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1 Introduction

1.1 The Background

The first thing most courses in real-time systems do is define “real-time”. Definitions
don’t usually help very much, but to keep the tradition we will give a definition:

Real-Time System: Any system in which the time at which output is produced
is significant. This is usually because the input corresponds to some movement
in the physical world, and the output has to relate to the same movement. The
lag from input time to output time must be sufficiently small for acceptable
timeliness. (Oxford Dictionary of Computing)

It is easy to see why definitions are not very helpful, because with all systems, we care
about the time the output is made: if you are using a workstation and enter a command,
you care that you don’t wait more than a few seconds for the response. If you send a
piece of e-mail you care if the e-mail takes more than a few hours to arrive. If you are
controlling an air-bag in a car you care if the air-bag isn’t activated a few milliseconds after
a crash. But when we come to engineer these systems, we take very different approaches
in meeting the timing requirements.

We can make a distinction between real-time systems, and we usually pick two categories:
broad and narrow: a broad system is where the typical demands on the system can easily
be met without any special techniques or analysis. A narrow system is where we have to
carefully design the system to meet the demands, because to do otherwise would lead to
failure. In this course we are concerned with techniques for solving real-time problems
for narrow systems.

We can also classify real-time systems into two types based on how much we care that
the timing requirements are met: for hard real-time systems, we care very much if the
system doesn’t respond on-time. For example, with our air-bag example, the driver will
be hurt if the air-bag is not inflated in time (most hard real-time systems are also safety
critical, where life is at risk if timing requirements are not met). The other type of
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real-time system is a soft real-time system. With these systems, we might occasionally
fail to meet our timing requirements, but everything is still OK. These systems are more
difficult to specify: usually a control engineer will say that a system is hard real-time
when in practice it has soft timing requirements. This is because it is often too hard for
the engineer to specify which timing requirements can be relaxed, and how they can be
relaxed, how often, and so on. This course will mostly focus on hard real-time systems,
but will talk about how we can mix hard and soft real-time components in a single system.

Most narrow real-time systems are dedicated to controlling some piece of equipment in
the real world. Usually, the piece of equipment won’t work without the computer, and
the computer is regarded as just a component of the whole system. For this reason,
these computer systems are usually called embedded systems. Generally when people say
real-time, they really mean embedded real-time. Most hard real-time systems are also
embedded systems, and so in this course most of the techniques will be geared towards
engineering embedded systems.

The techniques we use to engineer embedded systems must nearly always be efficient:
we would like to squeeze as much out of the computing resources as possible. This is to
keep the costs as low as possible: if the embedded system is going to be mass produced
(for example, it might be a washing machine control system) then a small saving on the
computer can mean a large saving overall. For example, if we can use a slow processor,
saving just $1 over a more expensive processor, then after a million washing machines have
been sold we have saved a million dollars. Surprisingly the problem of using slow cheap
components also occurs with expensive one-off things like nuclear submarines. This is
often because the computers used must be tried-and-tested, and known to work properly,
which means using old (and hence slow) technology.

1.2 The Concurrency Problem

Let’s turn to the problem of concurrency now. The real world is concurrent (parallel, in
fact): in any complex system there are lots of events that could occur at the same time.
For example, in a computerised car, there could be a sensor monitoring acceleration to
detect if there has been a crash (and to activate an air-bag if there has). There could also
be a sensor monitoring the brake pedal to see how fast the driver wants to stop. There
could also be indicator lights that must be turned on and off regularly. There could be
sensors from the wheels indicating the type of road surface so that the braking system
knows how to respond. And so on. Each of these devices causes or requires events: the
crash sensor causes a “crash detected” event, the indicator lights require regular “on”
and “off” events, and so on.

If we have only one processor to handle these events then the processor must execute
concurrently: each event requires some amount of computation time, and has some time
window in which the processor must respond. So, for example, responding to the “crash
detected” event might take 1ms of CPU time, with the computation required to be
completed before 10ms and not before 4ms (say). The indicator light “on” event might
take a small amount of time to be processed (0.1ms of CPU time, say), but have a long
time in which to complete (say 100ms).

Notice how we have sporadic events (such as “crash detected”), where we cannot predict
when they will occur, and periodic events (such as the events to make the indicator light
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flash on and off). We will see later how a sporadic event can be transformed into a periodic
event by polling. Notice also how the timing requirements are typically expressed: as a
bound on the time taken to perform some computation. We normally refer to this bound
as a deadline'.

For the “crash detected” event we have a deadline on how long we can take to respond, but
we also must not respond too early: we have a window in which a response is required
(sometimes this is known as ‘just in time’ scheduling). If we respond quickly to the
“crash detected” event and activate the airbag too soon, then it will have inflated and
then deflated by the time the driver hits the steering wheel (airbags must deflate quickly
so that the driver can still steer the car if an airbag goes off by accident).

Because we have a number of pieces of computation to choose to execute when a number
of events occur, we are left with a problem: which computation to execute, and when?
It is a problem because there are clearly good choices and bad choices. Consider the
following example:

We have two events e; and es, which require computation time 5ms and 10ms,
and have deadlines of 20ms and 12ms. Assume both events occur at the same
time (time ¢, say): we must choose which event we will process first. If we
process e; first, then e; will be processed by time ¢t + 5. Then we switch to
processing ez, which will be finished by time ¢ + 5 4+ 10 = 15. The deadline
for event e; has been missed. But if we had processed event e, first, then all
would have been OK: e; would have finished by ¢ + 10, and e; would have
finished by ¢ + 15, and both deadlines would have been met.

You may ask the question “How do we know how much CPU time is needed to respond
to an event?” Answering this question is a whole field of real-time engineering in itself.
Briefly, we either measure the code on a test-rig (with all the problems of testing and
coverage), or we attempt to analyse the behaviour of the code, looking at the machine
code and any high level language code that it was produced from. We’ll describe these
two processes in more detail later in this course.

We may have other constraints on how we can choose between the processing of events:
if we can pre-empt the computation in response to an event, then we must be careful how
data is shared between the processing code for different events. For example, we might be
in the middle of updating some data-structure (eg. a linked-list) when a switch occurs,
leaving the structure in some unknown state. If the code we have switched to tries to
access the same structure then there could be an error (eg. the code might fall off the
end of a broken linked-list). This is a well-known problem in concurrent programming,
and there are several techniques for overcoming it (eg. using semaphores to guard access
to the data structure), most are known as concurrency control techniques. We’ll have a
lot more to say about concurrency control later in the course.

The choice about which event to process is generally known as scheduling, and most
real-time engineering is concerned with scheduling, scheduling algorithms, and analysis
of those algorithms.

1A ‘deadline’ gets its name from a piece of rope surrounding a prisoner-of-war camp: all the prisoners
were warned that anyone crossing the line would be shot dead
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1.3 The Scheduling Problem

We can break down a scheduling approach into three activities: off-line configuration,
run-time dispatching, and a priori analysis. Scheduling approaches mostly differ in how
much effort is required in the three activities.

The run-time dispatching activity is the all about the actual switching between computa-
tion for different events at run-time. Most scheduling approaches assume an underlying
tasking system on a processor. A task is a thread of control, invoked by some event.
The usual model is that task executes a piece of code in response to the event (the code
can make inputs and outputs, and could cause other events in the system). The task
then terminates, ready to be re-awakened when the event re-occurs. So the run-time
dispatching algorithm decides when to switch between tasks. To make the decision it can
use knowledge about the current state of the system (eg. what the current time is) and
information given to it off-line (eg. a set of priorities for tasks). We can switch between
tasks in two ways: pre-emptively and non-pre-emptively. If we switch pre-emptively we
are allowed to stop the task we are running now, and switch to another task. Later we
switch back to the task we interrupted. With non-pre-emptive switching, once we start
running a task we must let it finish before changing doing computation for some other
event 2.

The off-line configuration activity generates the static information for the run-time dis-
patching algorithm to use. In some scheduling approaches, this activity is the heart of
the approach: the configuration information consists of a table indicating exactly which
task should be run and when. The run-time dispatcher merely has to follow the table,
indexed by the current time. In some other scheduling approaches, this activity can be
trivially small, or not done at all: the dispatcher uses run-time information, such as task
deadline, to choose which task to run at any given time.

Finally, let’s talk about the a priori analysis. So far, we haven’t said much about hard
real-time vs soft real-time (apart from defining the terms). With hard real-time systems
we must schedule the processing of events such that all the deadlines will be met. With
soft real-time systems the scheduling algorithm is allowed the flexibility to decide not to
meet a deadline. Because this course is focussed on hard real-time scheduling, we will
not talk about soft real-time until much later.

With hard real-time scheduling we must always meet our deadlines. But we can have
situations where it is impossible for the run-time dispatching algorithm to ensure that all
deadlines are met: if, for example, two events occurred at the same time, both requiring
computation time equal to their deadlines, then there is no switching pattern that will
enable both deadlines to be met. So, what we must do is look at the system before it
starts running and try to see if a set of circumstances could arise where deadlines would
be missed. If we do find that it’s possible for deadlines to be missed then we shouldn’t
start the system running because there’s a timing bug. So we have to have analysis that
will examine the system and tell us if all the timing requirements will be met.

The analysis needs to know what off-line configuration information, and what the be-
haviour of the run-time dispatching algorithm will be. Of course, it may be very difficult
to derive analysis that gives an complete answer to the question “Will all deadlines be

?In the strictest sense, ‘pre-empt’ means to go first ahead of something else, but in computing it
generally means ‘to interrupt’
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met?” The analysis is sufficient if, when it answers “Yes”, all deadlines will be met. It’s
pretty easy to get sufficient analysis: we always say “No”! The analysis is necessary if,
when it answers “No”, there really is a situation where deadlines could be missed. We
say that the analysis is exact if it is both ‘necessary’ and ‘sufficient’.

We require that the analysis is ‘sufficient’ (if the analysis weren’t sufficient then there
would be no point in having it in the first place!l). But we would also like the analysis
to be as close to ‘necessary’ as possible (the ‘necessary’ property measures the quality of
the test) so that we don’t have many systems that are actually schedulable but that the
analysis has deemed unschedulable 2.

So, what scheduling approaches are there? This course is mostly concerned with one algo-
rithm called fized priority pre-emptive scheduling (or just fized priority scheduling, FP),
but there are lots of others, the most popular being: Farliest Deadline First Schedul-
ing (EDF) and Static Cyclic Scheduling (SCS). We'll talk about these three approaches
briefly in the next chapter, and then we’ll look in detail at the fixed priority scheduling
approach.

1.4 Testing and Integration

The testing of a real-time system is a major problem: finding test data for ordinary
non-real-time systems is difficult enough (and concurrent systems are notoriously hard
to test), but when we have to test a system by checking all the possible times when evens
happen and data is processed, then it becomes virtually impossible to test all the different
behaviours.

We often build embedded systems with teams of people, not just one lone programmer.
But we cannot test the timing properties of a component by itself. We can’t test that a
task meets its deadline until all the other tasks in the system are there too (otherwise we
might find that the task met its deadline when there was nothing else to do, but misses
its deadline when the other tasks are there).

Because we can’t test a real-time system very easily, different people cannot know that
their piece of the system is going to work until all the pieces are put together into a
final system. All this means that most of the effort in building a real-time system has
traditionally gone into testing, bug fixing, re-testing, and so on. Problems with a project
don’t show up until the end, and by then it may be too late to solve them. So we need
to be able to build components in isolation, and know that when we bring them together
into the final system, we don’t suddenly see hidden timing problem:s.

The analysis part of the scheduling algorithm helps us here: we can build components
separately (eg. different programmers can write their own tasks), and we can test them
separately. We can apply the analysis to the scheduling approach that will be used with
the tasks, and see if the timing constraints are met. The analysis should show up any
timing problems, which can then be solved before we put the whole system together.

3where ‘unschedulable’ means ‘the scheduler will not find a way to switch between the processing of
events such that deadlines are met’
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1.5 Summary

We have seen some of the basic problems and requirements with embedded real-time
systems. Firstly, we saw that we are dealing with narrow and hard real-time systems
in this course. Second, we saw that techniques for engineering these systems must be
efficient and be able to provide concurrency. And finally, we saw that testing of embedded
systems is difficult. We have talked about concurrency and the need for scheduling. We
showed how a scheduling approach could be classified into three activities: configuration,
dispatching, and analysis. We have talked about why testing and integration in real-time
systems is hard, and how analysis of the scheduling behaviour can help with testing.



2 Estimating Program Execution Times

2.1 Background

The most basic question we need to ask, before we worry about anything else to do with
real-time, is “how much CPU time does this piece of code need?” We’'re going to try and
show how this question can be answered.

A programmer will typically write high-level language code like this:

if X > 5 then

X =X + 1;
else

X =X x 3;
end if;

How long will it take to execute this piece of code? The simplest approach is to measure
the execution. Let’s take a look at this.

2.2 Measuring Execution Times

To find the longest computation time required by the code, we compile the code and get
the machine code, which we then link with libraries, and load into the processor of the
embedded system. Then we hook up a logic analyser, or an oscilloscope, or some similar
device that can measure small times. We then run the code with lots of test data and
keep all the measurements. We then say the longest time required by the piece of code
is the longest time we measured in the tests.

The word “say” in the above paragraph is the important one: just because we observe a
lot of execution times doesn’t mean that we’re guaranteed to have seen the longest time.
This is because we have no guarantee that we have looked at the longest path through
the code: usually the length of a path depends on the data the program is working with.
Take a look at this piece of assembly language code *:

MOVE (_X),DO

CMP DO,#5
BGT L1

MUL DO, #3
MOVE DO

JMP L2

L1i: ADD DO,#1
L2:

This is typical of the sort of code generated by a compiler (in fact, it’s based on the
code actually produced from the high level code given earlier). The time for each time of

*The assembly language used here is sort of 68000ish
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instruction can be different: simple instructions like ADD can be done in a fixed number
of processor clock cycles, but the MUL instruction has a variable number of clock cycles,
depending (in the above example) on the contents of register DO. If you look in processor
handbooks you’ll typically find tables saying how long each instruction takes to run. For
the multiply instruction, it’s usually something like “16 cycles plus 2 times the number
of ‘1’s in the register.”

So, the computation time of the small piece of code depends on what’s in DO, which
depends on what the value of X is, which could be anything (read from a sensor, perhaps).
When we do the tests to find out how long the code takes to run, we can’t be sure that
the value of X had the largest number of ‘1’s (for example). And, of course, the value of
X that makes this code run for the longest time may make another piece of code run for
a small amount of time.

Cacheing and pipelining in processors can also have a big effect on the computation time
of a piece of code. For example, if a piece of code is small enough to fit entirely in
the cache then the computation time is usually very much smaller. With pipelining, if
the instructions don’t execute any branches then the pipeline stays filled, and the code
executes faster. When we come to do the testing we might be able to disable pipelining
and cacheing, but not all processors support this.

The implementation of the memory on a processor card can affect computation time:
if slow memory is used then the processor often inserts ‘wait states’ until the memory
responds. If the computer has memories with different speeds, then the execution time
of the code can change depending where the program is stored! This happens a lot with
‘microcontrollers’. These are small processors with built-in memory (usually 1-8Kb) and

1O, but often fitted with external memory too (both ROM and RAM). The external
memory is slow (ROM is the slowest), and the internal RAM is usually very fast.

The problem of memory access times gets worse for multiprocessor systems (where several
CPUs can share a single piece of memory). For example, with a VME bus, several
processors can access memory in different cards attached to the bus. If a processor wants
to use the bus (to access a memory card attached to the bus, perhaps because a piece of
code is stored there) then it can only do so if no other processors are using the bus. If
other processors are using the bus then the processor has to wait. So, the computation
time of a piece of code on one processor can depend on how code on other processors
executes.

You may say “Well, a small overrun in a computation time probably won’t matter much,
so a simple testing approach is probably OK. We can take the tested time ¢ and then just
add 5% for safety.” That would be fine, except we may have a huge difference between
the times from testing, and the real execution times. Suppose that during testing we
never execute a particular part of the code we are testing. For example, we never execute
the else part of an if statement. But during the operation of the system we might often
execute the else part. If the else part takes a lot of time to run, or if the if statement
were inside a loop, then the total execution time could be many times bigger than the
time we found during testing.

So you can see from all this that testing a system for the worst-case execution time of
a piece of code will probably give very poor coverage of the real behaviour of the code,
and that we cannot be sure we have found the worst-case behaviour. Of course, if we are
dealing with a simple piece of code, with a simple processor (no caches or pipelines, no
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multiprocessor shared memory, etc.) then we might be able to get away with testing.

Aside from the accuracy problem, testing is a bit of a pain to do — we know that testing
a non-real-time program can take a long time, but testing a real-time program is worse:
whenever we make even a small change to the code we would have to run the whole set
of tests all over again, to either check that the total time isn’t affected, or to get the new
time if it 1s.

What we really want is an automated and analytical approach: we would like to take
our source code, give it to some software tool and say “what’s the longest execution time
of the code?” Such a tool would also be able to tell the programmer which bits of code
ran quickly, and which bits were contributing the most to the total execution time: a
sort of ‘hotspot” analysis. This would be great for a programmer, because without even
running code in a test-rig the tool can help say which bits of code should be re-written
to speed-up the program.

Not surprisingly, the idea of analysis is an area that has been looked at a lot over the last
10 or 15 years, and some of the results are making their way into practice. Let’s take a
look at the basic ideas.

2.3 Analysing Execution Times

The first thing we learn when trying to analyse worst-case execution times is that we
cannot work from just the high level language code: there are too many different ways
a compiler can translate the high level code into machine code (you’ve probably noticed
that there are compilers that produced fast code, and others that produce slower code).
So we must work with the machine code produced by the compiler from the high-level
language.

We mentioned earlier that the CPU manufacturers usually give tables of instruction times.
The tables give the number of processor clock cycles, the number of reads and writes to
main memory, and so on. These tables are given to guide the programmer in writing very
fast assembly language programs, but we can use these inside a software tool for working
out the worst-case execution time of our code.

So, we ought to be able to just follow through the machine code, adding up instruction
times as we go, to give the final execution time? Wrong. To see why, look at this assembly
language code:

MOVE (FD4E5000), D1
ADD D2, D1
JMP D1

The address FD4E5000 is a ‘jump table’, containing a list of memory locations (the con-
tents of D2 are used to index this table). This sort of code is typically generated by a
case statement °.

If we came across a conditional branch instruction we wouldn’t know what to do either.
So a simple examination of the machine code cannot generally work out which code will
be executed, and so cannot work out the computation time (of course, if the machine code

>q switch statement, if you’re a C hacker
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is hand-written without using branching then we might be able to analyse it). Compiler
writers are familiar with some of these concepts: they use the term basic block to describe
a piece of code with a single entry point, and a single exit point, with no branching in
between (they use these basic blocks to work out how to improve the speed of the program
by making changes to the allocation of registers to variables, and so on). So, we can work
out the execution time of basic blocks by just adding up the instruction times, but we

can’t work out how to combine these times .

If we look at the high level code and the machine code together then we can overcome
some of these problems: the compiler knows what a particular basic block is for, and so
knows more about its behaviour than we could infer by just looking at the machine code.
As an example, take another look at the high level language code we had earlier (the
code beginning if X > 5), and take another look at the assembly language generated
from it. It’s pretty easy to see what the basic blocks are. There are three of them, the
first corresponds to the boolean expression in the if statement:

MOVE (_X),DO
CMP DO, #5
BGT L1

The second is the else part of the if statement:

MUL DO,#3
MOVE DO
JMP L2

The third is the main part of the if statement:
L1: ADD DO,#1

As we mentioned before, most compilers will identify these basic blocks as part of their
optimisation strategy.

We can easily add up the execution times of the basic blocks, since they contain ‘straight
line code’. Let’s imagine we had a table in our processor handbook that looked like this:

‘ Mnemonic ‘ Number of cycles ‘ Notes ‘
MOVE 8
CMP 4
Bee 4
MUL DO, #3 — | 16 + 2 times # ‘1’s
JMP 4
ADD 4

The table for a real processor will be much more complex, taking into account different
addressing modes, numbers of memory accesses, etc. The table above is just to illustrate
the idea.

Stake a look at the ‘Dragon Book’ for more details on basic blocks
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With this table we can work out the worst-case execution times of the basic blocks we
had earlier. The first block, Bl, has an execution time of 8 + 4 + 4 = 16. The second
block, B2, has an execution time of 32 + 8 + 4 = 44 (we assume that the word-size on
our processor is 16 bits, and so there can be at most 16 ‘1’s in register D0). Finally, the
third block, B3, has an execution time of just 4 cycles.

By looking at the high level source code we can see how to combine these basic block
times. The if statement we had earlier can be re-written:

if Bl then B3 else B2 end if

We can see that we will execute basic block B1 and then either B2 or B3. So the longest
time the if statement can take to execute is:

time(B1) + max(time(B2), time( B3))

where time(n) is the worst-case execution time (in CPU cycles) of basic block n (eg.
time(B2) is 44. The worst-case execution time for our if statement is 60 CPU cycles. If
our CPU runs at 8MHz then each CPU cycle is 125ns. The worst-case execution time of
the if statement is therefore 60 x 125ns = 7.5us.

Of course, now we have this time for the if statement, we can use the time just as we
did for the basic blocks. So, for example, if we had a nested if statement:

if X = 0 then
if X > 5 then

X =X+ 1;
else
X :=X *x 3;
end if;
else
X :=1;
end if;

The execution time of the statement beginning if X > 5 is already known from the
analysis. We could also work out the execution time for the X = 0 boolean expression,
and the execution time for the X := 1 statement, just like we did earlier. Then we could
combine these times just as we did for the basic blocks to give the worst-case execution
time of the outer if statement.

Of course, things are never so simple! Some language features are more difficult to
generate rules for than the if statement we had earlier. Consider a while loop like this:

while X > 5 loop
X =X -1;
end loop;

The compiler will probably generate two basic blocks: one for X > 5, and one for
X := X - 1. We can work out the times for the basic block, but we have a problem
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when working out the execution time of the while loop: we don’t know how many times
we will go round the loop. Without knowing more about the value of X we simply cannot
say. S0 how is an automated tool to know?

The simple solution is the one most often taken: the programmer must annotate the
source code to tell the execution time analyser the maximum number of times the loop
executes. In the Ada language, the programmer can use a pragma:

pragma LOOPBOUND(5) ;
while X > 5 loop

X =X -1;
end loop;

The Ada for loop is interesting, because the programmer doesn’t need to include a loop
bound: the compiler is able to work out the bounds. This is because the Ada language
rules state that with a for loop bounds must be known at compile-time.

In other languages such as C, the programmer has to use comments with a special format
that the execution time analyser can read, eg:

/* WCET: loopbound=5 */
for(;x > 5;x--);

There may be loops in the machine code where there are none in the high level source
code. For example, the programmer might write:

X :=Y;

where X and Y are records. The machine code generated might copy each byte of Y to X,
using a loop. The loop will be executed once for each byte of Y. But the compiler knows
how big Y and X are, so knows how many times the loop is executed. This means that
the programmer doesn’t need to say anything about the generated loop (which is good,
because most of the time the programmer wouldn’t even know there was a loop in the
machine code generated for the assignment statement!).

For the same reason as for while loop statements, recursion cannot normally be analysed.
But because it’s a lot harder for a programmer to work out how deep a recursive call can
get, most analyser tools simply ban recursion altogether.

There are usually other restrictions on what an analyser tool can cope with. For exam-
ple, dynamic memory accesses are usually banned, because the time taken to manage
the memory isn’t known. For example, when using new in Ada, the heap management
software must find some spare memory to allocate to the variable. But the time taken
to find the memory generally isn’t known: this is because the state of the memory isn’t
known (eg. how much memory is free, what sort of garbage collection needs to be done,
etc.). Which means that the new function requires cannot be bounded.

Needless to say, goto statements are banned: if the programmer writes these then the
dataflow in a piece of code can be very difficult to work out, and so how to combine basic
block times is also very difficult to work out.
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So what are the problems with the analytical approach, apart from the restrictions on
how the programmer can use the language? The main problem is pessimism: the time
for each instruction is assumed to be the longest (remember when we talked about the
MUL instruction taking up to 32 cycles?). But in reality, there are usually limits on how
the program actually can behave (although we may not be aware of them), and so the
actual longest execution time may be a lot less than the theoretical worst-case execution
time.

We discussed a similar problem for the testing approach to finding a bound on execution
times: the testing approach can often be optimistic. So either we measure the system,
and find a value that could be exceeded, or we analyse the system and find a value that
can never be exceeded, but is very much larger than the observed behaviour. We can
only really take the analytical approach if we want to be sure that our execution times
will not be exceeded.

2.4 Summary

In this chapter we have introduced two techniques for finding a bound on the execution
time of a piece of code: measurement and analysis. There are good and bad points to
both approaches, but for critical tasks we can really only use an analytical approach.

2.5 Further Reading

For more information about worst-case execution time analysis tools, you can read the
following two reports:

“Using the Worst-Case Execution Analyser”, Charles Forsyth, Task 8 vol. D deliverable
to European Space Agency ‘Hard Real Time Operating System Kernel Study’, ESTEC
contract number 9198/90/NL/SF

and:

“Implementation of the Worst-Case Execution Analyser”, Charles Forsyth, Task 8 vol. K
deliverable to European Space Agency ‘Hard Real Time Operating System Kernel Study’,
ESTEC contract number 9198/90/NL/SF

The first report talks about how to use a worst-case execution time analyser (called
WEA), which was written to analyse Ada programs compiled for a 68020. The report is
interesting because it talks about the limitations of the tool (which language features are
not allowed, and so on), and because it shows what a worst-case execution time analysis
tool looks like.

The second report talks in detail about how the tool is implemented, and is useful because
it indicates how much work is involved writing a worst-case execution time tool.

The two reports are available electronically via ftp from the following site:
ftp.cs.york.ac.uk
in the following directory:

/pub/realtime/papers
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The file names are task8d.ps.Zand task8e.ps.Z (they are stored as compressed postscript).
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3 Two Scheduling Approaches

3.1 Introduction

We talked a little in the previous chapter about what the role of scheduling algorithms is,
and how we can break a scheduling approach down in to three activities. We mentioned
some of the most popular scheduling approaches, and will look at two of them in more
detail in this chapter. Let’s start with EDF.

3.2 Earliest Deadline First

This approach is basically a dynamic one: all the scheduling decisions are made on-line.
The algorithm is very simple, and behaves as its name would suggest: the task picked to
be run is the one with the shortest deadline. When an event occurs and kicks off a task
to process it, the dispatcher looks at the deadline of the new task. If it is less than the
deadline of the task currently being run then the dispatcher switches to the new task.
This is done pre-emptively: only later will the dispatcher return to the old task and carry
on processing it.

There is no configuration activity with this algorithm, since all the decisions about which
task to run are made on the basis of information that is only known at run time (such as
when an event occurs, and what the absolute deadline is).

The analysis for the EDF algorithm is a bit more tricky, though. If you look back to the
introduction chapter to the example of two events, e¢; and e;, you’ll see that the EDF
algorithm results in a schedulable system, because the most urgent processing goes first.
But clearly there can be event arrival patterns where the algorithm fails to schedule tasks
so that their deadlines are met: we mentioned in the introduction chapter a case where
two events occur, both requiring computation time equal to their deadlines, and said
that no algorithm could schedule computation to meet the event deadlines. So we must
produce analysis that can tell us before the system runs whether any deadlines could be
missed.

But in order for any analysis to apply, we must make assumptions about the events, the
processing time required, and the deadlines on events. These assumptions are usually
called a model. If we didn’t have a model then our analysis would always have to say
“No, the system is unschedulable” (because we could always find cases where deadlines
were missed). So what sort of models are there for EDF?

The simplest model is based on the notion of periodic tasks: each task ¢ has a period Tj,
a computation time requirement C;, and a deadline D;. The event invoking the task can
occur no more than once every T; time units, and the deadline of the task must be equal
to this period (ie. D; = T;). There are other restrictions in the model, too: task execution
must be independent (ie. one task cannot block another task by locking a semaphore, for
example).

The model is fairly restrictive: the deadlines can only be equal to periods, which means
that an infrequent event with a short deadline does not fit into this model. Also, it is
very difficult to implement a system in practice where there is no blocking: for example,
usually operating system or kernel calls are non-pre-emptive, and the execution of a more
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urgent task is delayed until the kernel call from a less urgent task completes.

The analysis of the model, in contrast, is very simple: if the utilisation of the system is
not more than 100% then all deadlines will be met. Or, more formally:

i=n Cz
= — )1 <1
v = (TZ) -

This is not only a sufficient condition, but also a necessary one: obviously if the utilisation
is more than 100% we would expect deadlines to be missed!

The analysis becomes much more difficult if we try and make the model less restrictive
(for example, permitting D < T', or taking into account blocking from kernel calls). But
the advantage that EDF has is that the processor can be fully used.

3.3 Static Cyclic Scheduling

This approach is probably the oldest scheduling approach, used since the 1960’s. It is
an off-line approach, where the task execution pattern is computed by a configuration
algorithm. The execution pattern is stored in a table, often called a calendar. At run-time
the table is followed by the dispatcher.

You may be thinking "How can all the executions in to the future life of the system be
stored? The table would be huge!”. What actually happens is that a small table is used
(often as little as twenty milliseconds worth of tasking decisions), and then when the
table runs out the scheduler goes back to the start of the table. In effect, the table is
indexed by the current time modulo the table size. Because the execution pattern repeats
cyclically, the approach is known as static cyclic scheduling.

Because the run-time dispatching algorithm is so simple (just looking in to a pre-computed
table), the analysis of the timing behaviour is also trivial: we just need to run through the
table and check that all the timing requirements are met. The real heart of the approach
is the off-line configuration algorithm used to generate the scheduling table. There have
been many algorithms developed over the years to generate the table (the most common
approach in industry is for the tables to be generated by hand!). Before we talk about
some of these algorithms we need to talk about a system model.

We don’t need to restrict the way our system behaves just so that we can analyse it
(remember with EDF we had to limit the ways in which the system could behave so that
we could analyse it7) — the analysis with the static approach is trivial. Any restrictions
come about because of limitations with the algorithm that builds the table, and because
of the fundamental limits of static scheduling. Let’s look at typical limitations, and talk
about the sort of system model that we can use.

Firstly, because we pre-plan when we execute tasks, we cannot permit anything other
than strictly periodic tasks: we cannot have tasks being invoked by an external event.
The only way we can deal with external events is to poll for them. This is not very
efficient, since if we want a short delay between an event occurring and the completion
of the processing of the event we must create a task with a short period to poll for it.
If the event occurs rarely then the processor utilisation given over to the polling task is
much more than the true utilisation required by the event. But we must allocate this
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time because we never know exact when it will be used. This means that very often
we cannot accommodate short-deadline sporadic events simply because we do not have
enough processing time to both poll for the event and handle other periodic computation.

A second fundamental limitation with the static scheduling approach is that the table
can’t be too big (because it takes memory to store the table, and in most embedded
systems we don’t have a lot of memory spare). The table encodes the shortest repeating
cyclic execution of the tasks, so that by going back to the start of the table we don’t
introduce any ‘hiccups’ in the system. But with periodic tasks, it turns out that the
shortest repeating cycle is the least common multiple (LCM) of the task periods. So, if we
have tasks with periods 5, 10, and 20 milliseconds, the repeating cycle is 20 milliseconds
long. But if we have tasks with periods 7, 13, and 23 milliseconds then the LCM, and
hence the table length, is 7 x 13 x 23 = 2093 milliseconds — very much bigger! So what is
generally done is that the required periods are manipulated to be neat multiples of each
other: the periods are made shorter than they need be so that the scheduling table is
small. Of course, this means that more processing time than is really needed is used (for
example, if we had a task with an execution time of 3 milliseconds and we reduced its
period from 13 milliseconds to 10 milliseconds, then the processor utilisation used by the
task increases from 23

The algorithm to build the table is limited in how well it can perform. In general,
building a schedule such that all deadlines are met is an NP-Hard problem ”, and so we
can’t expect an algorithm to always find a scheduling solution if one exists. However,
this doesn’t worry us too much, since there are a number of algorithms which can give
really quite good results (ie. they can mostly find a solution if one exists).

A simple model, like we described for the EDF algorithm, can be easily handled by the
static scheduling approach. But the real benefit of static scheduling is that we can have
a more complex model. For example, we can allow tasks to share data, and then control
the way in which we are allowed to switch between tasks. So, we might have two tasks A
and B who both access some shared data structure (such as a linked list). The algorithm
that builds the scheduling table must make sure that we never switch to B unless A
has completed all its execution, and vice versa (these restrictions on how we can switch
between tasks are often called exclusion constraints). We can generalise this exclusion
constraint to more than just a pair of tasks, and allow groups of tasks to share data. The
algorithm must not switch from one member of the group to another until the current
task has finished executing.

There are some drawbacks to this way of controlling concurrency. We would prefer to
control concurrency only when we are actually accessing shared data, rather than over
the whole execution of the task. For example, if we had a task A with a large execution
time, but that only accessed shared data for a small amount of time, all other tasks in
the group cannot be switched to at any time that A is running. This is because without
detailed analysis of the code of A, we do not know when during its execution task A
will access the shared data. Because we are working out a schedule off-line, we have to
assume that it could be anywhere, and so cannot switch from task A to another task
in the group until A has finished. This restricts the number of potential solutions that
would otherwise satisfy all our requirements, and may mean that our off-line schedule
builder cannot find any solution at all, and has to give up. What we would prefer is

"Don’t worry about this term if you’re not familiar with it: what it means is that it’s impossible for
the algorithm to always find the best result in a sensible amount of time for realistic sized problems



18 3 TWO SCHEDULING APPROACHES

that we use something like a semaphore, where we tell the scheduler when other tasks
can access the data, and when they cannot. But we can’t do this because the scheduler
must follow the fixed execution pattern laid out in the table. We’ll come back to this
problem later when we talk about fixed priority scheduling. In some systems, we are not
allowed to switch away from a task until it has completed (if you remember, we called
this non-preemptive scheduling). If we make all tasks members of the same group then we
get this behaviour (non-preemptive scheduling has some interesting effects on our ability
to analyse the behaviour of caches and pipelines in complex processors; we’ll talk about
this later when we come to look at how to work out execution times of pieces of code).

Another common constraint is precedence: we might require that a task X finishes before
another task Y is allowed to run ®. Precedence constraints are very useful for many types
of real-time system: typically we want to implement a ‘pipeline’, where input data is read
in to one task, which passes computed results down a pipeline of other tasks, with the
last task in the chain sending the results to output ports.

Aside from the most popular technique for building schedules to meet these constraints
— human intervention — a popular piece of work is by Xu and Parnas ?. They use a two-
phased approach: the EDF algorithm is used off-line to build an initial schedule, which
is then modified according to heuristics !° to modify it to try and meet the exclusion and
precedence constraints. Other approaches use standard optimisation algorithms (like
simulated annealing) to take a schedule and ‘mutate’ it according to simple rules until a
schedulable system is found 1.

3.4 Summary

We looked at two scheduling approaches: earliest deadline first (a dynamic approach),
and static cyclic scheduling (an off-line approach). We saw how we had to introduce a
model for systems scheduled by EDF in order to apply analysis of the timing behaviour.
With the off-line approach, we saw how a more flexible model could be allowed, but that
the approach is not always efficient.

8This is a stronger form of an exclusion constraint

°In fact, we're using this work right here in Uppsala for a tool that will build static schedules for
sending messages on a shared bus

001 ‘rules of thumb’

11 Of course, the algorithm may not find a solution, and will give up instead
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4 Fixed Priority Scheduling

4.1 Introduction

In this chapter we will be looking at the fized priority scheduling approach, and look at
how we can use it (we’ll look at a case study to show how deadlines will be met). Most
of this chapter will be devoted to analysis of a given set of tasks with fixed priorities
(remember we said before how analysis was an important part of any scheduling approach:
we must know before the system runs if deadlines will be met).

4.2 Rate Monotonic Scheduling

In the early 1970’s an influential paper looked at EDF scheduling, and also at fized priority
scheduling, and produced analysis for both. This is the paper:

C. L. Liu and J. W. Layland, Scheduling Algorithms for Multiprogramming in
a Hard Real-Time Environment, JACM, Volume 20, Number 1, pages 46 to
61, 1973

We've already seen the EDF results (which actually came from this paper), and now we
will look at the results for fixed priority scheduling.

In essence, fixed priority scheduling almost the same as EDF except that the priority of
a task is chosen not according to when the task must finish by, but according to a fixed
priority. The dispatcher will make sure that at any time, the highest priority runnable
task is actually running. So, if we have a task with a low priority running, and a high
priority task arrives (ie. there was some event that occurred, and the dispatcher needs
to kick off a task to deal with it), the low priority task will be suspended, and the high
priority task will start running (ie. the low priority task has been preempted). If while
the high priority task is running, a medium priority task arrives, the dispatcher will leave
it unprocessed, and the high priority task will carry on running, and at some later time
finish its computation. Then the medium priority task starts executing, to finish at some
later time. Only when both tasks have completed can the low priority task resume its
execution (the low priority task can then carry on executing until either more higher
priority tasks arrive, or it has finished its work).

Just as we did for EDF, we must produce a model to limit the behaviour of the system
so that we can analyse it. The work of Liu and Layland mentioned above used the
same model for fixed priority scheduling that we used in the previous chapter with EDF":
all tasks have periods, with deadlines equal to these periods; tasks are not allowed to be
blocked, or to suspend themselves. But we need an extra assumption: we need to say how
the priorities are chosen. In their paper, Liu and Layland coined the term rate monotonic
for how priorities were chosen. What they meant by this term is that priorities should be
set monotonically with rate (ie. period): a task with a shorter period should be assigned
a higher priority. They also assumed that priorities are unique. Where there are ‘ties’
(ie. tasks with the same period) they can be broken arbitrarily.

Liu and Layland also made a couple of assumptions that don’t actually need to be made.
They assumed that tasks are strictly periodic, when in fact the analysis also works if a
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task ¢ that arrives at most once every 1;. They also assumed that task execution times
were constant, but in fact they just need to be bounded: the analysis works if a task ¢
executes for /ess than C;.

In terms of our description of a scheduling approach, we can see that the configuration
activity is how we choose the priorities: by the rate monotonic policy. The run-time
dispatching activity is fixed priority pre-emptive scheduling (as we’ve just described).
What we need now for a complete approach is analysis. Liu and Layland gave some
analysis for this approach, with the model we have just described. They gave an equation
for a utilisation bound: if the task set has a utilisation below this bound then all deadlines
will always be met (ie. it is schedulable). But the analysis they gave is not exact: if the
utilisation is higher than the bound, the analysis has nothing to say about whether the
task set is schedulable or not. It might be. It might not be. The analysis doesn’t say
(exact analysis for this model does exist though: later on in this chapter we’ll give exact
analysis). Below is the scheduling test:

2(%)9(2%_1)

where n is the number of tasks in the system, C}; is the worst-case execution time of task
2, and T} is the period of task ¢. The left side of the equation is the utilisation of the task
set, and the right side of the equation is the utilisation bound.

Compare this to the test for EDF scheduling: the utilisation bound here is generally a
lot lower than 100% — for one task the bound is 100%, and for two it is about 83% (you
might like to work it out for three tasks). You can see that as n — oo, the utilisation
bound approaches In2 = 0.693, which is just over 69%. This is the most commonly
known result of the work: “if your CPU utilisation is less than 69%, then all deadlines
are met.” But remember that this is only for the limited model that Liu and Layland
defined: only periodic, no blocking, deadlines equal to periods.

Since 1973 a lot of work has been done on “rate monotonic”, and so now the model that
can be analysed is a lot more flexible than was originally defined. If you hear people talk-
ing about “Rate Monotonic Analysis” (RMA), or “Rate Monotonic Scheduling” (RMS)
they generally mean the more flexible models and better analysis. In fact, these models
no longer assume that priorities are assigned monotonically with rate, and so the term is
NOwW a misnomer.

We mentioned earlier that the utilisation bound given by Liu and Layland represented
analysis that was not exact: some task sets could be rejected that are in reality schedu-
lable. Here’s a task set worth considering (we’ll come back to it later in this chapter):

‘TaskName‘T‘D‘C‘

A 52 | 52 | 12
B 40 | 40 | 10
C 30 | 30 | 10

The utilisation of this task set is 81.41%. For three tasks, the utilisation bound calculated
by the Liu and Layland equation is 77.98%. So the scheduling test would say “No, this
task set might miss deadlines”. But in reality, it ¢s schedulable — we’ll see why later in
this chapter when we apply some better analysis to it.
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4.3 Exact Analysis

In 1986 Mathai Joseph and Paritosh Pandya wrote a paper which gave exact analysis for
the fixed priority scheduling model that Liu and Layland described:

M. Joseph and P. Pandya, Finding Response Times in a Real-Time System,
The Computer Journal, Volume 29, Number 5, pages 390-395, 1986

This was an important piece of work because it did more than just provide an exact piece
of analysis. It also came up with the idea of calculating the worst-case response times
of a task: this is the longest time taken to complete the worst-case execution time of
the task. We can extend our notation to include this, and say that R; is the worst-case
response time of a given task i. The table below summarises our notation so far:

‘ Notation ‘ Description ‘

Worst-case computation time of task 2
Period of task ¢

i Deadline of task ¢

Worst-case response time of task :

o

F O H S

5.,

Once we have a worst-case response time for each task, the scheduling test is trivial: we
just look to see that R < D for each task. This means that we can lift the restriction
that deadlines are equal to periods (after all, if we know the worst-case response time
then we can compare it to any arbitrary value to see if it is small enough for our needs).

A side-effect of being able to calculate worst-case response times is that we can handle
sporadic tasks very neatly. Sporadic tasks are those that are run in response to some
irregular event, but generally have short deadlines compared to their minimum inter-
arrival time. Before, with both the EDF approach, and the model that Liu and Layland
had for fixed priority scheduling, an infrequent sporadic would either have to be given a
long deadline (which we usually don’t want to do), or it would have to be given a short
period (which would be very inefficient: the analysis would probably then reject most
task sets, where in reality they would be schedulable).

Let’s have a look at the analysis that Joseph and Pandya produced:

R;

Viehp(i) I 77

Where hp (i) is the set of tasks of higher priority than task 7. So the summation is over
all the tasks of higher priority than ¢. The function [x] is called the ceiling function, and
gives the smallest integer > 2. So [5.1] =6, [5.9] =6, and [5] = 5.

You might be wondering how to solve the equation Joseph and Pandya produced: after
all, the term R; is on both the left and right hand sides, and can’t be re-arranged to give
R;. Tt turns out that the equation can be solved by forming a recurrence relation, where
an iteration is used to find values of R; that fit the equation. In general, there may be
several values of R; that fit, but the smallest one is the worst-case response time we want.
The equation below shows how the recurrence relation is formed:
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The term R'*! is the n + 1th approximation to the worst-case response time, R;, and
is found in terms of the nth approximation. We can easily see that approximations will
get bigger and bigger, until the iteration converges (ie. R = R"), or exceeds some
threshold (eg. D;). We can start the iteration with any value that is less than or equal
to the final value of R;; we might as well choose R} = 0 '2.

With this analysis, a value of R; is valid only if B; < T;: a response time that is greater
than the period of the task is not valid by this analysis. This is because if the response
time goes over the end of the period then task ¢ could be delayed by a previous invocation
of itself; the analysis takes no account of this, and so is not valid for R; > T;. This means
that the deadline of task ¢ should not be greater than T; (ie we must have D; < T;) '2.

Notice how the analysis is dependent only on the task attributes ' and T', and the priority
ordering of the task set. This means we can replace the simple rate monotonic analysis
with this new analysis. Let’s apply it to our simple task set we looked at earlier. Here’s
the task set again:

‘TaskName‘T‘D‘C‘

A 52 | 52 | 12
B 40 | 40 | 10
C 30 | 30 | 10

First of all, we must work out the priority ordering of the task set. Since it was a task set

for the rate monotonic approach, we use that ordering: task C' has the highest priority,
then task B, and finally task A 4.

Let’s find R4 first. The set hp(A) contains B and C'. We choose an initial value to start
the iteration of zero, so we have R% = 0. The first approximation is then:

RY RY
RAZCA—I-—ACB—I-—ACc:CA:lQ
Ts Te
and the next approximation:
12 12
Ry =Ca+ [—w Cp + [—w Co=Cs+Cp+Co =32
Tg Tc

and the next:

32 32
RZZCA—I-"T—-‘CB—I-"T—-‘Cc:CA—I-CB—I—QXCCZZLQ
B C

12We could just as well choose C;

13The analysis just given has been extended to allow D > T, but the extensions are too complicated
to go through here

M4Remember: “rate monotonic” means assigning priorities according to period: short period — high
priority
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and the next:

42 42
R4A:CA‘|"VT_-‘CB‘F’VT_-‘CO:CA+2><CB+2><CO:52
B C

and the next:

52 52
RZ:CA—I- "—-‘CB—I- "—-‘Cc:CA+2><CB+2><CC:52
Ty Te
And we've converged, because R’ = R%. So R4 = 52.

Let’s now work out Kg. We have:

0
RIB:CB—I_"T_C-‘CC:H)

10
RQB:CB—I- "—-‘00220
Tc
20
Ry = Co+ |5-| Co =20
Tc

So Rp = 20. Finally, let’s work out R¢:
The set hp(C') is empty, and so Rc = Cc = 10 (that was easy!).

Here’s the table for the task set again, only this time with the worst-case response times

filled in:

‘TaskName‘T‘D‘C‘R‘

A 52 |52 | 12 | 52
B 40 1 40 | 10 | 20
C 30 |30 | 10 | 10

We can see from the table that the task set i1s schedulable: B < D for all the tasks.
This illustrates nicely how the simple rate monotonic analysis of Liu and Layland (the
n(Z% — 1) utilisation bound) is not exact: the above task set is schedulable (as the analysis
we've just applied shows), but the task set was rejected by the Liu and Layland test.

The approach so far fits neatly into our way of looking at scheduling approaches (our
three activities: configuration, analysis, and dispatching). The configuration activity is
choosing the priorities of tasks: the rate monotonic policy (short 7" — high priority).
We’ve seen two examples of the analysis activity: the simple utilisation bound test of
Liu and Layland, and the exact analysis of Joseph and Pandya. Finally, the dispatching
activity is straightforward: the highest priority runnable task is the one that runs.
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4.4 Deadline Monotonic vs Rate Monotonic

With the rate monotonic model of Liu and Layland, we had D = T for all tasks. But we
said earlier how being able to compute R; for a task 1 lets us have arbitrary deadlines.
We also said that the analysis earlier was valid for R; < T; (and hence we must have
D < T), and merely requires a priority ordering to be set. As we might expect, the rate
monotonic priority ordering policy isn’t very good when we have D < T an infrequent
but urgent task would still be given a low priority (because T is large) and hence probably
miss its deadline. It turns out that another priority ordering policy is better: the deadline
monotonic ordering policy. Just as its name suggests, a task with a short deadline (D)
has a high priority. The deadline monotonic ordering has been proved optimal for systems
where D < T'. By “optimal” we mean “if the system is unschedulable with the deadline
monotonic ordering then it is unschedulable with all other orderings”.

Apart from the problem of handling sporadic tasks with tight deadlines, there are other
reasons for wanting D < T: in many systems we want to control input/output jitter.
What we mean by this is that we sample an input at a regular rate, but take the sample
within a tight time window. In many control systems this is vital: if we fail to do this
then the control system theory may be invalid, and the controlled equipment may behave
badly '°. Now that we have an approach where D < T we can make sure that input and
output tasks are assigned deadlines equal to the required time window: this means that
if the task set is schedulable then the 1/0 jitter will be within acceptable tolerances.

4.5 Sharing Resources: The Blocking Problem

One of the restrictions we had with our model was that tasks were not allowed to block
or voluntarily suspend themselves. This means that it is very difficult to share resources
(such as data) between tasks: recall from our discussion of static cyclic scheduling where
we looked at how we had to limit the switching between tasks that share data. We called
this the concurrent update problem, and said how this leads to exclusion constraints in
the static scheduling problem.

The concurrent update problem is well known to programmers of concurrent systems, and
a number of solutions have been proposed. The most common of these is the semaphore
(invented in the 1960’s by Edsgar Djikstra): a task can only access shared data after
it has locked a semaphore (a task can only lock a given semaphore if the semaphore is
currently unlocked). Once locked, the task executes code accessing the resource; this
code is called a eritical section. When the task has finished with the resource, it unlocks
the semaphore.

If a task tries to lock a semaphore that is already locked, it blocks (ie. stops running)
until the semaphore is unlocked by the task currently holding the semaphore. Here is
the heart of the real-time problem: a task ¢ might want to lock a semaphore, but the
semaphore might be held by a lower priority task, and so task ¢ must be blocked for a
time. The analysis of the previous section takes no account of the execution time of tasks
with lower priority than ¢, so what time should we allow? How long will it take, in the
worst-case, for the lower priority task to unlock the semaphore?

15Tf the controlled equipment is something like a jet aircraft then this ‘behaving badly’ may mean loss
of control of the plane, and perhaps ending up with a crash.
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To answer this question, let’s look at an example (all the times in the table are in
milliseconds):

‘TaskName‘ T ‘ D ‘ C ‘

A 50 10 3
B 500 | 500 | 250
C 3000 | 3000 | 1000

The utilisation of this task set is just over 93%, and is schedulable if there is no blocking
involved (the worst-case response times are: R4 = 10, R = 280, Rc = 2500).

But let us say that tasks A and C share some data, and each require access to the data
for at most 1ms of computation time. A semaphore s guards access to the shared data.

Let’s also say that task C'is running, and locks s at some time ¢. Just after task C' locks
s, task A is activated and (because it has a higher priority), starts running. A little later
(time ¢ + 2) task B is invoked, but because it’s not the highest priority task, it doesn’t
start running. At time ¢+ 3, task A needs to access the data that’s shared between A and
C', and tries to lock s. But it can’t lock s, because task ' is using it. So task A blocks,
waiting for s to become unlocked. Task B is then the highest priority runnable task, and
starts running. It requires 250ms of CPU time, and so finishes at time ¢ + 253. Then
task C' is the highest priority task, and starts running. Just Ims later (at time ¢ 4 254),
task ' unlocks s, and task A starts running again. But task A has already missed its
deadline!

You should be able to see the problem: in effect, the execution of task B delays the
execution of task A, even though it has a lower priority. This effect is known as priority
inversion, where a lower priority task can delay the execution of a higher priority task.
In the example above, the priority inversion is limited to the execution time of task B
plus the time that task C' can execute while holding s. But in general, it could be worse:
there could be lots of tasks with priorities between those of tasks A and C, and task A
could be delayed by all these tasks. This could be a very long time. With this blocking
problem, the fixed priority scheduling algorithm degenerates to FIFO (‘First In, First
Out’) queueing in the worst-case, which takes no account of urgency.

So it would seem that semaphores wreak havoc with the worst-case timing performance
of fixed priority scheduling. Fortunately there is a solution to the problem: priority
inheritance. 1t’s fairly obvious that for the time that task A wants to lock s but cannot,
executing the code in task €' is urgent: the execution of task ' is contributing directly
to the delay of task A. So, why not assign (temporarily) the priority of A to C, so that
task C'is hurried along? Let’s see what happens in our example:

At time ¢ task C locks s, and just after this time, task A is activated and starts running.
At time ¢t 4+ 2 task B is invoked, but is not the highest priority task, and doesn’t start
running. At time ¢ + 3, task A tries to lock s, but fails because task €' has already locked
it. So task A is blocked, and task C' inherits the priority of A. Because task C'is now the
highest priority task, it starts running. At time ¢ +4 it has executed for 1ms and unlocks
s. Task €' now returns to its normal priority, and task A locks s and starts running. Task
A completes its execution at time ¢ + 9, meeting its deadline.

We can see how priority inheritance works: when a task holds a semaphore, it inherits the
priority of the highest priority task blocked waiting for the semaphore. Notice that the
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priority of a task is now dynamic, so the name ‘Fixed Priority Scheduling’ isn’t really true
anymore. But we still call it this to distinguish it from much more dynamic algorithms

like EDF.

But there is still a problem when we come to try and analyse the behaviour of this: we
might have deadlock — the equivalent of infinite worst-case response times. So without
more information about the behaviour of the tasks, the analysis must report infinite
response times for tasks. To illustrate this, consider our example again, only this time
with two semaphores, s; and s,.

At time ¢, task ' locks semaphore s;. Just after this, task A runs and locks semaphore
S9, and then semaphore sy. It can’t lock s; because task €' holds it, and so blocks. Task
C' then inherits the priority of task A and starts running. Task ' tries to lock sq, but
task A already holds it, and must block. Neither task can execute, and hence we have

deadlock.

It turns out that there is a solution to our problem: a semaphore locking protocol that
doesn’t suffer from unbounded priority inversion or deadlock, and can be analysed to give
the worst-case blocking time experienced by a task. Let’s have a look at it.

4.6 The Priority Ceiling Protocol

The protocol is called the priority ceiling protocol. The protocol was discovered by Rag-
nuthan Rajkumar, Liu Sha, and John Lehoczky in 1987. This paper describes it in
detail:

L. Sha, R. Rajkumar, J. Lehoczky, Priority Inheritance Protocols: An Ap-
proach to Real-Time Synchronization, IEEE Transactions on Computers, Vol-

ume 39, Number 9, pages 1175-1185, 1990

The protocol places a few restrictions on how we can lock and unlock semaphores. The
first restriction we have is that a task is not allowed to hold a semaphore between invo-
cations — when a task finishes executing, it must have released all semaphores. This is an
obvious restriction: if the task held a semaphore between invocations, a higher priority
task would have to wait until the task next executed, which could be a very long time.

The second restriction is that tasks must lock semaphores in a ‘pyramid’ fashion. For
example, if we have two semaphores s; and s,, we can lock them like this:

lock(s1)...lock(ss) ... unlock(ssy) ... unlock(sy)
But not like this:
lock(s1)...lock(ss) ... unlock(sy). .. unlock(sz)

This ‘pyramid’ locking is important because we need it when coming to work out blocking
times for tasks.

The protocol assumes that the computation time a given task : needs while holding a
given semaphore s is bounded. We’ll use the notation cs;, for this: “the length of the
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critical section for task ¢ holding semaphore s”. It also assumes that a given task ¢ can
lock semaphores from a fixed set of semaphores known a priori. We shall use the notation
uses(i) to be the set of semaphores that could be used by task .

The protocol uses the idea of a semaphore ceiling (hence the name of the protocol!): the
ceiling is the priority of the highest priority task that uses the semaphore. We’ll use the
notation ceil(s) to indicate the ceiling of a given semaphore s, and the notation pri(7)
for the priority of a given task 1.

At run-time, the protocol operates like this: if a task ¢ wants to lock a semaphore s, it
can only do so if the priority of task i is strictly higher than the ceilings of all semaphores
currently locked by other tasks. If this condition is not met then task ¢ is blocked. We
say that task ¢ is blocked on s.

Of course, the priority ceiling of s is at least the priority of ¢ (because s is used by ). If
s were already locked then ¢ would not be allowed to lock s because its priority would
not be higher than the ceiling of s.

When task ¢ blocks on s, the task currently holding s inherits the priority of task ¢ (as
we described earlier).

There are some interesting properties of this protocol: firstly, the protocol is deadlock
free. Secondly, a given task ¢ is delayed at most once by a lower priority task. Thirdly,
this delay is a function of the length of a critical section (remember, a critical section is
the code between a semaphore lock and unlock; the ‘length’ of a critical section is the
time taken to execute this code) '6. Tt’s not worth going in to the formal proofs of these
properties, but it is important to show how the analysis is updated.

We define the term blocking factor to be the longest time a task can be delayed by the
execution of lower priority tasks, and use the notation B; for the blocking factor of task
1. The blocking factor is easily added in to the analysis we have so far:

Ri=Ci+Bi+ ), {&-‘CJ‘
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How do we calculate the blocking factor? A task ¢ can be delayed when it tries to access
a semaphore which is locked. This is called normal blocking. It can also be delayed when
it tries to lock a semaphore but where the ceilings of currently locked semaphores are
too high. This is called ceiling blocking. It can also be delayed if it is executing ordinary
code when a lower priority task inherits a higher priority and executes. This is called
push-through blocking. So, even if a task does not try to lock semaphores it can still be
delayed by lower priority tasks (for example, look at task B in the example of priority
inheritance we considered earlier: it is delayed by the execution of task C').

A given task 7 is blocked (or delayed) by at most one critical section of any lower priority
task locking a semaphore with priority ceiling greater than or equal to the priority of task
1. We can explain that mathematically using our notation:

B, = max (csk,s)
Vkelp(i)Vs€uses(k)|ceil(s)>pri(7)

18We can find this execution time using the methods we talked about earlier in the course
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What this means is: we look at all the tasks of lower priority than task ¢, and then look
at all the semaphores that they can lock, and then select from those only the semaphores
where the ceiling of the semaphore has a priority higher than or the same as the priority
of task ¢, and then look at the computation time that we hold each of these semaphores
for. The longest of these computation times is the blocking time, B;.

An interesting thing we notice here is that the lowest priority task in the system has a
blocking factor of zero: there aren’t any lower priority tasks to delay it!

Let’s look at an example of how the priority ceiling protocol works. Assume we have

three tasks, A, B, and C.

‘Task Name‘ T ‘ D ‘ C ‘priority‘

A 50 10 3 1
B 500 | 500 | 250 2
C 3000 | 3000 | 1000 3

We also have three semaphores, sy, sy, and s3. They are locked in this pattern:
Task A: ...lock(sy) ...unlock(s1) ...

Task B: ...lock(ss) ...lock(ss) ...unlock(ss) ... unlock(ssz) ...

Task C: ... lock(ss) ...lock(sz) ...unlock(ss) ... unlock(ss) ...

The ceilings of the semaphores are as follows: s; and s, have a ceiling priority of 2, and
S0 has a ceiling priority of 1.

At time ¢y task (' starts running, and tries to lock s3: the priority of task €' is higher
than the ceilings of semaphores currently locked (there aren’t any), and so the attempt
to lock s5 succeeds.

At time ¢4, task B is invoked and (because it’s priority is higher) pre-empts task C.

At time t,, a little later, task B tries to lock s3. This time, there is one semaphore already
locked: s3, which has a ceiling of 2. Task B has a priority of 2, which is not higher. So
task B cannot lock the semaphore, and is blocked. Task C' now inherits the priority of
task B (priority 2).

At time t3, task A is initiated, pre-empts task C (since the task has a higher priority
than the inherited priority C' currently has), and begins executing. A little later, task A
tries to lock semaphore s;. There’s only one semaphore that’s locked: s3, which has a
ceiling of 2. The priority of task A is higher than this, so it is allowed to lock semaphore
s1. Task A carries on executing.

At time ¢4, task A has unlocked sy, and finished executing. Task C' carries on running now
(since task B is blocked, and C' is the highest priority runnable task). Task C' then tries
to lock semaphore sy. The priority of task C' is higher than the ceilings of all semaphores
the semaphores locked by other tasks (there aren’t any), and so the lock is permitted.
Task ' can then carries on executing.

At time t5, task C finishes with s,, and releases it, and carries on executing.

At time tg, task C has finished with s3, and drops back to its original priority (priority
3). Now, task B can lock sy. It can then go on to lock s3, execute, release s3, execute
some more, and then release s,.
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At time 7, task B finishes. Task ' is now the highest priority task, and can continue,
finishing at time ¢s.

Notice how task A is never blocked: its priority is higher than the highest ceiling of
semaphores used by tasks B and C'. Notice also how the blocking time of (' is zero, since
it’s never delayed when trying to lock a semaphore.

Let’s put some numbers to the example, and show how the theory predicts the worst-case
blocking for each task. Task C' holds semaphore s, for 10ms, and s3 for 25ms (remember
that the critical section for sy is nested inside the critical section for ss, so the critical
section for s3 must be longer than the critical section for s;). Task B holds s3 for 5ms,

and s, for 10ms. Task A holds s; for bms.

To find the blocking factor for task A, B4, we look at all the lower priority tasks (B and
(') and then look at all the semaphores they can access (sz and s3). Then we look at
only those that have ceilings with a priority equal to or higher than A: there are none.
So the B4 1s zero.

To find Bg, we look at all the lower priority tasks (just task C') and then look at all the
semaphores they can access (s and s3). Then we look at only those that have ceilings
with a priority equal to or higher than A: both s, and s3 have ceilings equal to the priority
of B, so they both count. The longest computation time a lower priority task executes
while holding s3 is 10ms, and the longest executing time while holding s3 is 25ms. The
largest of these is 25ms, and so Bg is 25ms.

Finally, to find B¢, we look at all the lower priority tasks, but there aren’t any. So B¢
is zero.

Now let’s look at a bigger example. Look at the following table:

‘Task Name‘ T ‘ D ‘ C ‘priority

250 50 |14 1
500 | 200 | 50
800 | 400 |90
800 | 800 | 20

1000 | 1000 | 50
2000 | 2000 | 10
2000 | 2000 | 10
2000 | 2000 | 30
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In the system, there are five semaphores: s;, s9, s3, s4, and s5. The following table shows
how they are locked:
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‘ Semaphore ‘ Locked by ‘ Time Held ‘

S9 D 3
S4 D 3
S1 D 9
S9 H 13
S3 E 4
S3 B 4
S4 A 1
S5 F 7
S5 H 7

We can work out the ceilings of the semaphores very easily:

‘ Semaphore ‘ Ceiling ‘

S1 4
39 4
33 2
84 1
Ss 6

Now it is straightforward to work out the blocking factors. Let’s take the blocking factor
for task D as an example. Tasks K, F', (G, and H are lower priority tasks. These lower
priority tasks together can lock semaphores s;, s3, and s5. Of these s, and s3 have ceilings
with priorities higher than or equal to the priority of task . Semaphore s, can be held
by task H for 13ms. Semaphore s3 can be held by task E for 4ms. The largest of these is
13ms, so the blocking factor of task D, Bp, is 13ms. We can easily calculate the blocking
factors for the rest of the tasks, and can then calculate the worst-case response times.
The following table gives the full results:

‘TaskName‘B‘ R ‘

A 3| 17
B 4 | 68
C 4 1158
D 13 | 187
E 13 | 237
F 13 | 247
G 13 | 271
H 0 | 288

Of course, it’s very boring to have to do these calculations by hand, so it’s best to write
a simple program to do it instead.

4.7 The Immediate Inheritance Protocol

The priority ceiling protocol may be a little hard to understand. It’s also a little difficult
to implement in practice: the scheduling must keep track of which task is blocked on
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which semaphore, and what the inherited priorities are. It’s also quite time consuming
for the scheduler to have to work out whether a task can lock a semaphore or not.

It turns out that there is a simple protocol which has the same worst-case timing be-
haviour. It’s generally called the immediate inheritance protocol. It has the same model
as the priority ceiling protocol (eg. pyramid locking patterns, no holding of semaphores
between invocations, etc.), but has a different run-time behaviour.

It’s run-time behaviour is this: when a task ¢ wants to lock a semaphore s, the task
immediately sets 1ts priority to the maximum of its current priority and the ceiling priority
of s. When the task finishes with s, it sets its priority back to what it was before.

That’s it!

[t’s easy to see why a task 7 is only delayed at most once by a lower priority task (just like
with the priority ceiling protocol): there cannot have been two lower priority tasks that
locked two semaphores with ceilings higher than the priority of task ¢. This is because
one of them will have instantly inherited a higher priority first. Because it inherits a
higher priority, the other task cannot then run and lock a second semaphore.

It turns out that we don’t actually need to lock or unlock s. The reason is simple: the
semaphore s cannot have been locked when task ¢ comes to lock it, because otherwise
there would be another task running with the same priority as ¢, and task ¢ wouldn’t be
running. If task ¢ wasn’t running, then it couldn’t execute code to try lock s in the first
place!

Because the inheritance is immediate, task ¢ is blocked, if at all, before it starts running.
This is because, if a lower priority task holds a semaphore that can block task ¢ it will be
running at a priority at least as high as task ¢. So when task ¢ is invoked it won’t start
running until the lower priority task has finished. At that point, there are no semaphores
held that could block 7, and so task 7 can run freely (unless preempted by a higher priority
task, of course!). This property of the immediate inheritance protocol proves very useful
when we come to implement a scheduler (as we will see later).

In many operating systems, concurrency is controlled by disabling interrupts (many pro-
cessors have prioritised interrupt handlers, too; if you look through the source code to
Unix, you’ll see C procedure calls like sp16() (which stands for ‘set priority level 6):
these are mapped to machine code instructions disabling all interrupts with priorities
less than or equal to 6 (say). This protocol works just like that, only instead of inter-
rupt handlers we have tasks. Because of this similarity, it is very easy to make interrupt
handlers appear just like tasks: if a normal task accesses data shared with an interrupt
handler, the task would execute a SET_PRIORITY call to the scheduler. In the scheduler,
the top few priorities are mapped to processor interrupt priority levels. If the call to the
scheduler said to set the priority of the calling task to one of these priority levels, the
scheduler would disable processor interrupts.

Because the worst-case timing performance of this protocol is the same, the analysis just
developed (ie. the calculation of blocking factors) remains unchanged for this protocol.

For all these reasons, we should use the immediate inheritance protocol instead of the
priority ceiling protocol.
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5 Extensions to Fixed Priority Scheduling

5.1 Introduction

In this chapter we will look at how easy it is to extend the fixed priority scheduling analysis
to handle a more complex model. We have seen that the EDF scheduling algorithm is
not very useful because the model that can be analysed is not very useful. It is important
to be able to extend the model and the analysis so that the scheduling algorithm can be
used.

5.2 Sporadically Periodic Tasks

Very often in a control system, we want to execute a task like this: at most every time T'
the task will be invoked. The task will run, be next invoked time ¢ later, run again, be
invoked t after that, and so on. There may be several invocations of the task in a burst.
In effect, the task executes periodically with a period ¢ when in a burst, and periodically
(or sporadically) with a period no shorter than 7" between bursts.

We call the short period (the time between invocations within a burst) the inner period,
and denote it ¢ (so ¢; is the inner period of a task 7). We call the big period (the time
between bursts) the outer period, and denote it T

Why do we want to execute a task like this? Well, in many control systems we need a
regular input from a sensor, at a period T. But the sensors are usually unreliable, and
must be sampled several times with a small delay in between samples (so that we can
average samples and reject bad readings). With the sporadically periodic model, we can
set t to this small delay.

In order to analyse this, we are missing just one parameter: the maximum number of
invocations in a burst. We denote this n (so n; is the number of invocations of task ¢ in
a burst).

Clearly, the analysis we develop should be equivalent to our existing analysis when T' = ¢
and n = 1 for all tasks. Just as a reminder, take another look at our existing analysis:

Ri=Ci+Bi+ ) {&-‘CJ‘
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(B; is the blocking factor of task ¢, and takes account of the time that a lower priority
task can block task i: we looked at how to compute B; in the previous chapter).

What needs to be changed with this analysis to include sporadically periodic tasks? Well,
we might make no changes at all, and say that a sporadically periodic task j is invoked
with time ¢; between all invocations for ever more. That would be fine — the analysis
would still be sufficient — but it would be over-estimating the effect of that task on lower
priority tasks. If, for example, the outer period of task j is infinite (ie. the burst is
invoked only once) then there can be at most n; invocations of the task. But the analysis
above would say that there are a lot more invocations of task j delaying task 1 — especially

if R; is large.
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So what we need to do to update the above equation to handle sporadically periodic tasks
better is to change the ‘interference’ term:

This gives the maximum time that task j can delay task : whilst task ¢ is executing.
This delay we sometimes call the interference. In fact, in the above equation the term
is made up from the maximum number of invocations multiplied by the maximum time
an invocation can take. The term R; in the equation is the longest time that task ¢ can
be running for — the worst-case response time of task ¢ — but it can also be viewed as a
‘window” over which we are measuring the interference from a higher priority task (later
we’ll see how this window isn’t always the same as the worst-case response time, but for
now we'll say that it’s of duration R;).

When we have ‘bursty’ behaviour, this interference term needs to be modified. We can
do that by finding a better limit on the number of invocations whilst task ¢ is running.

We need to make a restriction on the bursty behaviour though: we must have the burst
taking no longer than the outer period (otherwise we don’t have bursty behaviour!). So
we must have n;t; <Tj.

The first question we ask is “How many complete bursts of a task j can fall in the
window of duration R;?” We can then multiply this number by n; to give the number of
invocations of task j in full bursts.

If we assume that the worst-case interference from task j happens when the start of a
burst occurs at the same time that task ¢ is released (the start of the ‘window’ of duration
R;) then there can be at most one burst that doesn’t fall completely in the window: it
can ‘straddle’ the end. A few invocations from the last burst could occur before the end
of the ‘window’ (preempting task 7, and hence delaying it). And a few would then occur
after the end of the ‘window’ (too late to preempt task ¢, because it would have finished).

We should be able to see that the number of full bursts of task 7 is bounded by:

The function |x] is the floor function, that rounds down to the nearest integer (it’s the
opposite of the ceiling function we’re familiar with).

That’s answered our first question. What about the second: how many invocations from
a burst partially falling in the window?

We can answer that by knowing how long the window is, and how much of that window
has been used by full bursts. There is time T} between bursts of task 7, so if we know
the number of full bursts and multiply it by this time then we have the time taken up by
full bursts in the window:

The remaining time is the part of the window that a partial burst can execute over:
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This remaining time is, in effect, another window, over which task j will execute peri-
odically with a period of ¢;. We already know a bound for the number of invocations

of tasks behaving like this: our original analysis contains the bound. But this time the
window 1sn’t of duration R;. So the bound is:

J
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Now we can add this bound on the number of invocations in an incomplete burst to the
number of invocations in complete bursts:
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Where F} is given by:
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(we did this to simplify the equations a little bit).
Finally, we can put this back into our original analysis, replacing the term [%W
R, — F;T;
R, = C;+ B; + Z (’74-‘ —I—TL]‘FJ‘) C]' (1)
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And there we have it: new analysis taking account of bursty behaviour. Of course, if a
given task 7 doesn’t behave in a bursty manner, then we just set n; =1, and ¢; = Tj.

The reader might like to prove that doing this for all tasks reduces the equations back to
our original analysis (Hint: [« + a] = [2] + a if « is an integer).

Note that Equation 1 can be extended. Because the final incomplete burst can consist of
at most n; invocations of 7, the bound on the number can be changed from:

Fﬁ—ﬂ@w

to:

giving a final equation of:

Ri = CZ—|-BZ—|- Z (mm (’771[{ / J ]-‘,TL]‘) —I-nij) C]'
) i
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You should still be able to prove that if n; = 1 and T; = ¢; for all tasks then the updated
equation for R will be the same as the original equation for RE. To do this you will have
to know [x] — 1 = |z| iff # is not an integer.

5.3 Release Jitter

So far we have talked about invoking tasks. We need to be a little more precise about
the word invocation: we say that a task is invoked if it could logically be made runnable
at or after that time. The scheduler makes a task runnable by releasing it — usually this
means placing it in a priority-ordered queue of runnable tasks, and switching to the task
if it at the head of the queue.

So far we have assumed that there is a minimum time 7} between successive invocations
of a task 7, and that the task is released as soon as it is invoked. But what if there is a
variable (but bounded) delay between invocation and release? Even if the invocations of
a task are made at regular periods, the release of the task will ‘jitter’ about. We call this
release jitter. We can define it like this:

Release jitter is the difference between the earliest and latest releases of a task
relative to the invocation of the task

It turns out that our original equations don’t handle release jitter: a task may be invoked
with time T' between invocations, but it is not guaranteed to be released with a minimum
of T between invocations. Consider the following example:

We have two tasks: a high priority task H with Ty = 30, Cy = 10, Dy = 20,
and a low priority task L with Ty = 1000, Cp = 15, Dy = 25.

By our existing analysis, this is schedulable: task H has a worst-case response
time of Ry = 10, and task L has a worst-case response time of Ry = 25.

o At time ¢ a high priority task is invoked. But there is a delay of 10ms
before the scheduler releases the task (the task might be invoked by a
message sent from one processor to another, with a delay of up to 10ms
for the message to get to its destination).

o At timet¢ a high priority task is invoked. But there is a delay of 10ms At
time t + 10 a low priority task is released, but immediately preempted
(because the high priority task has just been released too).

o At timet¢ a high priority task is invoked. But there is a delay of 10ms At
time ¢ 4 20 the high priority task finishes executing, and the low priority
task starts running.

o At time ¢ a high priority task is invoked. But there is a delay of 10ms
At time ¢t + 30 the high priority task is invoked again, but this time the
delay between invocation and release is just Ims (so task H is released
at time ¢t + 31; task L has completed 11ms of executing by this time).
Task H starts running.

o At timet¢ a high priority task is invoked. But there is a delay of 10ms At
time ¢ 4+ 41 task H completes executing. But task L has already missed
its deadline (its deadline was 25ms after it was released at time ¢ 4 10).
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Task H has experienced release jitter, and caused task L to miss its deadline, even
though our existing analysis said this wouldn’t happen. This is because there was just
21ms between two successive releases of task H; the analysis assumes 30ms (ie. Tg).

Notice how if the delay between invocation and release was constant then task H would
experience no release jitter.

So we must amend the analysis if we want to allow tasks to experience release jitter.
Let J; be the release jitter of a given task 7 (ie. the difference between the longest and
shortest delays from invocation to release).

We can go back to the example and see that Jy was 9. In the example task L is preempted
twice if Ry > 21. generalise this and say that two preemptions of task L occur if:

RL>TH—JH

Task L is preempted three times if:

Ry > 2Ty — Jg

(you can see this by ignoring the computation time required by task L in the example
and keep extending its execution).

Task L is preempted four times if:
Ry > 2Ty — Jg

We can generalise this and say that task L is preempted x times if:

RL>($—1)TH—JH

To work out the maximum number of preemptions of task ¢ we need to find the maximum
value of =, given Ry, Ty, and Jy. We re-write the above as:

Ry +Ju
TLEIH (-1
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The largest value of @ — 1 that satisfies the above condition is (by definition of the ceiling
function):

And so the largest value of x satisfying the condition is given by:

"RL + JH-‘
T

This is the largest number of preemptions of a lower priority task L by a higher priority
task H. This is just what we need to update our existing analysis to include release jitter:
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Only we have a slight problem with where to measure the worst-case response time from?
Should the worst-case response time R; include the delay between invocation and release?
(ie. should we measure the response time relative to the invocation of the task, or the
release of the task?). Well, the most sensible way would be to measure it from the
invocation. So we can re-write our equation like this:

i+ J;
wi=Ci+Bi+ Y {%-‘CJ‘
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Where w; is the time taken for the task to complete once it has been released. The
notation ‘w’ is used because the time the task is running for is a time window, during
which higher priority tasks can be released and preempt.

The worst-case response time is now given by:

Ri=J;+w;

This can be compared to the deadline D; as before. But there’s a slight problem: because
we have changed where we measure the response time from, and hence where we measure
the deadline from, the optimal priority ordering is no longer deadline monotonic. Instead,
we must order our tasks in D — J order.

We should still want to restrict the deadline of a task to be less than the period of
the task if we want to make sure that at any time only one invocation of the task is
runnable (we will see later in this course when we look at distributed systems and real-
time communication that we need to make this restriction for real time messages).
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6 Distributed Hard Real-Time Systems

6.1 Introduction

When we talk about distributed real-time systems there are lots of issues to consider, but
the most important of these is communication. In a distributed system, by definition,
a number of processors communicate results via some media. In order to reason about
end-to-end timing behaviour — where we wish to talk about the longest time between an
event on one processor and some resulting action on another — we must not only be able
to talk about the timing behaviour of the processors, but also the timing behaviour of
messages sent on the communications media. The goal of this chapter is to be able to
predict the longest time between a message being queued and the message reaching its
destination.

A lot of work has been done over the years in developing and dealing with real-time
communications. Many different communications protocols have been proposed, and
people have tried to show how each can be used to give timing guarantees for real-time
messages. In this chapter we will be talking about one of these protocols, and show how
we can get the timing guarantees we need. This network protocol is called Controller

Area Network, or CAN for short.

CAN was first thought about in the late 1970’s in the car industry: there is a problem
when trying to connect together a number of processors over a cheap shared serial bus,
and CAN was designed to overcome this. The first problem is to find a protocol which
has a good real-time performance (where urgent messages are prioritised over less urgent
messages), and which can be analysed to show worst-case timing behaviour.

With a shared communications media we have the problem of deciding who gets access
to the media, and when. This is just like the processor scheduling problem (deciding
who gets access to the processor), but with a difference: the decision making procedure
cannot be centralised (like on a CPU). All the processors in the distributed system must
agree on some protocol for access to the bus. This protocol must have good real-time
performance, and must be analysable for the worst-case timing behaviour.

Before CAN, most real-time protocols were based on the idea of a token: a processor
gets the right to transmit on the shared network when it receives a token. After it has
finished transmitting (or, more usually, after some time limit) it must pass the token on
to another processor. The token is passed around all the stations in a logical ring.

The real-time behaviour of token passing protocols aren’t usually very good: this is
because a processor with very urgent data to send must wait for the token to return,
which can take a long time. It can take a long time because each other processor in the
system is allowed to hold the token for some period of time, even if the processor has only
non-urgent messages to send. In effect, an urgent message is delayed by the transmission
of a lot of non-urgent messages: we called this priority inversion when we talked about
processor scheduling. Priority inversion reduces the real-time performance of a protocol.

One approach that token passing protocols try to take is to make the time each processor
can hold the token a short period of time. However, the side-effect of this is that the
proporation of the bus utilisation used for passing the token go up, and so the available
bandwidth for sending messages goes down. This also affects real-time performance.
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The approach taken by CAN is different: it associates a priority with each message to
be sent, and uses a special arbitration mechanism to ensure that the highest priority
message is the one transmitted. The priority of a message is a unique static number,
and can also be used to identify the message. This is why the priority is known as the
identifier. Because CAN uses fixed priorities to arbitrate between messages, we should
be able to use the results of our processor scheduling theory to work out the longest time
taken to send a message: the goal of this chapter. In the rest of this chapter we will
describe the CAN protocol in more detail, and then show how to analyse its worst-case
timing behaviour.

6.2 The Basic CAN Protocol

CAN is shared broadcast bus, with limits on speed and length (these are very important
to the protocol as we will see in a moment): at 1Mbit/sec the bus must be no longer
than 50m; at 500Kbit/sec the bus must be no longer than 100m. The bus can have an
arbitrary number of stations connected to the bus (a station is a processor plus a special
controller which communications from the processor to the bus, and vice versa).

Each station has a queue of messages, ordered by priority, that it wants to send. While
the bus is busy (i.e. there is a station already sending a message) the stations wait. As
soon as the bus becomes idle, all the stations with messages to send enter into the CAN
arbitration algorithm. Each station starts to transmit the priority of its highest priority
message, from most significant bit to least significant bit.

They all start to transmit at the same time, and normally this would result in gobblede-
gook on the bus. But the bus has some interesting electrical properties: if any one station
transmits a ‘0" bit then the state of the bus will be ‘0’, regardless of what other stations
try to transmit. The state of the bus can only be a ‘17 if all stations transmit a ‘1’. In
fact, the bus behaves just like a giant AND-gate. Because of this behaviour, the ‘0’s are
called dominant bits, and the ‘1’s are called recessive bits.

Each station monitors the bus during transmission. During arbitration, if a station
transmits a ‘1" but monitors the bus and sees a ‘0" — a collision — then it knows that there
was another station transmitting still. The arbitration protocol says that any station
detecting a collision must back off: because messages are transmitted with the most
significant bit first, the station detecting a collision does not contain the highest priority
message in the system, and must wait until the next time the bus is idle before entering
arbitration again.

Let’s take an example. Suppose we have three stations, A, B, and C. Station A’s highest
priority message has a priority of 4 (100 in binary). Station B’s highest priority message
has a priority of 5 (101 in binary). Station C’s highest priority message has a priority of
7 (111 in binary). After the idle period, all three stations start to transmit the message
priorities, most-significant-bit first.

First, all three stations transmit ‘1’ (a recessive bit), and all three stations read a ‘1’.
Because all three stations read from the bus what they sent to the bus, no station backs

off.

Next, stations A and B send a ‘0’, and station C' sends a ‘1’. Because at least one station
has sent a dominant bit (a ‘07), all three stations will read a ‘0’. Stations A and B read
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what they sent, and do not back off. However, station C' sent a ‘1’ but read a ‘0’, and
so knows that it does not contain the highest priority message. So it backs off (but will
enter arbitration the next time the bus becomes idle).

Next, station A sends a ‘0’, and station B sends a ‘1’ (station C' does not transmit
anything because it has backed off). Both stations A and B will read a ‘0’. Station B
detects a collision and backs off, leaving station A to carry on transmitting the rest of its
message.

So the highest priority message — priority 4 — is transmitted on the bus. Notice how lower
numbered messages are of higher priority (zero is the highest priority). Notice also how,
from the view of station A, the message is transmitted without interruption: station A
cannot tell if the bus was free of other stations, or if all stations tried to send data but

failed.

A message is more than just its priority: after the priority has been transmitted, and
arbitration finished, the rest of the message is transmitted. A CAN message contains
several field: the priority (or identifier field) as we just mentioned. This consists of 11
bits. The field containing the data in the message is between 0 and 8 bytes long. Finally,
there are some other trailing fields (a CRC field for checking the message has not been
corrupted, and some other ‘housekeeping’ fields). In a CAN message, there are 47 bits of
overhead and between 0 and 64 bits of data.

CAN has a special bit pattern as a marker used to signal errors to all stations on the
bus. The marker pattern is six bits of the same sign in a row: 000000 or 111111. We
must make sure that the bit format for a message doesn’t contain this special marker
by accident (for example, the data field might contain these values. We solve this by
bitstuffing: whenever the CAN controller (the interface between the CPU and CAN bus)
spots five bits in a row of the same sign, it inserts an extra bit of the opposite sign into
the bitstream (for example, if the bit stream contains ...00000. .. then after bit stuffing it
contains ...000001...). At the receiving controllers, the stuffed bits are stripped out. Of
the 47 bits of overhead (identifier, CRC, ete.), 34 of them are bitstuffed, along with the
data field. So we can work out how many stuff bits might be inserted into the bitstream:

{34 + SnJ
5

where n is the number of bytes in the message. Of course, we might do better than this if
we knew the identifier of the message, and knew something about which values the data
part of the message could contain.

6.3 Basic CAN Timing Analysis

As we mentioned in the introduction, we ought to be able to apply the work we have done
on processor scheduling to CAN scheduling. The first thing we must work out before we
do this is to answer the question “How long does it take to transmit an n byte message?”
As we mentioned in the previous section, the CAN protocol inserts stuff bits into the
bitstream. The total number of bits in a CAN message before bitstuffing is:

8n + 47
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Therefore the total number of bits after bitstuffing can be no more than:

34 + SnJ

847{
n—l——l—5

Let 74;; be the time taken to transmit a bit on the bus — the so-called bit time. The time
taken to transmit a given message ¢ is therefore:

34 4 8s;
CZ' = (882' +47 + {%J) Thit

where s; i1s the size of message ¢ in bytes. Notice how this time is denoted Cj: it is
analagous to the worst-case computation time of a task.

If we put s; = 8 into the equation, and assume a bus speed of 1Mbit/sec (1 = 1 us),
we get C; = 130pus. This is a good figure to remember: the largest message takes 130 bit
times to send.

If we want to apply the processor analysis to CAN bus, we have to adopt the same
model: each message ¢ has a periodicity T;, a transmission time C;, and a queueing jitter
J; (queueing jitter is just like release jitter for tasks). The priorities of messages are
unique (in fact, the CAN protocol requires unique identifiers). A message can also suffer
from blocking: when a message is delayed by the transmission of a lower priority task
(just like when a lower priority task delays a higher priority one). This blocking time is
denoted B;.

We have already established the transmission time C;. The blocking time is easily estab-
lished too: a higher priority message could be queued just after arbitration starts (and
is too late to enter ino arbitration). The longest time until the next arbitration period
is the time for the longest message to be sent. Without knowing details of all the low
priority messages on the bus, we can say that this will be no more than 130 bit times. If
we do know about all the lower priority messages, then we need to find the largest one
sent and work out its transmission time. So, B; is given by:

B; = max (C;) < 1307
Vkelp(7)
Finally, we can take our existing equations for processor scheduling theory and apply
them here:

Ri=J;+w;

i+ J;
wi=Ci+Bi+ ) {7“); ]-‘CJ‘
Viehp(i) J

That may seem like “end of story”, but there’s more: the equations above are contra-
dictory about how the protocol behaves. In one part they assume that a lower priority
message cannot be interrupted by a higher priority one once they start transmission
(hence the calculation for B;). In another part, they assume that message ¢ can be inter-
rupted by a higher priority message. This should be fixed, because otherwise the analysis
1s pessimistic.
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A higher priority message 7 cannot preempt message ¢ if j is queued after the first bit
of ¢ has been transmitted: this is because the arbitration has started, and any higher
priority message must wait until the bus becomes idle. So, we need to find the longest
time taken for the first bit of task ¢ to be transmitted without interference from higher
priority messages. This queueing time is given by:

w; + J;
w; = Tyie + B + Z {TJ-‘ ¢
Viehp(i) J

The worst-case response time of the message includes the queueing jitter, the queueing
time (the longest time before the first bit of the message is sent without interference),
and the time taken to send the rest of the message (the whole message minus the first

bit):

Ri=J +w+C;— To

We can re-write the above two equations as:

Ri=J; +w; + C;

where w; 1s given by:

i+ J; ;
wie Bt Y {qu
()

Vjehp T;

So there we have it: analysis for messages sent on CAN bus.

6.4 Attribute Inheritance

So we should be able to apply the analysis to any given distributed system, and work out
end-to-end response times, right? Wrong! We still have some values in the equations to
fill in: how is the queueing jitter of a message worked out?

The answer comes from the idea of attribute inheritance: a task is invoked by some event,
and will queue a message. The message could be queued soon after the event (for example,
if there were no higher priority tasks, and the execution time to queue the message was
small). The message could be queued late after the event: when the worst-case scheduling
scenario occurs. This difference between the shortest and longest queueing times is, of
course, the queueing jitter. We can say that the shortest time is zero (we might be able
to do better than this with more clever analysis, but zero is a safe assumption). We can
say that the longest time is the worst-case response time of the queueing task (again, we
might be able to do better than this assumption). So, the queueing jitter of a message 1
is given by:

Ji — Rsend(i)

where send(i) is the task that sends message .
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But the reverse happens too: what if a task is released when a message arrives? If this
happens, then the task inherits release jitter from the message — in just the same way
as a message inherits queueing jitter from the sending task. The soonest a message ¢
can reach the destination processor is 47 bit times (the smallest message is 47 bits long).
The latest a message ¢ can reach the destination processor is R;. So the destination task,
dest(1), inherits a release jitter of:

Jaest(iy = B — 47703

Now we are starting to get close to our goal of obtaining worst-case end-to-end response
times. The worst-case response time of task dest(7), Raest(s), is measured from 477y after
the event invoking task send(i). So, the time 477y + Ryeq(;y gives the end-to-end time
from the event invoking task send(i) to the completion of the task dest(7).

So, 1s that the end of this chapter? No, because there are one or two problems yet to
solve. The first is to do with the overheads due to receiving a message from the CAN
controller.

6.5 Message Processing Overheads

With most CAN controllers, when a message arrives at the controller, an interrupt is
raised on the host processor. The processor must then copy the message from the con-
troller into main memory (and can then process the message, including releasing any
tasks waiting for the message). This interrupt handling takes time, and we've already
seen how we’ve got to bound these overheads.

One way of bounding the overheads is to assume that messages arrive at their maximum
rate (once every 47 bit times). This gives an additional interference factor of:

w:
: Cmessa €
"477'52'75 -‘ g

where O cs50ge 15 the worst-case execution time of the interrupt handler dealing with
messages.

But this can be pessimistic: we know that messages can’t arrive so rapidly for a long
period of time. We can do the same thing we did when modelling overheads for the
scheduler: we can create a set of high priority fictitious tasks, with the worst-case execu-
tion time of the task equal to U es50ge. A fictitious task is kicked off by the arrival of a
message, and so inherits a release jitter just as we described above. So, we can say that
the overheads due to message arrival interrupts are:

3 w; + Ry — 477
T;

-‘ Cmessage

Vj€incoming
. . L Ce
where incoming is the set of all messages coming in to a processor and raising “message
arrived” interrupts.

We now have two bounds for the overheads, and can take the lower of the two bounds.
So, the factor we would add to our task scheduling equations is:
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. w; + Ry — 477 [ wi "
min ( Z ’V T] -‘ 5 4777)# Cmessage

Vj€incoming

6.6 The “Holistic Scheduling” Problem

There’s one final problem we must solve before we can use the analysis we’ve developed:
the so-called holistic scheduling problem.

The equations giving worst-case response times for tasks depend on the timing attributes
of messages arriving at the processor (for example, the release jitter of a task kicked off
by a message arrival is inherited from the worst-case response time of the message; also
overheads from “message arrived” interrupts are dependent on the worst-case response
times of incoming messages). So we cannot apply the processor scheduling analysis until
we have applied the bus scheduling analysis. But equations giving worst-case response
times for messages depend on the timing attributes of tasks queueing the messages (for
example, the queueing jitter of a message queued by a task is inherited from the worst-
case response time of the message). So we cannot apply the bus scheduling analysis until
we have applied the processor scheduling analysis.

If we cannot apply the processor scheduling analysis until we have applied the bus schedul-
ing analysis, and vice versa, then how can we apply the equations? Well, we had a similar
problem when trying to find the worst-case response time of a task: we couldn’t find R;
until we knew R; because it appeared on both sides of the equation! We solved the
problem then by iterating to a solution, and we can do exactly the same now.

The first step is to assume all the calculated timing attributes are zero. Then we can
apply both sets of analysis (for processors and for the bus) to obtain new values. We
can then reapply the analysis with these new values. The iteration carries on until the
calculated values don’t change.

6.7 Summary

We have described the CAN bus protocol, showed how the timing analysis we had for
processor scheduling could be applied to message scheduling, and showed how release
jitter is inherited. The processor overheads due to handling messages was bounded. We
showed how the inheritance of release jitter leads to the holistic scheduling problem. This
problem can be overcome by iteration over successive approximations.
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7 Implementing Fixed Priority Schedulers

7.1 Introduction

We mentioned several times in previous chapters how the scheduling equations we have
developed so far do not allow for the behaviour of an implemented scheduler. For example,
the equations assumed zero scheduling costs. In this chapter we will describe two common
ways of implementing a fixed priority scheduling and show how the analysis can be
changed to account for the behaviour of these implementations. First, though, we need
to talk about context switches.

7.2 Context Switch Overheads

The context of a task is the set of registers that the task uses. On a processor like the
63000, there may be many registers: temporary data registers, the program counter,
the stack pointer, the status register, and so on. There may also be other registers
which control the memory management hardware (mapping logical memory addresses to
physical addresses in RAM), the floating point unit, etc. When the scheduler wants to
switch from running one task to running another task, it must save the context of the
old task, and load the context of the new task. The place where the context of a task is
saved is usually called the task control block, and the save and load process is known as
a context switch.

The context switch can take some time to execute (try writing one for the 68000 and count
the number of cycles), and there can be a lot of context switches over the execution of
a task. These overheads can mount up and be quite considerable, so it is important to
bound the execution time due to context switches.

Every preemption of one task by another task could results in fwo context switches: one
switch from the lower priority task to the preempting task, and one switch back again
when the preempting task completes. So if a higher priority task j preempts a task ¢ five
times, there can be ten context switches due to that task. But we know how many times
a high priority task can preempt a lower priority one: our existing analysis tells us this,
and uses it to work out the total time a high priority task can execute, delaying a low
priority task. So, to allow for the context switches we can add to the computation time
of each task the time taken for two context switches. If we denote the context switch
time as (s, then we can update the analysis we have so far:

R = J; +w;

(Remember that we choose to measure the worst-case response time from when the task
is invoked, and not when it is released: the release jitter .J; is added on to the worst-case
response time).

Recall that the term w; represents the worst-case “queueing delay”: the time between
releasing the task in to the priority ordered run queue, and the time when the task
completes its execution. The term is given by:
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Vi€hp(i)

{uw (C +2C.)

T;

So we have accounted for the computation time costs of context switches. But there is
one more job to do: the code for a context switch is usually not preemptible, and so one
task cannot preempt another while a context switch is going on. To allow for this delay
we must make sure that the blocking factor takes account of this. One simple way to do
this is to make sure that for all tasks the blocking factor B is at least Cy,.

7.3 Implementation: Event Scheduling

We have yet to talk about the details of how the scheduler is implemented (apart from
talking about context switches and blocking in the kernel). In this section we will talk
about one way of implementing a fixed priority scheduler: the event scheduling approach.

We create two queues of tasks in the scheduler: one is called the run queue, and is ordered
by task priority. The other is called the delay queue, and is ordered by the time a task
wants to next be released. When a task executes a DELAY_UNTIL call, the scheduler takes
the task from the run queue, and places it into the delay queue, ordered by the parameter
of the DELAY_UNTIL call. When the scheduler has moved the task between the two queues,
it sets up a hardware timing chip to interrupt the CPU at the release time of the task at
the head of the delay queue. The scheduler then context switches to the task at the head
of the run queue.

When the interrupt from the timer chip occurs, all the tasks in the delay queue with
release times before or the same as the interrupt time will be moved to the run queue.
The scheduler sets up the timer chip for the next interrupt, and then switches to the
highest priority task.

