
0018-9162/00/$10.00 © 2000 IEEE June 2000 47

C O V E R F E A T U R E

The Real-Time
Specification
for Java

N
ew languages, programming disciplines,
operating systems, and software engineer-
ing techniques sometimes hold considerable
potential for real-time software developers.
A promising area of interest—but one fairly

new to the real-time community—is object-oriented
programming. Java, for example, draws heavily from
object orientation and is highly suitable for extension
to real-time and embedded systems.

Recognizing this fit between Java and real-time soft-
ware development, the Real-Time for Java Experts
Group (RTJEG) began developing the real-time spec-
ification for Java (RTSJ)1 in March 1999 under the
Java Community Process.2 The goal of the RTJEG, of
which we are both members, was to provide a plat-
form—a Java execution environment and application
program interface (API)—that lets programmers cor-
rectly reason about the temporal behavior of execut-
ing software. Programmers who write real-time
systems applications must be able to determine a pri-
ori when certain logic will execute and that it will com-
plete its execution before some deadline. This
predictability is important in many real-time system
applications, such as aircraft control systems, military
command and control systems, industrial automation
systems, transportation, and telephone switches.

We began our effort by looking at the Java language
specification3 and the Java virtual machine specifica-
tion.4 For each feature of the language or runtime code,
we asked if the stated semantics would let a program-
mer determine with reasonable effort and before exe-
cution the temporal behavior of the feature (or of the
things the feature controls) during execution. We iden-

The RTSJ provides a platform that will let programmers correctly reason
about the temporal behavior of executing software. Two members of the
Real-Time for Java Experts Group explain the RTSJ’s features and the
thinking behind the specification’s design.

Greg Bollella
IBM

James
Gosling
Sun
Microsystems

tified three features—scheduling, memory manage-
ment, and synchronization—that did not allow such
determination. Requirements defined in a workshop
sponsored by the National Institute of Science and
Technology (NIST) combined with input from other
industry organizations helped us identify additional
features and semantics.

We decided to include four of these additional fea-
tures: asynchronous event handling, asynchronous con-
trol transfer, asynchronous thread termination, and
access to physical memory. These plus the three fea-
tures from our review of the Java and JVM specifica-
tions gave us seven main areas for the RTSJ. We believe
these seven areas provide a real-time software devel-
opment platform suitable for a wide range of applica-
tions. The “How Well Does the RTSJ Meet Its Goals?”
sidebar gives more background on the requirements
and principles that drove RTSJ development.

The “RTSJ Timetable” sidebar lists important mile-
stones and contacts for those interested in reviewing
the draft specification. The RTSJ completed public
review in February 2000, but the Java Community
Process mandates that we not finalize the specification
until we complete the reference implementation and
test suites. As the community gains experience with
the RTSJ, small changes to the specification may occur.
Our goal in writing this article is to provide insights
into RTSJ’s design rationale—particularly how the
NIST requirements and other goals affected it—and
to show how this important specification fits into the
overall strategic direction for defining an object-ori-
ented programming system optimized for real-time
systems development.

48 Computer

SCHEDULING
The Java specification provides only broad guid-

ance for scheduling:

When there is competition for processing resources,
threads with higher priority are generally executed in
preference to threads with lower priority. Such prefer-
ence is not, however, a guarantee that the highest pri-
ority thread will always be running, and thread
priorities cannot be used to reliably implement mutual
exclusion.

Obviously, if you are writing software with tempo-
ral constraints, you need a stronger semantic state-

ment about the order in which threads should execute.
The typical way to define these semantics is through
algorithms that determine how to choose the next
thread for execution. The RTSJ specifies a minimum
scheduling algorithm, which must be in all RTSJ
implementations.

