
1

1 Gnu Ada95 Cross Compiler for M68xx0

The GnuAda95 compiler is available in different versions. Two versions are installed
at Computer Engineering Linux systems. One native Linux PC compiler and a Cross com-
piler that generates code for a Motorola 68k processor. The cross compiler is also running
on a Linux system. To use the compilers /cab/ce/sw/gada68/Linux/bin must be included in
path. One way to get it included is to add the following line to your .tcshrc file:

set path=($path /cab/ce/sw/gada68/Linux/bin .)

It is also recommended (but not strictly needed) to set the following ENVIRONMENT
variable:

GADA=/cab/ce/sw/gada68/ada-linux

After this, do the following command:

source $GADA/setall

These commands will normally be set in the .tcshrc file.

This paper gives a brief description on how to use Gnu Ada for cross compiling and
running Ada programs on the department’s Motorola 68340 microprocessors.

1.1 Compiling, linking and execution

1.1.1 Filename conventions

If a file name is given on the form ppp.sss, then ppp is it’s prefix and sss it’s suffix.

• One compilation unit (procedure, package specification or package body) per file.

• Programs (main procedure) and packet bodies are stored in files with suffix .adb

• Packet specifications are stored in files with suffix .ads

• The prefix of the file name shall be the same as the name for the compilation unit.

1.1.2 Libraries

No separate “Ada library” is needed by Gnat - it is built into the compiler. When com-
piling you should be positioned in the Linux directory where the program files are located.

1.1.3 Compiling

Assume that you have the following Ada program in the file hello.adb:

With TEXT_IO;

procedure HELLO is

begin

Department for 2009-12-28 VT10
Computer Science and Engineering GnuAda95 AD

2

TEXT_IO.PUT_LINE(“Hello”);

end HELLO;

Observe that the name of the main program is HELLO, the same as the prefix hello. To
get an executable version of the program, it have to be compiled and linked. The compila-
tion command is named gada68. It takes the program name containing the Ada program
as argument. To compile the Ada program in the file hello.adb give the command:

gada68 hello.adb

If there are errors in the program you will get error messages. You will have to correct
the program and recompile.

The compile command generates an object file with the suffix .o, here hello.o. The
object file is in machine code format (coff-m68k), but all references are not resolved, that
is all program modules are not known (for example the routine PUT_LINE).

1.1.4 Linking

To get an executable version of the program, it has to be linked with the other needed
program modules. This is done with the command gbind68 with the name of the main
procedure as argument

gbind68 hello

The command links the object program hello.o with routines from the compilers Ada
library and produces a load module named hello.x on Motorola S-record format. Further-
more, a file named hello is produced on coff-m68k format. This file is only needed by the
symbolic debugger gdb68.

There is another variant of gbind68 named gbind68f. This variant links the program
with libraries located in a flash memory on the mc68 card. This reduces the load time con-
siderably for programs that use Ada tasking. The command is used in the same way as
gbind68:

gbind68f hello

1.1.5 Execution

To execute the program, it first have to be downloaded to the mc68 microprocessor.
The terminal emulator 68term is used to communicate with the microprocessor. This
command have to be run in an X-window at the workstation where the microprocessor is
connected. Start with the command:

68term

Now all characters that is typed in this window is sent to the microprocessor. The
microprocessor have a debug monitor, db68, that answers with the prompt db68: . Write
help to get a list of commands accepted by db68. Command that begins with the character
(tilde) is interpreted by the 68term program.To download a program to the microproces-
sor, first give the command ~l. Now 68term answers with:

3

filename(default main.x):

Write hello.x here followed by Enter. The file hello.x is now downloaded to the micro-
processor on a 38400 baud serial link. To indicate that loading is in progress the printout
loading... is given with regular intervals. When the loading is complete the printout
loading complete is given. To start execution of the program, give the command:
go 3000 where 3000 is the start address for the program.

1.2 Separate compilation

A program may be divided into several compilation units that are separately compiled.
A compilation unit may be a packet specification, a packet body or a main program.

When a packet is written, the specification and the body is placed in different file (with
suffix .ads and .adb). The files must be compiled in the correct order. Packet specifications
must be compiled before the matching packet body. Furthermore files that reference pack-
ets in other files cannot be compiled until the referenced packet specifications are com-
piled. The packet bodies on the other hand, may be compiled later.

Luckily, the programmer need not do this compilations manually, because all depen-
dencies are recorded in the Ada library and there is a command, gnatmake68, that com-
piles all the files in correct order. Thus to compile a program that consists of several files,
just do:

gnatmake68 main

Here the main program is assumed to be in the file main.adb. Gnatmake68 compiles
all the files that need to be recompiled in the correct order and then runs gbind68 to link
everything together to an object file named main.x.

If linking against the library in the flash memory is wanted use:

gnatmake68f main

This command works in the same way as gnatmake68, but uses gbind68f for linking.
These commands usually requires that all files that belongs to the program are available.

1.3 Debugger

A partially Ada adapted version of gdb is available for use with the Gnat M68xx0
cross compiler. Normally gdb is run on the same computer as the program that is
debugged. Small microprocessors thad don’t have a file system is not able to run gdb. In
this case ‘remote debugging’ may be used, that is gdb is run on a workstation that commu-
nicates with the program to be debugged over a serial link.

In our case the microprocessor have another architecture (M68k) than the Intel based
workstation. In this case a cross version of gdb must be used that understands Motorola
68K code. This version is called gdb68.

4

Gdb68 communicates with the program to be debugged, using a serial link and a spe-
cial protocol. The program to be debugged, thus needs access to a communication routine
that understands this protocol. This communication routine is included in the db68 debug
monitor and can be activated by giving the command, gdb, to db68. The communication
routine is never explicitly called by the debugged program bat is called via the exception
handling (for example than a breakpoint instruction is executed). No changes in needed in
the debugged program in order to use gdb68.

Assume that we want to execute the program hello.adb using gdb68. Compilation and
linking is done in the usual way. After this the file hello.x need to be downloaded to the
microprocessor using 68term (There is a load command in gdb68, but this do not work).
Then loading is finished db68 answers with the prompt db68: We now give the follow-
ing commands in order to activate the communication routine and start the execution of
hello:

db68: gdb

db68: go 3000

Because the gdb command have placed a breakpoint in the beginning of the program
(at address 0x3046) the communication routine is called. This routine gives the printout
$S05#b8 and waits for commands from gdb68. We now terminates 68term using ~x (or
CTRL D) and gets prompt from the work station. Gdb68 is started with the command:

cepc224> gdb68 hello

After a few initial printouts gdb68 answers with a prompt (gdb). We now have to tell
gdb68 that we want to use a serial link with the command:

(gdb) target remote /dev/ttyS0

Usually gdb68 answers with:

Remote debugging using /dev/ttS0

0x3046 in copydata ()

(gdb)

From now on the same commands are used as when debugging an Ada program exe-
cuting on the work station.

Usually the debugger is able to keep track of which programming language the pro-
gram uses, but sometimes it has to be informed that it is an Ada program that is debugged.
This is done with the command:

 (gdb) set language ada

If you want to set a breakpoint that allows you to single step the program you write:

 (gdb) break hello

5

Breakpoints can also be set in other places in the program, for example in the begin-
ning of a subroutine:

break subroutine_name

Subprograms declared in a package are named packetname.subprogramname.Excep-
tions can be trapped by the following breakpoint:

(gdb) break __gnat_raise

(Observe two underline characters)

The commands ’step’, ’next’ and’cont’ can be used to single step and continue the exe-
cution. When the program stops information on where the stop is and which calls that are
active is given by the command:

 (gdb) where

Before the debugger is terminated it good to give the command ‘kill’. It makes the
microprocessor return to the db68 monitor. If this command is not given, reset have to be
pressed at the microprocessor box to get t running again. The command ‘q’ terminates
gdb68. There are many more commands to gdb68. To get information write:

 (gdb) help

Short command list

Command Comment

gada68 name.adb Compiles

gbind68 name Links

gbind68f name Lines with flash library

gnatmake68 name Compiles all files needed by name

gnatmake68f name As gnatmake68 but links with flash library

gnatls68 -v name Lists library information for name

gclean Remove temporary files

