more liberal
policy that allows a given runnable object to have

The first line
of defense for

managing pitfalls
is to establish
a style guide

for safe
programming.

at most one thread at a time but to acquire a new
thread after the earlier one has expired.

Omitting the synchronized keyword
The freedom to synchronize selected methods of

a class opens the door for mistakes. In the buffer
example, the programmer can declare get syn-
chronized and not put. This allows different threads
to call put simultaneously. The put calls can also
overlap with a call to get, jeopardizing the buffer
data structure’s integrity. The program may still
work much of the time, but it will produce occa-
sional errors, especially when run on multiproces-
sors. Finding such errors by testing tends to be
difficult; an experienced thread programmer can
find them more easily by inspection. Omitting the
keyword synchronized altogether, for put as well
as get, exacerbates the situation.

To enforce exclusion synchronization, the pro-
grammer must also ensure that synchronized meth-
ods use only private instance variables. If the
variables are public, a different method, perhaps
belonging to another class, can change them with-
out first acquiring the object lock.

However, a static method defined for a class—
say, static void m(C o) in the class C—can change
o’s instance variables even if they are private. It may
be tempting to solve this potential conflict by syn-
chronizing m. Unfortunately, this does not syn-
chronize m with respect to o. Instead, a thread
calling m gets the static lock intended to protect C’s
static data.

Strategies. A tool or a compiler can identify classes
in which some methods are synchronized and oth-
ers not, and it can easily flag the unsynchronized
ones. It is clearly more difficult to spot classes that
should have synchronized methods but don’t.

Maintaining synchronized blocks
A synchronized block is essentially a synchro-

nized method declared outside the class. Someone
maintaining the software may interpret a class
without synchronized methods as nonsynchro-
nized, even if some blocks are synchronized with
respect to its instances. The maintainer may add a
method to the class without realizing that syn-
chronization is required.

Strategies. In the interest of program readability,
synchronized methods are preferable to synchro-
nized blocks. One exception is in coordinating
operations on different objects. If blocks are syn-
chronized with respect to a certain class’s instances,
the class definition should contain a comment to
that effect.

Wait loop placement
The wait loop is like an incantation that

hardly ever changes. It should always make
a thread retest the condition after being reac-
tivated from the wait set.

Many erroneous variations are possible
that compile and can be difficult to debug.10

For example, yield can replace wait:

while (cond) yield();

This wait loop variation stops the calling
thread, t, from proceeding against cond but
fails to release t’s locks on the current object. Thus,
other threads that are supposed to change cond by
calling synchronized methods on the object cannot
do so, and cond can remain true forever.

More insidious mistakes allow threads to pro-
ceed against cond. The statement

if (cond) wait();

substitutes if for while, which makes threads call
wait if cond holds,1 but only once. Once reactivated
from the wait set, each thread proceeds in the syn-
chronized method even if cond is still true.

The freedom to place the wait loop anywhere
within a critical section opens the way to certain
errors. Even if the loop is initially at the beginning
of the section, someone maintaining the program
can unintentionally insert statements between the
beginning and the loop. Every thread entering the
critical section executes these statements once. This
can be more treacherous if statements already exist
between the beginning of the critical section and
the wait loop, as in the callCounter example:

void synchronized m() {
callCounter ++;
while (cond) wait();
. . . .

}

In this case, a maintainer may not understand
the difference in status between the statements
before and after the wait loop. If a thread, t, exe-
cuting m finds cond true and calls wait, it releases
the object lock and then reacquires it upon reacti-
vation. In this case, the statements before and after
the call are in different critical sections. If t accesses
some of the synchronized object’s data before the
wait call and some after, the values can be incon-
sistent if another thread has changed them in the
interim.

April 2004 25

The freedom
to synchronize

selected
methods
of a class

opens the door
to mistakes.

26 Computer

Strategies. A tool or a compiler can flag any
call to wait that is not in a correct wait loop.
It can also flag any wait loop that is not the
first statement in a synchronized method or
block. These situations are not necessarily
erroneous, but they should be rare and they
warrant manual inspection.

Missing notification of waiting threads
Unlike exclusion synchronization, condi-

tion synchronization is not automatic; the
programmer must include calls to notify or
notifyAll to explicitly reactivate waiting

threads. It’s easy to forget inserting notify calls at all
the necessary places.

A related mistake is to call notify instead of
notifyAll when threads in the wait set may be pend-
ing on different conditions. In this case, the notify
call is insufficient; it may activate a thread whose
condition has not changed.

Strategies. Short of a tool that identifies all the
paths through a method, inspection is the only way
to ensure that notify or notifyAll are called in all
necessary circumstances including those where a
method has unusual exits, for example, via excep-
tion handlers. Keeping the logic in all synchronized
methods simple makes this easier.

A way to mitigate the effect of missed notifica-
tions in standard Java is to include a time-out para-
meter in every wait call. After the given time, the
thread is automatically activated. If the call is part
of a correct wait loop, the thread reevaluates the
condition and then either proceeds or reenters the
wait set.

This technique does not work in RTSJ, however,
because it defeats the FIFO queuing discipline.

Confusing long and short waits
Every critical section should be programmed to

minimize the time an object is held locked, but
nothing prevents a thread from keeping a lock for
a long time, while other threads spin. A trivial way
to do this is to call sleep inside a critical section.
A less obvious way is to use exclusion synchro-
nization where condition synchronization is called
for.

A programmer can make this mistake in a real-
time application that controls problem-domain
resources. In the factory example, the program-
mer should use condition synchronization to
share the forklift among different jobs, but can
erroneously try to do it by means of the follow-
ing synchronized block within the Job class run
method:

synchronized (f) { // f is a
Forklift instance
.....