As we mentioned before, the delay for the scheduler can be accounted for by making sure
the blocking factor B for all tasks includes the time for the DELAY_UNTIL call. The time
taken to process the call is accounted for in the worst-case execution time of the task
making the call. But there is other computation in the scheduler not accounted for: the
time processing the timer interrupts.

How can we allow for the computation from timer interrupts? A simple way to do this
is to realise that an interrupt occurs at the same time as a task wants to run. For each
real task in the system, we can create a “fictitious” task: each has a very high priority,
the same period as the real task it models, and an execution time equal to the worst-case
computation time required by the interrupt handler.

The following equation updates our analysis to handle this model:

Ri=J;+w;

(as we had before)

Vi€hp

’Vwi + J]‘

Cimer
T; w t

T ﬂ(C]‘Jr?Csw)Jr >

Vi€alltasks

’Vwi + J;
(1)



7.4 Tick Driven Scheduling 47

Where Cliper is the time taken to respond to the timer interrupt (ie. to move a task from
the delay queue to the run queue). If a new task becomes the highest priority task, a
context switch is required. The time for this is accounted for with 2C, (as we talked
about earlier). alltasks is the set of all tasks in the system (including task 7).

This equation shows that the scheduler causes priority inversion: a task of lower priority
than ¢ shows up in the set alltasks. This is because the timer interrupt occurs at high
priority, even though the interrupt handler may do work that is on behalf of a low priority
task.

There are some awkward problems to overcome when using event scheduling: the timer
hardware must be quite sophisticated. The scheduler needs to program the timer to
interrupt at some future time, which requires that the timer be able to store long times.
On most processor boards, the timer is not big enough to store large durations, and will
often ‘wrap’ around. This causes more complexity in the scheduler: when the timer wraps
this must be detected by the scheduler so that it can keep track of the current time. To
do this an interrupt must be generated when the timer wraps, causing more scheduling
overheads (these can be modelled easily by creating a ficticious task with a period equal
to the maximum duration of the timer). Another problem with this timer is the race
condition problem: the scheduler may instruct the timer to interrupt at a time so near in
the future that by the time the scheduler has finished the context switch to the new task,
the timer interrupt may have already occurred again. With some pieces of hardware an
interrupt may be lost if it occurs while a previous interrupt from the same device is still
being serviced.

Because of this complexity in implementation, a simpler (but less efficient) approach was
taken: tick driven scheduling.

7.4 Tick Driven Scheduling

Tick driven scheduling is a simpler approach to implementing fixed priority scheduling. As
before, the scheduler can be invoked by a task making a DELAY_UNTIL call, and as before
the scheduler makes context switches whenever a new task becomes the highest priority
runnable task. However, unlike the event scheduling approach, the timer interrupt is not
programmed to interrupt at a specific time. Instead, the timer hardware is programmed
to raise an interrupt to invoke the scheduler at a regular interval, called the tick period
Tyick. When the scheduler is invoked by the timer interrupt, it merely polls the delay
queue to see if there are any tasks to be made runnable (ie. to be inserted in to the
priority-ordered run queue).

This removes the problems with the event scheduling approach: there are no race condi-
tions or lost interrupts as long as the scheduler takes no longer than T};.. to finish. But
the analysis for event scheduling is no longer sufficient: because the scheduler polls for
the release of tasks, they may be delayed by up to a polling period. This delay is not
accounted for in the existing analysis, and so we must update the analysis.

We talked in previous chapters about how a task might be delayed from being logically
invoked to actually being released: we called this problem release jitter. We have a similar
problem here with tick scheduling: a task may be released as soon as it is invoked (for
example, if it is invoked just as the scheduler starts to run), or it may be delayed for some
time (for example, if it is invoked just after the scheduler starts to run). So we can see



48 7 IMPLEMENTING FIXED PRIORITY SCHEDULERS

that a given task may be delayed from invocation to release by between zero and Ty;..
We can account for this delay by saying that the task inherits an additional release jitter
from the tick scheduler of Ty, the tick period.

We must also account for the time the tick scheduler takes to run. We could do this
by finding out the worst-case execution time of the scheduler, and then treating it as a
simple high-priority periodic task with period T};.x. In the worst-case, the scheduler must
move all the tasks from the delay queue to the run queue, taking some time. But this
situation occurs only rarely (in fact, only when all tasks are due for release at the same
time), and so this approach to modelling the overheads would be very pessimistic.

A better thing to do is to create a set of “fictitious” tasks (just like we did for event
scheduling) to model the queue manipulation costs, and to create a simple periodic task
with period Ty, to model the costs of the timer interrupt.

Because the tick scheduling approach leads to inherited release jitter for tasks, we must
make sure that the ficitious tasks also inherit the same release jitter. So, we can put
together these things to update our simple analysis to take account of the behaviour of
a tick scheduler:

Ri = J; + Tyick + wi

(notice how Ti.r adds to any release jitter task ¢ may already have had)

wi + Jj + Thie wi + Jj 4+ Thic i
Wy = Oz +2Csw + Bz + Z [Jitk-‘ (O] + zcsw) + Z [Jitk-‘ Oqueue + ’V v —‘ Ctick

) TJ T] Tyick
Vji€hp() Vj€alltasks

where Cyyeye 18 the time taken to move a task from the delay queue to the run queue, and
Chick 1s the time taken to handle the tick interrupt (saving registers on the stack, ete.).

Notice how Ty, adds to the release jitter of both the real tasks and the fictitious tasks.
Also notice how the interrupt handling costs are modelled. Also, just as we had with the
event scheduling, the longest time the scheduler is non-preemptible counts towards the
calculation of B;.

Finally we discuss the inherited release jitter again: if a task is a strictly periodic task,
and has a period that is an integer multiple of T}k, and is defined to be invoked when
the tick scheduler is invoked, then the task does not inherit any extra release jitter. This
is because when the scheduler is invoked, the task has only just been invoked itself, and is
then immediately released: this means that (by definition) it wouldn’t suffer any release
jitter. So the term J; 4+ Ty, could be removed from the above equation. This is useful
because it means that by carefully choosing the value of T};.. we can reduce the delays a
task experiences, and make that system easier to show to be schedulable.

To summarise: we have discussed how to implement fixed priority scheduling with a tick
approach, and have updated the analysis to take account of its behaviour.

7.5 Comparing the Two Scheduling Models

We can now compare the two scheduling models and see what advantages and disadvan-
tages each has.



7.6  Summary 49

An important advantage of the tick scheduling approach is that it is simpler: this means
that it is easier to write, and easier to understand. Also, it does not require so much
hardware support as event scheduling: remember that event scheduling requires a timer
that we can program to ‘interrupt at’ some time. Even if we do have this hardware,
we must be careful how we handle timer overflows: to measure a long interval of time,
most timers will wrap around, and we must keep track of how many times this happens
(otherwise we cannot keep track of the current time). Event scheduling can also suffer
from race conditions: where the next event can occur before the current event has been
dealt with (with some hardware we might lose interrupts because of this).

Event scheduling is generally more efficient than tick scheduling: we can see from the
equations that in general the tick approach leads to release jitter, and hence delay. This
affects the real-time performance of the system. We have mentioned how some tasks
might not inherit release jitter, and if most of the system is made up of tasks like this
then the difference may not be so great. Because we now have analysis to describe the
impact of the scheduling approach, we can make a quantitative decision for a given system
about which of the two approaches to use. This is especially useful when we come to
choose a value of Ty, too large a value, and the release jitter (and hence worst-case
response time) of a task becomes too big. Too small, and the overheads from timer
interrupts become too large.

7.6 Summary

We saw how to account for the timing behaviour of scheduling implementations. The
scheduling overheads are made up from the context switch costs, timer interrupt handling
costs, and the costs of manipulating the delay and run queues. For tick scheduling, there
is the additional impact of inherited release jitter. The event scheduling approach is more
efficient than the tick scheduling approach, but tick scheduling is easier to implement and
requires less hardware support.
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& Problems

1. Below is a table which shows a task set of six tasks:

8§ PROBLEMS

‘TaskName‘ T ‘D ‘C‘

A 1000 | 20 | 3
B 100 | 100 | 10
C 50 | 50 |20
D 57 10 | 5
E 33 | 33 | 1
F 7 7 1

a

(
(b

C

)
)
)
d)

(
(
priority order?

(e) Are all deadlines met?

What is the utilisation of this task set?

What is the priority ordering if rate monotonic is used?
What is the priority ordering if deadline monotonic is used?

What are the worst-case response times of the task set in deadline monotonic

(f) What are the worst-case response times of the task set in rate monotonic

priority order?

(g) Are all the deadlines met?

(h) Add a task called FT" with a period of 30, a deadline of 5, and worst-case

computation time of 2. The new task set now looks like this:

‘TaskName‘ T ‘D ‘C‘

A 1000 | 20 | 3
B 100 | 100 | 10
C 50 | 50 |20
D 57 10 | 5
E 33 | 33 | 1
F 7 7 1
FT 30 5 | 2

In deadline monotonic priority order,
times? Are all deadlines still met?

2. Below is a table which shows a task set of seven tasks:

what are the new worst-case response

‘TaskName‘ T ‘D ‘C‘

A 1000 | 20 | 3
B 100 | 100 | 10
C 50 | 50 |20
D 57 10 | 5
E 33 | 33 | 1
F 7 7 1
FT 30 5 | 2
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There are also four semaphores: Sy, S5, 53, and S4. They are locked as follows:

‘ Task Name ‘ Semaphore Name ‘ Held For ‘
St 2
S3
Sy
S3
Sy
S1
Sy
FT St

Q|| I ®| T | =

== N DO O =T N

(a) Assuming the deadline monotonic priority ordering, what are the priority ceil-
ings of the four semaphores?

(b) What are the blocking factors of the seven tasks?

(¢) What are the worst-case response times of the tasks with these blocking fac-
tors?

(d) Are all deadlines met?

3. Below is a table which shows a task set of six tasks:

‘TaskName‘ T ‘D‘C‘

A 35 3519
B 7 7 2
C 60 |50 | 5
D 1000 | 30 | 10
E 30 |20 3
F 60 |55 | 10

There are also two semaphores: 57 and S3. They are locked as follows:

‘ Task Name ‘ Semaphore Name ‘ Held For ‘

A S 2
C S2 2
E S 3
F S2 3

(a) What are the worst-case response times of these tasks if deadline monotonic
ordering is used?

(b) Are all deadlines met?

(¢) Now modify task B so that instead of executing always with a period, it has
an inner period (¢) of 7, and outer period (T') of 75, and executes three times
(n = 3) in each “burst”. The table gives the modified task set:
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‘TaskName‘ T ‘ t ‘n‘D‘C‘

A 35 3 [1]135] 9
B 75 7 3|72
C 60 60 | 1]30] 5
D 1000 | 1000 | 1 | 30 | 10
E 30 30 [1]20] 3
F 60 60 | 1155110

Using the extended analysis and the same priority order, what are the worst-
case response times of the tasks?

(d) Are all deadlines met?

(e) The task set is modified to include release jitter:

‘TaskName‘ T ‘ t ‘n‘D‘C‘J‘

A 35 3 (1351910
B 75 7 3| 71210
C 60 60 1505 |0
D 1000 [ 1000 | 1 |30 [ 10 | O
E 30 30 (1]20] 3 |14
F 60 60 | 1]55]10] 0

Modify the analysis for bursty behaviour to also include release jitter (make
sure that the worst-case response time includes the delay before release).

(f) What are the worst-case response times of all the tasks with the deadline
monotonic priority ordering?

(g) Is the deadline of task E met? Are other deadlines missed?

(h) What are the worst-case response times of all the tasks with the following
priority ordering: F, B, D, A, C, F.

(i) Is the deadline of task E met? Are other deadlines missed? What is the
optimal priority algorithm?

4. Below is a table which shows a task set of four tasks:

‘TaskName‘ T ‘D‘C‘

A 0 1707
B 50 |50 |1
C 60 |60 | 2
D 1000 | 30 | 8

(a) Assuming that a tick driven scheduler is used, with the following overheads:
The context switch cost Cy, is 1. The cost of moving a task from the delay
queue to the run queue, Cyyeye 1s 2. The cost of responding to the timer
interrupt, Cyer, is 1. The tick period, Ty;er, is 7.

What are the worst-case response times of these tasks in the optimal priority
order?

(b) Are all deadlines met?
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(c¢) The tick period Ty, now changes to 13. What are the new worst-case response

times?

(d) The scheduler is now changed to an event scheduler. The cost of responding
to a timer interrupt and of moving a task from the delay queue to the run
queue, Ciimer, 18 3. What are the worst-case response times of tasks now?

(e) Are all deadlines met?

5. Below is a table which shows a task set of seven messages to be sent on a CAN bus:

‘ Message Name ‘ T ‘ D ‘ S ‘
A 50 ) 3
B 5 5 2
C 10 10 |1
D 50 20 |1
E 50 20 |5
F 100 | 100 | 6
F 1000 | 1000 | 1

The times (T and D) given are in milliseconds, and the sizes (s) are given in bytes.
The bus speed is 50 Kbits/sec. The queueing jitter for all messages is zero.

The tasks are listed in priority order (this is the deadline monotonic priority order-

ing).

(a) What is 7, for this bus speed?

(b) What are the transmission times (C') of the messages?

(c¢) What are the worst-case response times (R) for each message? (you may

assume a blocking factor for all messages equivalent to the transmission time

of an 8 byte message).

(d) What is the bus utilisation?

(e) Are all deadlines met?