Minimum requirements
At the very least, all implementations must provide

a fixed-priority preemptive dispatcher with no fewer
than 28 unique priorities. “Fixed-priority” means that
the system does not change thread priority (for exam-
ple, by aging). There is one exception: The system can
change thread priorities as part of executing the pri-

In creating and refining the RTSJ, the
Real-Time for Java Experts Group (RTJEG)
used a set of core requirements based on a
1998-1999 workshop sponsored by the
National Institute of Technology (NIST).
We also used a set of guiding principles we
established on the basis of feedback from
the real-time community.

NIST core requirements
The NIST workshop’s aim was to

develop requirements for supporting real-
time programming on the Java platform.
The final workshop report, published in
September 1999 (L. Carnahan and M.
Ruark, eds., “Requirements for Real-
Time Extensions for the Java Platform,”
http://www.nist.gov/rt-java), defines nine
core requirements:

1. The specification must include a
framework for the lookup and dis-
covery of available profiles.

2. Any garbage collection that is pro-
vided shall have a bounded pre-
emption latency.

3. The specification must define the
relationships among real-time Java
threads at the same level of detail as
is currently available in existing
standards documents.

4. The specification must include APIs
to allow communication and syn-
chronization between Java and non-
Java tasks.

5. The specification must include han-
dling of both internal and external
asynchronous events.

6. The specification must include some
form of asynchronous thread termi-
nation.

7. The core must provide mechanisms
for enforcing mutual exclusion
without blocking.

8. The specification must provide a
mechanism to allow code to query

whether it is running under a real-
time Java thread or a non-real-time
Java thread.

9. The specification must define the
relationships that exist between real-
time Java and non-real-time Java
threads.

As Table A shows, the RTSJ satisfies all
but the first requirement, which is not rel-
evant because the RTSJ does not include
the notion of profiles. Access to physical
memory is not part of the NIST require-
ments, but industry input led us to include
this feature.

Guiding principles
The guiding principles helped the

RTJEG decide on what features and
semantics to include as well as how to
choose among alternatives. Below are the
original guiding principles and an expla-
nation of how the RTSJ satisfies them.
The main text describes the RTSJ features
and semantics in more detail.

Applicability to particular Java envi-
ronments: The RTSJ must not include
specifications that restrict its use to par-
ticular Java environments, such as a par-
ticular version of the JDK, the Embedded
Java Application Environment, or the
Java 2 Micro Edition.

Backward compatibility: The RTSJ
must not prevent existing, properly writ-
ten, non-real-time Java programs from
executing on RTSJ implementations.

The RTSJ departs somewhat from the

Table A. How RTSJ features satisfy the NIST core requirements.

NIST core requirements

RTSJ features 1 2 3 4 5 6 7 8 9
Scheduling N/A S S
Memory management N/A S S
Synchronization N/A S S S
Asynchronous event handling N/A S S
Asynchronous transfer of control N/A
Asynchronous thread termination N/A S S
Physical memory access N/A

How Well Does the RTSJ Meet Its Goals?

ority inversion avoidance algorithm (which preserves
priority inheritance). Without exception, threads can
change their own or another thread’s priorities.

The application program must see the minimum 28
priorities as unique; for example, it must know that a
thread with a lower priority will never execute if a
thread with a higher priority is ready. Thus, you can-
not simplistically map 28 priorities into, say, a smaller
number because of the underlying system. You can,
however, implement the RTSJ on a platform that pro-
vides fewer than 28 native priorities. It would then be
up to you to use whatever means available to provide
the appearance of uniqueness.

Why 28 priorities? We chose this number because

real-time scheduling theory indicates that you can
expect close to optimal schedulability with 32 prior-
ities.5 We chose to leave four priorities for other tasks
because the RTSJ will likely be only a part of the sys-
tem, and some systems have only 32 native priorities.

You can, of course, add scheduling algorithms to
this minimum requirement. The RTSJ provides three
classes—Scheduler, SchedulingParameters, and
ReleaseParameters—and subclasses of these that
encapsulate temporal requirements. These classes are
bound to schedulable objects (threads or event han-
dlers). The required scheduler, an instance of the class
PriorityScheduler, uses the values set in these para-
meter objects.

June 2000 49

first principle in one aspect. We provide
two Thread subclasses because localizing
the notions of scheduling, events, and
asynchronous transfer of control in the
two real-time thread classes provides a
more understandable and consistent spec-
ification. Java 2 Micro Edition profiles
may exclude threads, and thus such pro-
files would not support RTSJ implemen-
tations. However, we feel excluding
threads so changes the characteristics of
an implementation that other RTSJ fea-
tures would not be useful by themselves.
If such profiles become widely available,
we may consider subsets of the RTSJ.

Write once, run anywhere: The RTSJ
should recognize the importance of
WORA, but must also recognize the diffi-
culty of achieving it for real-time programs.

This principle caused us to strengthen
existing semantics rather than invent new
ones. In so doing, we have allowed a much
closer integration within the JVM and
between the standard Java mechanisms
and the mechanisms the RTSJ requires. Of
course, we could have simply required
essentially two JVMs per implementation
to satisfy this principle, but we felt the
tighter integration would produce cleaner,
more robust, more flexible implementa-
tions. This principle also influenced our
decision to add to the semantics of the syn-
chronized keyword rather than adding a
new semaphore class.

Observing this principle early gave us
the freedom to write the specification so
that implementers can choose among var-
ious scheduling and garbage-collection
algorithms. We feel that this flexibility

makes the RTSJ applicable to a wider
range of real-time systems.

Current practice versus advanced fea-
tures: The RTSJ should address current
real-time system practice as well as allow
implementers to easily add more ad-
vanced features in the future.

The requirement to use priority schedul-
ing, as well as the use of no-heap real-time
threads, and linear-time memory lets pro-
grammers closely adhere to the currently
accepted real-time system development
model. The flexibility of allowing imple-
menters to include alternative scheduling
and garbage-collection algorithms supports
more advanced application programming
models.

Predictable execution: The RTSJ shall
hold predictable execution as first priority
in all trade-offs; this may sometimes be at
the expense of typical general-purpose
computing performance measures.

Requiring asynchronous event handlers
to have the scheduling semantics of
threads shows that predictability is our
first priority. We can envision very effi-
cient implementations of the asynchro-
nous event handling mechanism, but most
likely all will have more overhead than
simply executing the handler in the con-
text of the current thread. We feel this is
necessary because without it the execu-
tion of handlers could consume significant
processor time and be invisible to the
scheduler.

No syntactic extension: To make the
tool developer’s job easier (and thus
increase the likelihood of timely imple-
mentations), the RTSJ must not introduce

new keywords or make other syntactic
extensions to the Java language.

Almost every feature of the RTSJ came
under this principle. It is always easier to
add new keywords, but we worked long
and hard on many features to implement
them with existing syntax.

Variation in implementation trade-offs:
RTSJ implementations can vary in many
decision-efficient or inefficient algorithms,
actual clock resolution, inclusion of sched-
uling algorithms not in the minimum
requirements, and variation in code path
length for the execution of byte codes. The
RTSJ should not mandate algorithms or
values for these implementations but,
rather, require that implementers meet the
specification’s semantic requirements. The
RTSJ offers implementers the flexibility to
create implementations suited to their cus-
tomers’ requirements.

Although it seems natural for a real-
time specification to require some level of
temporal determinism, we avoided it
except for one case. We believe that man-
dating even the most seemingly reason-
able determinism requirement narrows
the specification’s applicability because it
may preclude less expensive implementa-
tions. We do, however, understand that
real-time programmers need to under-
stand the deterministic limits of the plat-
form for which they design systems. Thus,
the RJSJ imposes a documentation
requirement for certain features. Imple-
menters will have to provide documenta-
tion stating values for defined metrics that
give the programmer enough information
to construct correct systems.

50 Computer

not garbage-collected in the usual sense. Strict rules on
assignments to or from memory areas keep you from
creating dangling pointers, and thus maintain Java’s
pointer safety. Objects allocated in memory areas may
contain references to objects in the heap. Thus, the
garbage collector must be able to scan memory out-
side the heap for references to objects within the heap
to preserve the garbage-collected heap’s integrity. This
scanning is not the same as building a reachability
graph for the heap. The collector merely adds any ref-
erence to heap objects to its set of pointers. Because
NHRTs can preempt the collector, they cannot access
or modify any pointer into the heap.

The RTSJ uses the abstract class MemoryArea to rep-
resent memory areas. This class has three subclasses:
physical memory, immortal memory, and scoped mem-
ory. Physical memory lets you create objects within
memory areas that have particular important charac-
teristics, such as memory attached to a nonvolatile
RAM. Immortal memory is a special case. Figure 1
shows how object allocation using immortal memory
compares to manual allocation and automatic alloca-
tion using a Java heap. Traditional programming lan-
guages use manual allocation in which the application
logic determines the object’s life—a process that tends
to be time-consuming and error-prone. The one immor-
tal memory pool and all objects allocated from it live
until the program terminates. Immortal object alloca-
tion is common practice in today’s hard real-time sys-
tems. With scoped memory, there is no need for
traditional garbage collection and the concomitant
delays. The RTSJ implements scoped memory through
either the MemoryParameters field or the Scoped-
Memory.enter() method.

Scoped memory
Figure 1c shows how scoped memory compares to

immortal memory and other allocation disciplines.
Scoped memory, implemented in the abstract class
ScopedMemory, lets you allocate and manage objects
using a memory area, or syntactic scope, which
bounds the lifetime of any objects allocated within it.
When the system enters a syntactic scope, every use
of “new” causes the system to allocate memory from
the active memory area. When a scope terminates or
the system leaves it, the system normally drops the
memory’s reference count to zero, destroys any objects
allocated within, and calls their finalizers.

You can also nest scopes. When the system enters a
nested scope, it takes all subsequent allocations from
the memory associated with the new scope. When it
exits the nested scope, the system restores the previous
scope and again takes all subsequent allocations from
that scope.

Two concrete subclasses are available for instanti-
ation as MemoryAreas: LTMemory (LT for linear

Thread creation
The RTSJ defines the RealtimeThread (RT) class to

create threads, which the resident scheduler executes.
RTs can access objects on the heap and therefore can
incur delays because of garbage collection. Another
option in creating threads is to use a subclass of RT,
NoHeapRealtimeThread. NHRTs cannot access any
objects on the heap, which means that they can run
while the garbage collector is running (and thus avoid
delays from garbage collection). NHRTs are suitable for
code with a very low tolerance of nonscheduled delays.
RTs, on the other hand, are more suitable for code with
a higher tolerance for longer delays. Regular Java
threads will do for code with no temporal constraints.

MEMORY MANAGEMENT
Garbage-collected memory heaps have always been

considered an obstacle to real-time programming
because the garbage collector introduces unpredictable
latencies. We wanted the RTSJ to require the use of a
real-time garbage collector, but the technology is not
sufficiently advanced. Instead, the RTSJ extends the
memory model to support memory management in a
way that does not interfere with the real-time code’s
ability to provide deterministic behavior. These exten-
sions let you allocate both short- and long-lived
objects outside the garbage-collected heap.

There is also sufficient flexibility to use familiar
solutions, such as preallocated object pools.

Memory areas
The RTSJ introduces the notion of a memory area—

a region of memory outside the garbage-collected heap
that you can use to allocate objects. Memory areas are

RTSJ Timetable
December 1998: Sun Microsystems announces the Java Community
Process and asks IBM to lead the real-time effort.

March 1999: Development begins.

September 1999: Participant review (all participants are Java licensees
and members of the Java Community Process).

December 1999: Draft RTSJ released for public review.

February 2000: Public review closes.

June 2000: The RTSJ becomes available in book form (G. Bollella et al.,
The Real-Time Specification for Java, Addison Wesley Longman, Reading,
Mass., June 2000.)

Late 2000: The finalized RTSJ, reference implementation, and test suites
expected to be available.

The RTSJ is publicly available at http://www.rtj.org. The site also has
news and updates. Comments and questions are welcome. Send them to
comments@rtj.org.

time) and VTMemory (VT for variable time). In this
context, “time” refers to the cost to allocate a new
object. LTMemory requires that allocations have a
time cost linear to object size (ignoring performance
variations from hardware caches or similar optimiza-
tions). You specify the size of an LTMemory area
when you create it, and the size remains fixed.

Although VTMemory has no such time restric-
tions, you may want to impose some restrictions any-
way to minimize the variability in allocation cost. You
build a VTMemory area with an initial size and spec-
ify a maximum size to which it can grow. You can
also opt to perform real-time garbage collection in a
VTMemory area, although the RTSJ does not require
that.

If you decide to do this, you can build the
VTMemory object with a garbage collection object to
specify an implementation-specific garbage-collection
mechanism. However, if you implement VTMemory,
NHRTs must be able to use it.

Because, as Figure 1c shows, control flow governs
the life of objects allocated in scoped memory areas,
you must limit references to those objects. The RTSJ
uses a restricted set of assignment rules that keep
longer-lived objects from referencing objects in scoped
memory, which are possibly shorter lived. The virtual
machine must detect illegal assignment attempts and
throw an appropriate exception when they occur.

The RTSJ implements scoped memory in two sep-
arate mechanisms, which interact consistently: the
ScopedMemory.enter() method and the memory area
field of MemoryParameters. You specify either one
when you create the threads. Thus, several related
threads can share a memory area, and the area will
remain active until the last thread has exited. This flex-
ibility means that the application can allocate new
objects from a memory area that has characteristics
appropriate either to the entire application or to par-
ticular code regions.

SYNCHRONIZATION
In synchronization, the RTSJ uses “priority” some-

what more loosely than the conventional real-time lit-
erature. “Highest priority thread” merely indicates
the most eligible thread—the thread that the sched-
uler would choose from among all the threads ready
to run. It does not necessarily presume a strict prior-
ity-based dispatch mechanism.

Wait queues
The system must queue all threads waiting to

acquire a resource in priority order. These resources
include the processor as well as synchronized blocks.
If the active scheduling policy permits threads with
the same priority, the threads are queued first-in, first-
out. Specifically, the system

• orders threads waiting to enter synchronized
blocks in a priority queue;

• adds a blocked thread that becomes ready to run
to the end of the run-ready queue for that prior-
ity;

• adds a thread whose priority is explicitly set by
itself or another thread to the end of the run-
ready queue for the new priority; and

• places a thread that performs a yield to the end
of its priority queue.

Avoiding priority inversion
The synchronized primitive’s implementation must

have a default behavior that ensures there is no

June 2000 51

(a) Java heap:
 No references
 to object

(b) Immortal memory:
 JVM terminates

… …
JVM

(c) Scoped memory: Control leaves the syntactic scope

…

…

Object lifetime determinant:
Objects become eligible for garbage collection when…

run(){

 }

Syntactic
scope

ScopedMemory.enter(){

 }

Syntactic
scope

Control
reaches here

or

…

Control
reaches here

…

Figure 1. How immortal and scoped memory differ from other methods of determining an
object’s life. (a) The Java heap uses automatic allocation, in which the visibility
determines the object’s life (if there are no references to the object, the system can
deallocate it). Automatic allocation requires a garbage collector, however, which incurs
delays. (b) In allocation using the RTSJ immortal memory, the object’s life ends only
when the Java virtual machine (JVM) terminates. (c) RTSJ scoped memory uses syntactic
scope, a special type of memory area outside the garbage-collected heap that lets you
manage objects with well-defined lifetimes. When control reaches a certain point in the
logic, the system destroys any objects within it and calls their finalizers.

52 Computer

unbounded priority inversion. This applies to conven-
tional Java code if it runs within the overall RTSJ imple-
mentation as well as to real-time threads. The priority
inheritance protocol—a well-known real-time sched-
uling algorithm6—must be implemented by default.

The specification also provides a mechanism by which
you can override the default systemwide policy or con-
trol the policy to be used for a particular monitor, as
long as the implementation supports that policy. The
specification of monitor control policy is extensible, so
future implementations can add mechanisms. A second
policy, priority ceiling emulation (or highest locker), is
also specified for systems that support it.6

Determinism
Conforming implementations must provide a fixed

upper bound on the time required for the application
code to enter a synchronized block for an unlocked
monitor.

Sharing and communication among threads
Implementers are most likely to use a combination

of regular Java threads, RTs, and NHRTs. The RTSJ
permits locking between different thread types—even
in the most contentious case, which is between regu-
lar threads and NHRTs. If an NHRT attempts to lock
an object that either an RT or regular thread has
already locked, priority inheritance happens as nor-
mal. There is one catch: The non-NHRT that has had
its priority boosted cannot execute when the garbage
collector is executing. Thus, if a garbage collection is
in progress, the boosted thread is suspended until col-
lection completes. This, of course, causes the NHRT
to incur a delay because of the collection. To address
this, the RTSJ provides mechanisms that allow
NHRTs to communicate (a form of synchronization)
with RTs and regular Java threads while avoiding
garbage-collector-induced delays in the NHRTs.

The RTSJ provides queue classes for communica-
tion between NHRTs and regular Java threads. Figure
2 shows a wait-free write queue, which is unidirec-
tional from real-time to non-real-time. NHRTs typi-

cally use the write (real-time) operation; regular threads
typically use the read operation. The write side is non-
blocking (any attempt to write to a full queue imme-
diately returns a “false”) and unsynchronized (if
multiple NHRTs are allowed to write, they must syn-
chronize themselves), so the NHRT will not incur
delays from garbage collection. The read operation,
on the other hand, is blocking (it will wait until there
is data in the queue) and synchronized (it allows mul-
tiple readers). When an NHRT sends data to a regular
Java thread, it uses the wait-free enqueue operation,
and the regular thread uses a synchronized dequeue
operation.

A read queue, which is unidirectional from non-
real-time to real-time, works in the converse manner.
Because the write is wait-free, the arrival dynamics are
incompatible and data can be lost within it. To avoid
delays in allocating memory elements, class construc-
tors statically allocate all memory used for queue ele-
ments, giving the queue a finite limit.

If the regular thread is not removing elements from
the queue at a high-enough rate, the queue may
become full. The NHRT may not block on a full queue
because the NHRT would incur delays from non-real-
time activities such as garbage collection, and its exe-
cution behavior would then be harder to predict.
Because of this restriction, a write may overwrite an
existing element. This is reasonable because, given that
the write cannot wait, no amount of buffering will
ensure that all elements have a place in the queue. Such
sharing is suitable for data that can be recovered, for
data that higher level protocols will regenerate as
appropriate, or for situations where data loss is
expected and not a requirement for system correct-
ness.

ASYNCHRONOUS EVENT HANDLING
The asynchronous event facility comprises two

classes: AsyncEvent and AsyncEventHandler. An
AsyncEvent object represents something that can hap-
pen—like a Posix signal or a hardware interrupt—or
it represents a computed event—like an airplane enter-
ing a specified region. When one of these events
occurs, indicated by the fire() method being called, the
system schedules associated AsyncEventHandlers.

An AsyncEvent manages two things: the dispatch-
ing of handlers when the event is fired, and the set of
handlers associated with the event. The application
can query this set and add or remove handlers.

An AsyncEventHandler is a schedulable object,
roughly similar to a thread. When the event fires, the
system invokes run() methods of the associated han-
dlers.

Unlike other runnable objects, however, an Async-
EventHandler has associated scheduling, release, and
memory parameters that control the actual execution

Read Write

Non-real-time Real-time

Figure 2. How threads in an RTSJ implementation communi-
cate in a wait-free write queue. The unidirectional queue
spans systems with different arrival dynamics (real-time to
non-real-time).

of the handler once it is fired. When an event is fired,
the system executes the handlers asynchronously,
scheduling them according to the parameters. The
result is that the handler appears to have been assigned
to its own thread. It may or may not actually be
assigned to its own thread; the point is that it merely
has to appear that way.

You can implement AsyncEventHandlers to use far
fewer system resources than actual threads use. The
system should be able to cope well even when there
are tens of thousands of AsyncEvents and AsyncEvent-
Handlers. The number of fired (in process) handlers
should be smaller.

A specialized form of an AsyncEvent is the Timer
object, which represents an event whose occurrence
is driven by time. There are two forms of Timers: the
OneShotTimer and the PeriodicTimer. OneShotTimers
fire off once, at the specified time. If the current time
is later than the time specified, the system fires the han-
dlers immediately. PeriodicTimers fire off at the spec-
ified time, and then according to a specified interval.

The RTSJ represents clocks using the Clock class.
Implementations may offer applications more than
one clock. A special Clock object, Clock.get
RealtimeClock(), represents the real-time clock and
must be in all RTSJ implementations. Many objects
that measure time can be instantiated with any of the
Clock instances the implementation offers.

ASYNCHRONOUS CONTROL TRANSFER
Asynchronous control transfer lets you identify par-

ticular methods by declaring them to throw an
AsynchronouslyInterruptedException (AIE). When
such a method is running at the top of a thread’s exe-
cution stack and the system calls java.lang.
Thread.interrupt() on the thread, the method will
immediately act as if the system had thrown an AIE.
If the system calls an interrupt on a thread that is not
executing such a method, the system will set the AIE
to a pending state for the thread and will throw it the
next time control passes to such a method, either by
calling it or returning to it. The system also sets the
AIE’s state to pending while control is in, returns to,
or enters synchronized blocks.

ASYNCHRONOUS THREAD TERMINATION
The system can use AIE directly or in combination

with asynchronous events to implement asynchronous
thread termination. Sometimes, by design, all the meth-
ods that an instance of RealtimeThread uses are
declared to throw an AIE. In that case, when the system
calls an interrupt() on the thread, the effect is similar to
the deprecated Java stop() method. Unlike this method,
however, the threads stop safely because code written
under the assumption that it would not be interrupted
or code in synchronized blocks completes normally.

PHYSICAL MEMORY ACCESS
The RTSJ defines two classes for program-

mers who want to access physical memory
directly from Java code. The first class,
RawMemoryAccess, defines methods that let
you build an object representing a range of
physical addresses and then access the physical
memory with byte, word, long, and multiple-
byte granularity. The RTSJ implies no seman-
tics other than the set and get methods.

The second class, PhysicalMemory, lets you
build a PhysicalMemoryArea object that rep-
resents a range of physical memory addresses
where the system can locate Java objects. To
construct a new Java object in a particular
PhysicalMemory object, you can use either the
newInstance() or newArray() methods.

An instance of RawMemoryAccess models a
raw storage area as a fixed-size sequence of bytes.
Factory methods let you create RawMemoryAccess
objects from memory at a particular address range or
using a particular memory type. The implementation
must provide and set a factory method that interprets
these requests accordingly.

A full complement of get and set methods lets the
system access the physical memory area’s contents
through offsets from the base—interpreted as byte,
short, int, or long data values—and copy them to or
from byte, short, int, or long arrays. By treating a
value as an offset itself, a program can use a physical
memory area to contain references to other data val-
ues in the same area. A program can also define a
region of one memory area as a different memory
area. The base address and size, and any offset into a
physical memory area, are long (64-bit) values.

R elative to the Java Language and Java virtual
machine specifications, the RTSJ strengthens
the semantics of the scheduling, memory man-

agement, and synchronization algorithms. All the
remaining areas except physical memory access help
some classes of real-time systems and will produce
systems that are relatively accessible to temporal rea-
soning. As a convenience, the RTSJ includes physical
memory access features because many real-time sys-
tems require programmatic access to physical mem-
ory.