}

This ensures mutual exclusion of jobs using the
forklift. But a Job thread that needs the forklift
isn’t put in a wait set (and FIFO-queued within pri-
orities in RTSJ). Instead it spins, perhaps for min-
utes, until it finds f unlocked. Which Job thread
gets to the forklift next is rather arbitrary, even
though higher-priority threads stand a better
chance.

With RTSJ, using exclusion synchronization also
invokes the priority-inversion control policy.
Assume first that the default policy, priority inher-
itance, is in effect. If a job low is currently operat-
ing the forklift, and a higher-priority job, high,
attempts to get the lock, low’s remaining forklift
operations will execute at high’s priority. This can
affect other jobs with priorities between low and
high. The ceiling-priority protocol has the even
more fundamental effect of giving all forklift oper-
ations the highest priority of any job.

A beginner might try to achieve condition syn-
chronization by inserting a wait loop in the block
where the physical forklift is operated:

synchronized (f) {
while (busy) wait();
busy = true;

// Operate the forklift

busy = false;
notify();

}

This wait loop has no effect. The thread that
sets busy to true also keeps object f locked so no
other job that needs the forklift can reach the wait
loop.

The only appropriate solution is to let the Job
thread call f.acquire before operating the forklift
and call f.release after it’s done. This essentially
changes the Forklift instances into semaphores.
Unfortunately, it looks less elegant than the syn-
chronized block solution, which abstracts away
from the lock operations. But controlling access to
shared problem-domain resources forces the pro-
grammer to invert the abstraction by using a syn-
chronized object to implement a semaphore.7

The correct solution has its own pitfall: To avoid
resource leakage, where—in this case—a thread

Including a
time-out parameter
in every wait call

mitigates the
effect of missed
notifications in
standard Java.

would keep the forklift from the other threads for-
ever, the programmer must ensure that each thread
always calls f.release even if an exception is thrown
during the forklift operation.

Nested critical sections are another way to inad-
vertently mix long and short waits. A programmer
can insert a wait loop in nested synchronized
blocks as follows:

class V ... {
synchronized void m() {
synchronized (wo) {

while (cond) wo.wait();
}

}
}

If cond is true, the calling thread enters wo’s wait
set and releases its lock on wo; but it keeps the cur-
rent V instance, vo, locked and lets other threads
that need access to vo spin rather than wait in a
wait set.

The following is also legal:

class V ... {
synchronized void m() {
synchronized (wo) {
while (cond) wait();
}

}
}

If vo is the current element of V and cond is true,
the calling thread enters vo’s wait set and releases
its locks on vo while keeping wo locked.

Strategies. There seems to be no reasonable way
to stop a programmer from using an object lock
for exclusive access to some problem-domain
resource and holding the lock for seconds or min-
utes. Avoiding this pitfall requires a clear under-
standing of the difference between exclusion and
condition synchronization. On the other hand, a
tool can flag any wait calls in statically nested crit-
ical sections, thereby reducing the risk of inadver-
tent spin locking.

To find out which kind of synchronization to use,
imagine an implementation without threads. With
no threads, the implementation requires no exclu-
sion synchronization, and any remaining constraint
must use condition synchronization. For example,
a sequential implementation of the automated fac-
tory must still allocate a forklift to one job at a time.
Consequently, this task requires condition syn-
chronization.

J ava’s popularity and the many technologies
developed for it have prompted its use for ever-
wider application sets. Java is adequate for

many kinds of concurrent software, but for criti-
cal real-time applications it remains a considerably
riskier choice than a language with concurrency
features built in, such as Ada. RTSJ removes some
of the obstacles associated with garbage collection
but retains most pitfalls. Programmers who choose
to implement in Java must understand and address
the potential consequences of the programming
mistakes that the language readily allows. �

Acknowledgment
Roger Alexander made valuable suggestions

regarding the structure of this article.

References
1. B. Brosgol, “A Comparison of the Concurrency Fea-

tures of Ada 95 and Java,” Proc. ACM SIGAda Ann.
Int’l Conf. (SIGAda 98), Ada Letters XVIII, ACM
Press, 1998, pp. 175-192.

2. D. Lea, Concurrent Programming in Java, 2nd ed.,
Addison-Wesley, 2000.

3. B. Sandén, “Real-Time Programming Safety in Java
and Ada,” Ada User J., June 2002, pp. 105-113.

4. J. Gosling, B. Joy, and G. Steele, The Java Language
Specification, Addison-Wesley, 1996.

5. C.A.R. Hoare, “Monitors: An Operating System
Structuring Concept,” Comm. ACM, Oct. 1974, pp.
549-557.

6. G. Bollella and J. Gosling, “The Real-Time Specifi-
cation for Java,” Computer, June 2000, pp. 47-54.

7. J. Carter and B. Sandén, “Practical Uses of Ada-95
Concurrency Features,” IEEE Concurrency, Oct.-
Dec. 1998, pp. 47-56.

8. B. Sandén, “Modeling Concurrent Software,” IEEE
Software, Sept. 1997, pp. 93-100.

9. A. Vermeulen et al., The Elements of Java Style, Cam-
bridge Univ. Press, 2000.

10. J. Carter, “Java Questions,” Computer, Oct. 2002,
p. 9.

Bo Sandén is a professor of computer science at the
Colorado Technical University in Colorado
Springs. His interests include software design, espe-
cially for concurrent real-time and simulation sys-
tems; object-oriented analysis; and concurrent
object-oriented systems. Sandén received a PhD
from the Royal Institute of Technology, Stockholm.
He is a member of the IEEE Computer Society and
the ACM. Contact him at bsanden@acm.org.

April 2004 27

	footer1:

