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EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Welcome to Lecture 5

Availability modeling
Safety modeling
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Outline

Availability (Swedish: tillgänglighet)

• Definition

• Steady-state availability

• Simplex system

• Birth-death processes

• Hot stand-by system with one spare

Safety (Swedish: säkerhet mot olyckor)

• Simplex system with coverage factor

Reliability modeling av large systems

• Primary subsystems

• Fault and error containment regions
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Definition

Availability: the probability that a system is working at a given time t.

When calculating the availability we consider both failures and repairs. We must 
make assumptions about the up time (function time) and the down time (total 
repair time).

The down time consists of the time period from a system failure until the system is 
up and running again, including the time from the occurrence of the failure until 
repair is started, the time it takes to perform the repair, and the time it takes to restart 
the system after the repair is completed.

The availability can be defined for different service levels if the system allows 
graceful degradation. The notion of a working system may therefore have differ-
ent meanings depending the service level considered.
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Markov chain model for a simplex system

State
0: System OK
1: System failure

Availability (Swe: Tillgänglighet): 

Reliability (Swe: Funktionsannolikhet): 

Maintainability (Swe: Underhållsgodhet): 





0 1

A t  P0 t =

R t  e t–=

M t  1 e t––=

Failure rate: 
Repair rate: 
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Markov chain for a hot stand-by system

Availability: 

We assume that one repair-person works with the system whenever at least one mod-
ule is faulty. 

The fact that there is only have one repair-person implies that the repair rate is the same 
in State 1 and State 2.
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A t  P0 t  P1 t +=
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Steady-state availability

X0 Y0

System
start

System
failure Restart

System
failure

X1

Restart

XiY1

t 0= t

System
failure

Yi

Restart



E X0  MTTFF  (mean time to first failure)=

E Xi  MTTF     (mean time to failure)=

E Yi  MTTR     (mean time to repair)=

MTTF MTTR+ MTBF    (mean time between failures)=
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Steady-state availability (cont’d).

Assuming exponentially distributed function times and repair times, we get

A t 
t 
lim MTTF

MTTR MTTF+
--------------------------------------- MTTF

MTBF
----------------= =

A  

1
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u
--- 1


---+

------------- 
 u+
------------= =
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The availability for a simplex system

We obtain the following system of differential equations.

, 





0 1

P' t  P t  Q= P 0  P0 0  P1 0 =

Q – 
 –

=
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Solution sketch

We have a system of two differential equations

We also know that

If we substitute  with  in (1), we obtain

P'0 t   P0 t   P1 t           (1)+–=

P'1 t   P0 t   P1 t              (2)–=



P0 t  P1 t + 1                             (3)    =

P1 t  1 P0 t –

P'0 t   +  P0 t +                  (4)=
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Solution sketch

The solution to equation (4) is

We can obtain  simply by exchanging  and  in (5)

P0 t  
 +
------------- 1 e  +  t––  P0 0  e  +  t–      (5)+=

P1 t 

P1 t  
 +
------------- 1 e  +  t––  P1 0  e  +  t–      (6)+=
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Let  and  denote the steady-state probabilities

The steady-state availability is 

0 1

0 P0 t 
t 
lim 

 +
-------------= =

1 P1 t 
t 
lim 

 +
-------------= =

A t 
t 
lim 0=
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Availability for a simplex system

0.999995

0.999996

0.999997

0.999998

0.999999

1

0 2 4 6 8 10

A t  
 +
------------- 1 e  +  t––  e  +  t–   +=

 10 6–  f/h=
 1 r/h=

t (h)



EDA122/DIT061/DAT270 Chalmers University of Technology

Lecture 5 13 © Johan Karlsson, 2011

Birth-death processes

A birth-death process can be described by the following state diagram

The transition rate matrix becomes

0 1 2 kk-1 k+1

0 1 2 k 2– k 1– k k 1+

1 2 3 k 1– k k 1+ k 2+

Q

0– 0 0 0 0 0 ...

1 1 1+ – 1 0 0 0 ...

0 2 2 2+ – 2 0 0 ...

0 0 3 3 3+ – 3 0 ...

0 0 0 4 4 4+ – 4 ...

... ... ... ... ... 0 ...

=
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Birth-death processes (cont’d)

We obtain the following system of differential equations

We calculate the steady-state probability distribution over the states of the process by 
making the following assumption

We assume that the derivatives of the state probabilities tend to zero as time tends to 
infinity 

P' t  P t  Q=

k Pk t 
t 
lim k 0 1 2 ...  = =

P 'kt 
lim t  0=
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The differential equations can be written as

Let  and assume . 

We then obtain the following algebraic equations for the steady state probabilities 

which can be rewritten as

P'0 t  0 P0 t  1 P1 t +–=

P'k t  k 1– Pk 1– t  k k+  Pk t  k 1+ Pk 1+ t    k+– 1 2  = =



i Pi t 
t 
lim= P'i t 

t 
lim 0=

0 0 0 1 1+–=

0 k 1– k 1– k k+  k k 1+ k 1++–=



0 0 1 1+– 0=

k k k 1+ k 1++–  k 1– k 1–– k k+ – 0=
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If we make the following substitution

then the equation system can be written as

which has the solution  for  , which gives

zk k k k 1+ k 1++–=

z0 0=

zk zk 1–– 0=



zk 0= k 0 1 2 ...  =

1
0
1
------ 0                            (1)=

k 1+
k

k 1+
------------- k                   (2)=
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By repeated use of (2) we obtain

1
0
1
------ 0                            (1)=

k 1+
k

k 1+
------------- k                   (2)=

1
0
1
------ 0=

2
1 0
2  1
---------------- 0=

3

2  1 0

3  2  1
--------------------------- 0=

...

k
k 1–  k 2– ... 0 

k  k 1– ...   1
------------------------------------------------- 0=
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We also know that

We can now determine  as

i
i 0=

k

 1=

0

0 0

i 1–  i 2– ... 0 

i  i 1– ...   1
----------------------------------------------- 1=

i 1=

k

+
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Example

Calculate the steady-state availability for a hot stand-by system with one spare module. 
Assume that the system is repaired by one person.

We solve the problem on the black-board.
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Safety Modelling

Safety: The probability that a system is working correctly or has failed in a safe way.

• Calculating safety is similar to calculating reliability.

• In a reliability model there is usually only one absorbing state, while in a safety 
model there are at least two absorbing states.

• Among the absorbing states in a safety model, at least one represents that the 
system is in a safe shut-down state, and at least one represents that system is in 
a catastrophic (or critical) failure state.
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Safety for a simplex system with coverage factor

We obtain the following Markov chain model

and the corresponding transition-rate matrix

FS

CF

0

 c

 1 c– 

State
0: system OK
FS: fail safe
CF: critical failure

Q
–  c  1 c– 
0 0 0
0 0 0

=
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Safety for a simplex system with coverage factor (cont’d.)

The solutions of the differential equations are:

The safety of the system is

The steady-state safety is:

P0 t  e t–=

PFS t  c ce t––=

PCF t  1 c–  1 c– e t––=

S t  P0 t  PFS t + e= t– c ce t––+ c 1 c– e t–+= =

S t 
t 
lim c=
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Reliability modelling of large systems

• Example: Hot stand-by control system
• Divide and conquer
• Primary independent subsystems
• Methodology for reliability modelling
• Fault/error containment regions
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Hot Stand-by Control System

Physical Architecture

PM 1 PM 2

Sensor 2

Sensor 1IOM 1 IOM 2

Parallel busses

Serial busses

Figure 1

Actuator 1

Actuator 2
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Hot Stand-by Control System

Textual description

Figure 1 shows the physical architecture for a fault-tolerant computer system for a 
real-time control application.

The system consists of two processor modules (PM 1 and PM 2), two I/O-modules 
(IOM 1 and IOM 2), two parallel and two serial buses, and two sensors and two 
actuators.

All primary subsystems operate as hot stand-by systems. 

The processor modules execute the control program which calculates the outputs 
for the actuators based on sensors values.