We chose to solve the problem of supporting real-
time programming in Java by defining features and
semantics that let programmers manage thread exe-
cution and reduce the overall unpredictability of exe-
cution for certain thread types. We could have focused
on object attributes and required temporally pre-
dictable behavior defined by some set of attributes.
Although this approach was interesting, we decided
that, at least for now, the resulting programming par-

June 2000 53

The RTSJ
strengthens the
semantics of the

scheduling, memory
management, and
synchronization

algorithms and helps
produce systems
that are relatively

accessible to
temporal reasoning.

adigm was too far from what is now practiced. As the
real-time software industry becomes comfortable with
object-based programming, such approaches could
become more viable.

The RTSJ is essentially complete. We may make
minor changes as we code the reference implementa-
tion and test suites, but we expect all three compo-
nents—reference implementation, test suites, and the
RTSJ—to become final about the end of 2000. ✸

Acknowledgments
Many people helped the Real-Time for Java Experts

Group, but we have space to mention only a few. We
thank Rod Smith at IBM and Pat Sueltz formerly at
IBM (now at Sun) for accepting and promoting IBM
as the lead participant and Jim Mitchell and Ken
Urquhart at Sun for creating and shepherding the Java
Community Process. Among those at IBM who are
building the reference implementation, Peter Haggar,
Jim Mickleson, and David Wendt have provided valu-
able feedback. We thank the other members of the
RTJEG primary team—Paul Bowman, Ben Brosgol,
Peter Dibble, Steve Furr, David Hardin, Mark
Turnbull—as well as the current and former members
of the RTJEG consulting team: Rudy Beliardi, Alden

Dima, E. Douglas Jensen, Ray Kaman, Alexander
Katz, Masahiro Kuroda, Doug Locke, George Malek,
Jean-Christophe Mielnik, Wolfgang Pieb, Russ
Richards, Raj Rajkumar, Larry Rau, Mike Schuette,
Simon Waddington, and Chris Yurkoski. And finally,
thanks to all those who took the time to comment on
the specification.

Text describing the RTSJ features and semantics is
from RTSJ v0.8.1 by permission of Sun Microsystems.

References
1. The Real-Time for Java Experts Group, The Real Time

Specification for Java, Version 0.8.1, 27 Sept. 1999;
http://www.rtj.org/rtj.pdf.

2. The Java Community Process Program Manual, Sun
Microsystems, Inc., Dec. 1998; http://java.sun.com/
aboutJava/communityprocess/java_community_process.
html.

3. J. Gosling, B. Joy, and G. Steele, The Java Language
Specification, Addison-Wesley, Reading, Mass., 1996.

4. T. Lindholm and F. Yellin, The Java Virtual Machine
Specification, 2nd ed., Addison Wesley Longman, Read-
ing, Mass., 1999.

5. L. Sha, R. Rajkumar, and J. Lehoczky, “Real-Time Com-
puting using Futurebus+,” IEEE Micro, June 1991, pp.

30-33; 95-99.
6. L. Sha, R. Rajkumar, and J. Lehoczky, “Pri-

ority Inheritance Protocols: An Approach to
Real-Time Synchronization,” IEEE Trans.
Computers, Sept. 1990, pp. 1175-1185.

Greg Bollella is a senior architect at IBM
Corp. and lead engineer of the Real-Time
for Java Experts Groups. Previously, he
designed and implemented communication
protocols for IBM. He holds a PhD in
computer science from the University of
North Carolina at Chapel Hill. His disser-
tation research is in real-time scheduling
theory and real-time systems implementa-
tion. Contact him at bollella@us.ibm.com.

James Gosling is a fellow at Sun Microsys-
tems and the originator of the Java pro-
gramming language. His career in
programming started by developing real-
time software for scientific instrumenta-
tion. He has a BSc in computer science
from the University of Calgary and an MSc
and a PhD in computer science from
Carnegie Mellon University.