The I/O-module handles the data communication between the processor modules 
and the sensors/actuators. The I/O-module is the bus master for both the parallel 
bus and the serial bus.
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Reliability Analysis of Large Systems

Reliability and availability analysis using Markov chain models becomes increasingly 
difficult as the number of modules in a system increases. 

If we have n modules in the system, we must (in principle) consider 2n states, since 
each module can assume one of two states: operational (working) or non-opera-
tional (broken).

For small systems we can often manually reduce the number of states. For example, 
we have previously used a model with three states for a TMR system, although 23 = 8 
combinations of failed and working units can occur in a TMR system. Each of these 
combinations corresponds to an elementary state of the system.

The reason why we can reduce the number of states to three is that there are more ele-
mentary states than significant states, e.g., there are several elementary states that 
correspond to a system failure.

For large systems that consist of many modules of different types it becomes difficult to 
define markov chain models manually, as the number of significant states in the 
model is large.
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Divide and Conquer

One approach for simplifying the analysis of large systems is to divide the system 
into a number of independent subsystems, which we can call primary subsys-
tems.

We assume that a system consists of several primary subsystems, which all must 
function in order for the system to function. 

Thus, at the highest level of abstraction the system is a series system

Note: Not all system can be divided into independent subsystems!

Reliability block diagram

1
Subsystem

2
Subsystem

n
Subsystem
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Independent Primary Subsystems

Definitions:

1 A primary subsystem is one which is essential to the system, i.e., a failure of 
a primary subsystems always results in a system failure.

2 If all failures of a primary subsystem are mutually independent of all failures of 
all other subsystem, then it is an independent primary subsystem.
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Method for reliability analysis

Starting from a physical architecture and a functional description of the
fault-tolerance features, we conduct the analysis in three steps:

1 Determine the independent primary subsystems. 

2 Calculate the reliability of each independent primary subsystem.

3 Calculate the reliability of the system as , where  is

the reliability of subsystem i. 

Rsystem Ri
i 1=

n

= Ri
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Primary Subsystems

We have four primary subsystems:
• The processor modules (in red)
• The I/O modules including the serial and parallel busses (in blue)
• The sensors (in green)
• The actuators (in purple)

PM 1 PM 2

Sensor 2

Sensor 1IOM 1 IOM 2

Parallel busses

Serial busses

Figure 1

Actuator 1

Actuator 2
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Fault/Error Containment Regions

• Fault/error containment aims at preventing faults/errors in one unit from affect-
ing other units.

• A fault-tolerant computer system consists of several fault/error containment 
regions.

• Fault/error containment should be maintained at all unit interfaces where fault 
and error propagation may lead to a reduction of system reliability.

• Fault/error containment is not needed between units that constitute a series 
system.
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Fault Containment Regions

There are 8 fault containment regions in this system: PM 1, PM 2, IOM 1 (including 
buses), IOM 2 (including buses), Sensor 1, Sensor 2, Actuator 1 and Actuator 2.

PM 1 PM 2

Sensor 2

Sensor 1IOM 1 IOM 2

Parallel busses

Serial busses

Actuator 1

Actuator 2
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Modified Hot Stand-by Control System

Physical Architecture 

We introduce a cross-coupling of the parallel buses. 
There are now 10 fault containment regions: PM 1, PM 2, Parallel Bus 1, Parallell 
Bus2, IOM1 and Serial bus 2, IOM2 and Serial bus 2, Sensor 1, Sensor 2, Actuator 
1 and Actuator 2.

PM 1 PM 2

Sensor 2

Sensor 1IOM 1 IOM 2

Parallel busses

Serial busses

Figure 1

Actuator 1

Actuator 2
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Overview of Lecture 6

• Case Study: Hewlett-Packard’s Non-Stop Advanced Architecture
Preparations:
Course book: Section 6.1, 6.3, 6.4, 6.5, 6.8
Paper by Bernick et al., “Non-Stop Advanced Architecture”

• Case Study: Ariane 501 disaster
• Introduction to redundancy in software

Preparations:
Course book: Section 6.1, 6.2 (software faults), 6.3, 6.6
Report on Ariane 501 failure (Very important to read before the lecture!)


